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Propagation and perfect transmission in three-waveguide axially varying couplers
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We study a class of three-waveguide axially varying structures whose dynamics are described by the su(3)
algebra. Their analytic propagator can be found based on the corresponding Lie group generators. In particular,
we show that the field propagator corresponding to three-waveguide structures that have arbitrarily varying
coupling coefficients and identical refractive indices is associated with the orbital angular momentum algebra.
The conditions necessary to achieve perfect transmission from the first to the last waveguide element are obtained
and particular cases are elucidated analytically.
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I. INTRODUCTION

Waveguide couplers represent indispensable elements in
integrated optics. Such structures find numerous applications
in several areas of optics, especially in those pertaining to
the switching and routing of light [1,2]. Typically waveguide
couplers are theoretically analyzed using coupled-mode theory
[3–5]. Along these lines, certain classes of directional couplers
amenable to analytic solutions have been explored by assuming
adiabatic changes in their coupling parameters [6–12]. In such
adiabatic directional couplers the local eigenstates remain
invariant under slow perturbations in the device characteristics.
However, the restriction of having slow, gradual changes in
the parameter space of these devices constrains the spatial
configurations where directional adiabatic couplers can be
implemented.

In this report we study a class of coupled, axially varying,
three-waveguide structures whose dynamics are described by
the su(3) algebra. The analytic propagator of these systems can
be constructed from the corresponding Lie group generators.
Specifically, we are interested in new classes of planar
three-waveguide directional structures with arbitrary varying
coupling coefficients and we focus on the construction of a
field propagator for a particular subclass of three-waveguide
structures described by the orbital angular momentum algebra.
Our class of three-waveguide couplers is not restricted by slow
gradual changes in the characteristics of the photonic crystal
and, thus, may extend the spatial configurations for the design
of these devices. The transfer of classical and quantum states
of light encoding information is of paramount importance
in scalable optical and quantum processing [13]; for this
reason we identify the conditions necessary to synthesize a
three-waveguide coupler that provides perfect transmission
from the first to the last waveguide element. These results are
elucidated via relevant examples.

II. UNDERLYING MODEL AND ITS SOLUTION

We here consider a three-core waveguide structure with
arbitrary axially varying nearest-neighbor couplings and re-
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fractive indices. Using coupled-mode theory, this system can
be described by the following set of differential equations
[3–5,14],

dE(z)

dz
= i

⎛
⎜⎝

n1(z) α(z) 0

α(z) n2(z) β(z)

0 β(z) n3(z)

⎞
⎟⎠ E(z), (1)

where the modal field amplitude corresponding to each waveg-
uide, Ej , is contained in the vector E(z) = (E1(z),E2(z),E3(z)).
The nearest-neighbor couplings are given by the well-behaved
real functions α(z) and β(z) associated with the coupling
coefficient between the first and second waveguide and that
between the second and third waveguide, respectively. The
effective refractive index nj (z) of each waveguide is also a
well-behaved real function. Throughout this work we also
assume that in addition

∑
j nj (z) = n; i.e., the sum of the

three indices is a constant. Under such conditions, it is
straightforward to write the differential system in terms of
Gell-Mann–Ne’eman matrices [15,16],

dE(z)

dz
= i [α(z)λ1 + β(z)λ6 + γ (z)λ3 + δ(z)λ8] E(z), (2)

where here we have omitted a unitary matrix term proportional
to the constant n/3 that only introduces an overall phase
factor. The new parameter functions are defined as γ (z) =
[n − 2n2(z) − n3(z)] /2 and δ(z) = [n − 3n3(z)] /(2

√
3).

