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Generation and propagation of a partially coherent vector beam with special correlation functions
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We introduce a general optical system for synthesis of partially coherent vector beams with a variety of
correlation functions. In particular we employ it for generation of the family of beams, termed the specially
correlated radially polarized (SCRP) beams and examine their free-space propagation both theoretically and
experimentally. Our results clearly show that a SCRP beam exhibits unique features on propagation in comparison
with those of beams with conventional correlation functions. The technique for modulation of the correlation
functions and, hence, the coherence state of a SCRP beam in the source plane leads to efficient control of its
intensity distribution and its degree of polarization on propagation, which is of importance in particle trapping
and material thermal processing applications.
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I. INTRODUCTION

The states of coherence and polarization of light fields have
been treated separately until very recently [1–3]. That is why it
was commonly assumed that the state of polarization of a light
beam is invariant as the beam propagates in free space: there
was no inherent reason seen for its evolution. However, using
a simple example, in 1994 James showed that the degree of
polarization of a partially coherent light beam may in general
change on propagation in free space [4]. In 1998, Gori [5],
and in 2003, Wolf [6] introduced unified theories of coherence
and polarization for partially coherent vector beams in time and
frequency domains, respectively, showing that these properties
are always intimately related [7]. Since then, numerous efforts
have been made on characterization, generation, propagation,
and detection of partially coherent vector beams due to their
important applications in free-space optical communications,
remote sensing, optical imaging, particle trapping, particle
scattering, and material thermal processing [8–36].

Coherent vector beams can be classified as the ones
with a spatially uniform state of polarization (e.g., linearly,
circularly, and elliptically polarized beam) and with a spatially
nonuniform state of polarization [e.g., radially polarized
(RP), azimuthally polarized (AP), and cylindrical vector
beams] [3,37–49]. In a similar way, partially coherent vector
beams can also be classified as the ones with spatially uniform
and spatially non-uniform state of polarization. The latter
beams were introduced theoretically and generated experi-
mentally only very recently [30–36], but have already found
uses in free-space optical communication, particle trapping,
and material thermal processing.

In all papers on the partially coherent vector beams cited
above, the random beams have conventional correlation func-
tions (i.e., Schell-model correlation functions). Only recently,
partially coherent beams with nonconventional correlation
functions have been introduced and examined [50–60]. They
have been found to exhibit some extraordinary propagation
characteristics, such as far-field flat-topped and ring intensity

*Corresponding author: fwang@suda.edu.cn
†Corresponding author: yangjiancai@suda.edu.cn

profile formation, self-focusing effect, and a lateral shift
of the intensity maximum. With a few exceptions [61–63],
the previous studies about partially coherent beams with
nonconventional correlation functions were confined to scalar
treatment. The superposition rules for constructing genuine
spatial correlation functions of scalar and vector partially
coherent beams were first discussed in Refs. [64] and [65],
respectively. In this paper, our aim is to investigate the
generation and propagation of a partially coherent vector
beam with arbitrary correlation functions both theoretically
and experimentally, and to analyze the obtained results.

II. PARTIALLY COHERENT VECTOR BEAM WITH
SPECIAL CORRELATION FUNCTIONS

In this section, we briefly outline the sufficient condition for
constructing the beam coherence-polarization (BCP) matrix
in the space-time domain [or the cross-spectral density (CSD)
matrix in the space-frequency domain] of a partially coherent
vector beam, and then we introduce an optical system for
generating a partially coherent vector beam with arbitrary
correlation functions. Finally, we introduce the family of
specially correlated radially polarized (SCRP) beams based
on the proposed optical system.

Let us first consider a quasimonochromatic, partially
coherent vector beam propagating, along the z direction. In the
space-time domain, the second-order correlation properties of
such a beam are characterized by the BCP matrix [5,66]

�̂ (r1,r2) =
(

�xx (r1,r2) �xy (r1,r2)
�yx (r1,r2) �yy (r1,r2)

)
, (1)

with elements

�αβ (r1,r2) = 〈
E∗

α(r1)Eβ(r2)
〉
, (α = x,y; β = x,y) , (2)

where r1 ≡ (x1,y1) and r2 ≡ (x2,y2) are two transverse
position vectors, Ex and Eydenote the components of the
random electric vector, along two mutually orthogonal x and y

directions perpendicular to the z axis. The asterisk denotes the
complex conjugate and the angular brackets denote ensemble
average.