Equation (2) is a Schrödinger equation up to an overall
phase factor. By following standard quantum mechanical
techniques, cf. [17] and references therein, one can show that
the propagator for the field amplitudes, E(z) = U(z)E(0), is
given by

U (z) =

⎛
⎜⎝

f1(z) −f2(z) −f3(z)

−g1(z) g2(z) g3(z)

−h1(z) h2(z) h3(z)

⎞
⎟⎠ , (3)

where

d

dz

⎛
⎜⎝

fj (z)

gj (z)

hj (z)

⎞
⎟⎠ = i

⎛
⎜⎝

n1(z) −α(z) 0

−α(z) n2(z) β(z)

0 β(z) n3(z)

⎞
⎟⎠

⎛
⎜⎝

fj (z)

gj (z)

hj (z)

⎞
⎟⎠ , (4)
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with j = 1, 2, and 3 and initial conditions given by f1(0) =
g2(0) = h3(0) = 1 and zero for the rest, f2(0) = f3(0) =
g1(0) = g3(0) = h1(0) = h2(0) = 0. At this point, we only
need to find the forms of the complex functions for each
specific case. For the sake of simplicity we here focus on
the subcase where the three waveguides exhibit identical
refractive indices, which implies that nj = n/3; in doing so,
one must be careful in choosing appropriate coupling symme-
tries that keep the length of all waveguides approximately
equal (within a small fraction of a wavelength) so as to
avoid phase accumulation effects. In this case we can write
the differential set describing the system in the following
way:

dE(t)

dt
= i [λ1 + η(t)λ6] E(t), (5)

where we have defined a coupling ratio η(z) = β(z)/α(z)
and made the variable change α(z) = ∂t/∂z. We can take
advantage of the fact that the Gell-Mann matrices {λ1,λ5,λ6}
form an orbital angular momentum group, SU(2), which is
a subgroup of SU(3). Then the propagator can be written as
follows:

U(t) = eif (t)S+eig(t)λ6eih(t)S− , (6)

with S± = λ5 ± iλ1 and

f (t) = 2i
ν ′(t)
ν(t)

− η(t), (7)

g(t) = 2i [ln ν(t) − ln ν(0)] , (8)

h(t) = ν2(0)

2

∫ t

0
dx

1

ν2(x)
, (9)

where we have introduced an auxiliary function ν(t) that obeys
the following second-order differential equation,

ν ′′(t) + 1
4ν(t)[2iη′(t) + η2(t) + 1] = 0, (10)

provided that f (0) = 0. In general, Eq. (10) is not known to
exhibit analytical solutions for any arbitrary coupling ratio
η(z). Nevertheless, as we will see, this problem can be solved
in closed form for particular coupling ratios.

Let us consider, for example, the case of exponential
coupling ratios η(t) = cedt with c,d ∈ R. We introduce an
extra change of variable, ν(t) = e

i
2d (dt−cedt)u(t), such that

the differential equation for the auxiliary function (10)
becomes

u′′(t) + (i − icedt )u′(t) + 1
2cedtu(t) = 0. (11)

Further manipulation provides a solution of the form

u(t) = c1 1F1

(
i

2d
,
d + i

d
,
icedt

d

)

+ c2d
i/dc− i

d e− π
2d

−it
1F1

(
− i

2d
,
d − i

d
,
icedt

d

)
, (12)

where 1F1(α,β,x) is the confluent hypergeometric function
of Kummer [18–20] and the constants cj are to be chosen
in order to satisfy the conditions f (0) = g(0) = h(0) = 0.
The rest of the solution can be calculated via Eqs. (7)–(9).
Again, the functions f (t), g(t), and h(t) are also given in
terms of confluent hypergeometric and exponential functions.
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FIG. 1. (Color online) The (a) real and (b) imaginary parts of
F (t) = f (t) (solid black line), e−ig(t) (dashed blue line), and h(t)
(dotted red line) and (c) the intensity at the first (solid black), second
(dashed blue line), and third (dotted red line) waveguides for an
initial field amplitude impinging the first waveguide of a device with
the exponential coupling ratio η(t) = e−t .