According to Ref. [65], in order for a BCP matrix to
be genuine, i.e., physically realizable, it should satisfy the

1050-2947/2014/89(1)/013801(11) 013801-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.013801


CHEN, WANG, LIU, ZHAO, CAI, AND KOROTKOVA PHYSICAL REVIEW A 89, 013801 (2014)

condition of non-negative definiteness, which is fulfilled if the
elements of the BCP matrix have the following integral form:

�αβ (r1,r2) =
∫

pαβ(v)H ∗
α (r1,v)Hβ(r2,v)d2v,

× (α = x,y; β = x,y), (3)

wherev ≡ (vx,vy),Hx(r,v), andHy(r,v)are two arbitrary ker-
nels, and pαβ (v)are the elements of the following weighting
matrix

p̂ (v) =
(

pxx(v) pxy(v)
p∗

xy(v) pyy(v)

)
. (4)

The elements of the weighting matrix should satisfy the
following conditions for any v [65]:

pxx (v) � 0,pyy (v) � 0,pxx (v) pyy (v) − |pxy(v)|2 � 0.

(5)

One finds from Eqs. (3) and (5) that a variety of partially
coherent vector beams with different BCP matrices can be
introduced by choosing suitableHx(r,v), Hy(r,v), and p̂ (v).

Equation (3) can be rewritten in the following alternative
form:

�αβ(r1,r2) =
∫∫

�αβ(v1,v2)H ∗
α (r1,v1)Hβ(r2,v2)

× d2v1d
2v2,(α = x,y; β = x,y), (6)

where

�αβ(v1,v2) = E∗
α(v1)Eβ(v2)δ(v1 − v2), (7)

δdenoting the Dirac δ function. �αβ(v1,v2) and �αβ(r1,r2)
can be regarded as the elements of the BCP matrix of
the vector beam in the input plane and the output plane,
respectively. The vector beam in the input plane is assumed
to be incoherent. Hx(r,v) and Hy(r,v) are regarded as the
response functions of the two paths through which Ex(v) and
Ey(v) pass, respectively. Thus, one can generate a variety of
partially coherent vector beams from an incoherent vector
source through propagation by varying Ex(v), Ey(v), Hx(r,v),
and Hy(r,v).

Figure 1 presents notations used for synthesis of a source
generating a partially coherent vector beam with arbitrary
correlation functions from an incoherent vector source. A thin
lens L with focal length f and a Gaussian amplitude filter
(GAF) with transmission function T (r) = exp(−r2/4σ 2

0 ), σ 2
0

FIG. 1. Schematic diagram for generating a partially coherent
vector beam with arbitrary correlation functions from an incoherent
vector source. L, thin lens; GAF, Gaussian amplitude filter.

being the rms width, are located in the output plane. The
distance between the source plane and the output plane is f .
In our proposed optical system, the response functions Hx(r,v)
and Hy(r,v)between the source plane and the output plane are
the same and are expressed as

Hα(r,v) = −i

λf
T (r) exp

[
iπ

λf
(v2 − 2r · v)

]
,(α = x,y). (8)

After substituting Eqs. (7) and (8) into Eq. (6) we obtain

�αβ(r1,r2) = exp

[
−r2

1 + r2
2

4σ 2
0

]
γαβ

[
r2 − r1

λf

]
, (9)

where

γαβ [(r2 − r1) /λf ] = 1

λ2f 2

∫
�αβ(v,v)

× exp

[
− i2πv · (r2 − r1)

λf

]
d2v, (10)

with �αβ(v,v) = E∗
α (v) Eβ (v). One finds from Eq. (10) that

the correlation functions γαβ of the elements of the BCP matrix
of the generated partially coherent vector beam represent the
Fourier transforms of the corresponding elements �αβ of the
BCP matrix of the incoherent vector source with v1 = v2 = v.
If the elements of the BCP matrix of the incoherent vector
source are Gaussian functions, i.e., �αβ(v,v) = exp[v2/ω2

αβ],
we obtain the well-known electromagnetic Gaussian Schell-
model beam (i.e., partially coherent vector beam with Gaussian
Schell-model correlation functions) in the output plane [8,9].
By varyingEx(v)andEy(v)of the incoherent vector source, one
can generate a variety of partially coherent vector beams with
different correlation functions in the output plane.

A partially coherent RP beam with conventional Schell-
model correlation functions has been studied in detail both
theoretically and experimentally [33–35]. As an application
example, now we introduce the SCRP beam based on the
proposed optical system. We assume that in Fig. 1 the source
is an incoherent RP source, whose BCP matrix has the form
[33–35]

�̂(v1,v2) = 1

ω2
0

exp

(
−v2

1 + v2
2

ω2
0

)

×
(

v1xv2x v1xv2y

v1yv2x v1yv2y

)
δ(v1 − v2). (11)

It can be easily verified that the elements of matrix �̂(v1,v2)
satisfy the following constraints as required by Eq. (5):

�xx (v,v) � 0,�yy (v,v) � 0,�xx (v,v) �yy (v,v)

− |�xy(v,v)|2 � 0. (12)

On substituting Eqs. (10) and (11) into Eq. (9), we obtain the
following expressions for the elements of the BCP matrix of a
SCRP beam:

�αα(r1,r2) = C0 exp

(
−r2

1 + r2
2

4σ 2
0

) (
1 − (α2 − α1)2

δ2
0

)

× exp

[
− (r1 − r2)2

2δ2
0

]
,(α = x,y), (13)
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�xy(r1,r2) = −C0 exp

(
−r2

1 + r2
2

4σ 2
0

)
(x2 − x1) (y2 − y1)

δ2
0

× exp

[
− (r1 − r2)2

2δ2
0

]
, (14)

�yx(r1,r2) = �∗
xy (r2,r1) , (15)

where C0 is a positive constant and δ0 = λf/πω0 represents
the transverse coherence width of the RP beam with λ being
the wavelength.

The intensity of the proposed partially coherent RP beam
is given as [5,8,66]

I (r) = �xx(r,r) + �yy(r,r) = 2C0 exp

(
− r2

2σ 2
0

)
. (16)

One finds that the intensity of the proposed SCRP beam in the
source plane has a Gaussian beam profile.

In the literature there exist two definitions of the de-
gree of coherence for a paraxial partially coherent vector
beam [6–8,12]. For the convenience of comparison with later
experimental results, we adopt here the definition introduced
by Tervo et al. [12]. According to this definition, the degree
of coherence γ (r1,r2) of a partially coherent vector beam at a
pair of transverse points with position vectors r1and r2 has
the form

γ 2(r1,r2) = Tr[�̂†(r1,r2)�̂(r1,r2)]

Tr[�̂(r1,r1)]Tr[�̂(r2,r2)]
. (17)

where Tr represents the trace of matrix, the symbol † denotes
the Hermitian adjoint.

Applying Eqs. (13)–(15) and (17), we calculate in Fig. 2
the density plots of the square of the degree of coherence
γ 2, the square of the correlation functions γ 2

xx , γ 2
yy , and

γ 2
xy of the SCRP beam in the source plane. The correlation

parameter used in the calculations is set as δ0 = 0.5 mm.
One finds from Fig. 2 that the distributions of γ 2, γ 2

xx , γ 2
yy ,

FIG. 2. (Color online) Density plots of (a) the square of the de-
gree of coherence γ 2 (r1,r2 = 0), (b)–(d) the square of the correlation
functions γ 2

xx (r1,r2 = 0), γ 2
yy (r1,r2 = 0), and γ 2

xy (r1,r2 = 0), of the
SCRP beam in the source plane.

and γ 2
xy of the proposed SCRP beam in the source plane all

have non-Gaussian profiles, in striking contrast with those
of the partially coherent RP beam with the conventional
Schell-model correlation functions in the source plane whose
distributions of γ 2, γ 2

xx , γ 2
yy , and γ 2

xy all have Gaussian profiles.
In the next sections, we will show both theoretically and
experimentally that on propagation in free space the special
correlation functions lead to unique evolution features in all
the second-order properties of a partially coherent RP beam.

III. PROPAGATION OF A SCRP BEAM

In this section, we derive the analytical propagation law for
the SCRP beam proposed in the previous section, and examine
its outcomes.

Within the validity of the paraxial approximation, the
propagation of the elements of the BCP matrix of a partially
coherent vector beam through a stigmatic ABCD optical
system can be studied with the help of the following extended
Collins formula [67,68]

�αβ

(
ρ1,ρ2

) =
(

1

λ |B|
)2 ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
×�αβ(r1,r2)dx1dx2dy1dy2

× exp

[
− ik

2B

(
Ax2

1 − 2x1ρ1x + Dρ2
1x

)

− ik

2B

(
Ay2

1 − 2y1ρ1y + Dρ2
1y

)]

× exp

[
ik

2B

(
Ax2

2 − 2x2ρ2x + Dρ2
2x

)

+ ik

2B

(
Ay2

2 − 2y2ρ2y + Dρ2
2y

)]
, (18)

where ρ1 ≡ (ρ1x,ρ1y) and ρ2 ≡ (ρ2x,ρ2y) are two arbitrary
transverse position vectors in the field, A, B, C, and D are the
elements of the transfer matrix of the optical system.