Figures 1(a) and 1(b) show the real and imaginary parts of
these functions, respectively, as well as the intensity at each
waveguide for an initial field impinging on the first waveguide,
Fig. 1(c), for the coupling ratio η(t) = e−t .

III. PERFECT TRANSMISSION IN THE SU(2) MODEL

Let us consider light impinging on the three-waveguide
coupler at the first waveguide site, E(0) = (1,0,0). The field
amplitudes through this structure are given by the following
expressions:

E1(t) = 1 − 2f (t)e−ig(t)h(t), (13)

E2(t) = −f (t) + [f 2(t) + 1]e−ig(t)h(t), (14)

E1(t) = −f (t) + [f 2(t) − 1]e−ig(t)h(t). (15)

In order to obtain perfect transmission from the first to the last
waveguide, we have to search for a specific length τ at which
E(τ ) = (0,0,eiφ). This is possible when

f (τ ) = ±1, φ = 0,π, (16)

h(τ ) = ± 1
2eig(τ ). (17)

Of course, not all the cases of coupling ratios η(t) will satisfy
these requirements and, typically, it is complicated to find out
if they are fulfilled or not.

A. Constant coupling ratio: η(z) = c, with c ∈ R

To demonstrate the versatility of our approach, we first use
it in the case where the coupling ratio η(z) is constant. In this
case it is straightforward to show that the auxiliary function is
given by

ν(t) = c+e
i
2

√
1+c2t + c−e

i
2

√
1+c2t , (18)
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FIG. 2. (Color online) The (a) real and (b) imaginary parts of
F (t) = f (t) (solid black line), e−ig(t) (dashed blue line), and h(t)
(dotted red line) and (c) the intensity at the first (solid black line),
second (dashed blue line), and third (dotted red line) waveguides for
an initial field amplitude impinging the first waveguide of a device
with the constant coupling ratio η(t) = 1.

where the coefficients c± are to be determined form the initial
conditions. Thus, Eqs. (7)–(9) yield

f (t) = 1

c + i
√

a cot
(

1
2

√
at

) , (19)

g(t) = i ln

[√
a cos(

√
at) − ic sin(

√
at)√

a[1 + f 2(t)]

]
, (20)

h(t) = −f (t), (21)

with a = 1 + c2. Note that for this particular case it is simpler
just to calculate the matrix exponential ei(Ŝy+cŜz)z required in
the solution:

U(t) =

⎛
⎜⎜⎝

c2+cos(
√

at)
a

i sin(
√

at)√
a

c[cos(
√

at)−1]
a

i sin(
√

at)√
a

cos(
√

at) ic sin(
√

at)√
a

c(cos(
√

at)−1)
a

ic sin(
√

at)√
a

cos(
√

at)+c2

a

⎞
⎟⎟⎠ . (22)

It is straightforward to realize that the case of uniformly
coupled waveguides [3] is included in this class and that
the auxiliary functions oscillate periodically. Figure 2 shows
the real and imaginary parts of these functions for the case
η(t) = 1. This case supports perfect transmission from the
first to the third waveguide as shown in Fig. 2(c).

B. Linear coupling ratio: η(t) = ct , with c ∈ R

The case of a linear coupling ratio, η(t) = ct with c ∈ R,
can be solved analytically by the auxiliary function

ν(t) = cee
−iαt2/4

1F1

(
i

8c
,
1

2
,
ic

2
t2

)
. (23)

Note that the conditions ν(0) = ce and limt→∞ ν(t) = 0
allow us to write the rest of the functions in the following
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FIG. 3. (Color online) The (a) real and (b) imaginary parts of
F (t) = f (t) (solid black line), e−ig(t) (dashed blue line), and h(t)
(dotted red line) and (c) the intensity at the first (solid black line),
second (dashed blue line), and third (dotted red line) waveguides for
an initial field amplitude impinging the first waveguide of a device
with the linear coupling ratio η(t) = t .

form:

f (t) = − it

2
1F1

(
1 + i

8c
, 3

2 , ic
2 t2

)
1F1

(
i

8c
, 1

2 , ic
2 t2

) , (24)

g(t) = 2i ln

[
cee

−iαt2/4
1F1

(
i

8c
,
1

2
,
ic

2
t2

)]
, (25)

h(t) = ce

∫ t

0
dxeiαx2/2

1F
−2
1

(
i

8c
,
1

2
,
ic

2
x2

)
. (26)

The function h(t) can be seen as a generalization of Fresnel
integrals leading to a series of confluent hypergeometric or
incomplete gamma functions via expansion of the confluent
hypergeometric function into a power series [20]. These
functions fulfill the initial condition f (0) = g(0) = h(0) = 0.
Figure 3 shows the real and imaginary parts of these functions
for the coupling ratio case η(t) = t leading to an auxiliary
coefficient ce = 1. Notice the asymptotic localization of the
function e−ig(t) as expected from the asymptotic behavior of the
confluent hypergeometric function. Clearly, this case supports
perfect transmission from site 1 to 3 as shown in Fig. 3(c).

C. Optical analog of STIRAP

Another case included in the SU(2) model providing
perfect transmission are the optical analogs of stimulated
Raman adiabatic passage (STIRAP) corresponding to param-
eter values α(z) = ce−(z−ζ )2/ζ 2

and β(z) = ce−z2/ζ 2
, where

c,ζ ∈ R. Under these restrictions, our optical coupler model
is equivalent, up to a constant phase factor, to an atomic
three-level delta system driven by two classical fields as
presented in [21]; for a review of STIRAP cf. [22,23]. In this
case the auxiliary variable t(z) leads to the error function and
beyond that the problem can only be tackled via the method
of Frobenius. The results obtained are in the form of power
series and recurrence relations for the coefficients. Unitary
integration techniques [24] may provide a more compact
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FIG. 4. (Color online) Intensity propagation through the first
(solid black line), second (dashed blue line), and third (dotted red
line) waveguides showing one-directional coupling in a system with
parameters c = 2.5 and ζ = 3. The initial field is impinging the (a)
first, (b) second, and (c) third waveguides.

form for the propagator but such an approach is beyond the
scope of this report. Figure 4 shows the intensity at each
waveguide under different initial conditions and demonstrates
the one-directional coupling characteristics of this system.

IV. CONCLUSIONS

We have shown that it is possible to solve the light evolution
equations in a nonadiabatic axially varying three-core waveg-
uide coupler involving nonidentical waveguides, in terms of
the Lie group generators of su(3). We focused our attention on a
reduced class of structures having identical waveguides where

the dynamics is dictated by the orbital angular momentum
algebra, su(2). The advantage of this specific method resides
in the fact that one has to solve only a second-order differential
equation involving the three-waveguide coupling ratio and its
derivative in order to determine the three auxiliary functions
required in the orbital angular momentum rotations. As an
example we consider the case of exponential coupling ratios.
For perfect transmission, we found the conditions needed for
these three auxiliary functions to allow complete transmission
from the first to the last waveguide in the coupler at a given
propagation distance. We approached the simplest class of
constant and linear coupling ratios as a practical example of
such systems allowing perfect transmission; in these cases the
solution to the differential equation can be written in closed
form in terms of trigonometric and hypergeometric functions.
The constant coupling ratio case leads to periodically oscil-
lating fields in the coupler channels and perfect transmission
for a well-defined set of parameters as expected. The linear
coupling ratio case provides close to perfect transmission
with a larger set of parameters. Our analytic results point
to a class of coupling ratios in photonic three-waveguide
couplers that provides directional coupling with almost perfect
transmission from the first to the last waveguide. This fact
allows for the design of directional couplers in a variety
of configurations. Finally, we studied the optical analog of
STIRAP corresponding to the SU(2) model and found its
solution as a set of recurrence relations and power series.
Alternative methods, such as unitary integration techniques,
may provide closed form solutions.
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