Substituting Eqs. (13)–(15) into Eq. (18), we obtain the
following analytical expressions for the elements of the BCP
matrix of the propagating SCRP beam

�αα(ρ1,ρ2) = C0
σ 2

0

S2
0

[
1 + B2

k2δ2
0S

2
0

(
Tαασ 4

0

S2
0

− 1

)]
S(ρ1,ρ2),

(19)

�xy(ρ1,ρ2) = C0
σ 2

0

S2
0

Txyσ
4
0 B2

δ2
0k

2S4
0

S(ρ1,ρ2), (20)

�yx(ρ1,ρ2)=�∗
xy(ρ2,ρ1), (21)

with

S(ρ1,ρ2) = exp

[
ik

2B

(
D − Aσ 2

0

S2
0

)(
ρ2

2 − ρ2
1

) − (ρ1 + ρ2)2

8S2
0

− (ρ1 − ρ2)2

8S2
0

(
1 + 4σ 2

0

δ2
0

) ]
, (22)
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S2
0 = σ 2

0

[
A2 +

(
1 + 4σ 2

0

δ2
0

) (
B

2kσ 2
0

)2
]

, (23)

Tαα =
[
ρ1α + ρ2α

2σ 2
0

+ ikA (ρ2α − ρ1α)

B

]2

,(α = x,y), (24)

Txy =
[
ρ1x + ρ2x

2σ 2
0

+ ikA (ρ2x − ρ1x)

B

]

×
[
ρ1y + ρ2y

2σ 2
0

+ ikA(ρ2y − ρ1y)

B

]
. (25)

The intensity of the propagating SCRP beam is given as

I (ρ) = �xx(ρ,ρ) + �yy(ρ,ρ). (26)

Applying Eqs. (19)–(26), one can numerically study the
propagation of the SCRP in a convenient way. As a particular
example, we will now consider the focusing properties of the
SCRP beam. Assume that the beam passes through a thin
lens with focal length f and then arrives at the planeρ. The
distances from the source to the thin lens and from the thin
lens to the planeρare f and z, respectively. The transfer matrix
between the source plane and the plane ρ reads as(

A B

C D

)
=

(
1 z

0 1

)(
1 0

−1/f 1

) (
1 f

0 1

)

=
(

1 − z/f f

−1/f 0

)
. (27)

We show in Fig. 3 the density plot of the normalized intensity
distribution and the corresponding cross line of the focused
SCRP beam withf = 400 mm, λ = 632.8 nm, σ0 = 1 mm,
and δ0 = 0.25 mm at several propagation distances. One finds

FIG. 3. (Color online) Density plot of the normalized intensity
distribution and the corresponding cross line of the focused SCPR
beam at several propagation distances.

from Fig. 3 that on propagation the beam of interest exhibits
unique properties, which are quite different from those of the
RP beam with Schell-model correlation functions [33]. For the
SCRP beam, the intensity distribution of such a beam in the
source plane (z = 0) is Gaussian, while its intensity distribution
in the geometrical focal plane (z = 400 mm) evolves into a
dark hollow profile when its initial coherence width is small
(δ0 = 0.25 mm). Further, a flat-topped beam intensity profile
can be formed at suitable propagation distance (z = 336 mm).
In comparison, the intensity distribution of the RP beam with
Schell-model correlation functions has a dark hollow profile
in the source plane, evolving into a Gaussian profile in the
geometrical focal plane when its initial coherence width is
small [33].

To learn about the influence of the initial coherence width
δ0 on the focused intensity distribution, we calculate in Fig. 4
the density plot of the normalized intensity distribution and the
corresponding cross line of the SCRP beam in the geometrical
focal plane (z = f ) for different values of the initial coherence
width δ0 withf = 400 mm, λ = 632.8 nm, and σ0 = 1 mm.
One finds that the dependence of the focused intensity
distribution of the SCRP beam on the initial coherence width is
also very different from that of the RP beam with conventional
Schell-model correlation functions. For the SCRP beam, the
intensity distribution in the geometrical focal plane gradually
changes from a dark hollow profile to a Gaussian beam profile
as the value of the initial coherence width increases, and a
flat-topped beam profile can be formed for a suitable value of
the initial coherence width. In contrast, for the RP beam with
Schell-model correlation functions, the intensity distribution in
the geometrical focal plane gradually changes from a Gaussian
beam profile to a dark hollow beam profile as the value of the
initial coherence width increases [33]. Thus, modulating the
correlation function of the RP beam provides a convenient
way for shaping its focused beam profile, which will be
useful in particle trapping, where a focused Gaussian beam or
flat-topped beam profile is required for trapping a particle with
refractive index larger than that of the ambient and a focused
dark hollow beam profile is required for trapping a particle with
refractive index smaller than that of the ambient [3,32,69,70].
It is also of use in material thermal processing and inertial
confinement fusion where a focused flat-topped beam profile
is required [71,72].

Now we study the polarization properties of the SCRP beam
on propagation after passing the thin lens. The BCP matrix of
a partially coherent vector beam at point ρ can be locally
represented as a sum of a completely unpolarized beam and a
completely polarized beam [8,10]

�̂(ρ,ρ) = �̂(u)(ρ,ρ) + �̂(p)(ρ,ρ), (28)

where

�̂(u)(ρ,ρ) =
(

A(ρ,ρ) 0
0 A(ρ,ρ)

)
, (29)

�̂(p)(ρ,ρ) =
(

B(ρ,ρ) D(ρ,ρ)
D∗(ρ,ρ) C(ρ,ρ)

)
, (30)
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FIG. 4. (Color online) Density plots of the normalized intensity distribution and the corresponding cross line of the SCRP beam in the
geometrical focal plane (z = f ) for different values of the initial coherence widthδ0.

with

A(ρ,ρ) = 1

2
[�xx(ρ,ρ) + �yy(ρ,ρ)

−
√

[�xx(ρ,ρ) − �yy(ρ,ρ)]2 + 4|�xy(ρ,ρ)|2],

(31)

B(ρ,ρ) = 1

2
[�xx(ρ,ρ) − �yy(ρ,ρ)

+
√

[�xx(ρ,ρ) − �yy(ρ,ρ)]2 + 4|�xy(ρ,ρ)|2],

(32)

C(ρ,ρ) = 1

2
[�yy(ρ,ρ) − �xx(ρ,ρ)

+
√

[�xx(ρ,ρ) − �yy(ρ,ρ)]2 + 4|�xy(ρ,ρ)|2],

(33)

D(ρ,ρ) = �xy(ρ,ρ). (34)

Applying Eqs. (19)–(25), we obtain the following expres-
sions for �̂(u)(ρ,ρ) and �̂(p)(ρ,ρ)

�̂(u)(ρ,ρ) = C0
σ 4

0

S4
0

(
A2 +

(
B

2kσ 2
0

)2
)

exp

[
− ρ2

2S2
0

]

×
(

1 0
0 1

)
, (35)

�̂(p)(ρ,ρ) = C0
σ 2

0

δ2
0S

6
0

(
B

k

)2

exp

[
− ρ2

2S2
0

]

×
(

ρ2
x ρxρy

ρxρy ρ2
y

)
. (36)

The state of polarization of the completely polarized beam can
be characterized by the polarization ellipse. The major and
minor semiaxes of the polarization ellipse, A1 and A2, as well
as its degree of ellipticity, ε, and its orientation angle, θ , are

related to the elements of the BCP matrix �̂ by the following
formulas

A1,2(ρ)

= 1√
2

[√[
�

(p)
xx (ρ,ρ) − �

(p)
yy (ρ,ρ)

]2 + 4
∣∣�(p)

xy (ρ,ρ)
∣∣2

±
√[

�
(p)
xx (ρ,ρ) − �

(p)
yy (ρ,ρ)

]2 + 4Re
[
�

(p)
xy (ρ,ρ)

]2]1/2
,

(37)

ε(ρ,z) = A2(ρ)/A1(ρ), (38)

θ (ρ) = 1

2
arctan

[
2Re

[
�

(p)
xy (ρ,ρ)

]
�

(p)
xx (ρ,ρ) − �

(p)
yy (ρ,ρ)

]
. (39)

In Eq. (37), signs “+” and “−” between the two square roots
correspond to A1 and A2, respectively. “Re” stands for taking
the real part. Substituting Eq. (36) into Eqs. (37)–(39), we
obtain

A2(ρ) = 0,ε(ρ) = 0,θ (ρ) = arctan[ρy/ρx]. (40)

One finds from Eq. (40) that the completely polarized part of
the partially coherent RP beam has a radial polarization and
the state of polarization remains invariant on propagation.

The intensity distributions of the completely polarized and
completely unpolarized parts of the partially coherent RP beam
are given, respectively, as

I (p)(ρ) = �(p)
xx (ρ,ρ) + �(p)

yy (ρ,ρ), (41)

and

I (u)(ρ) = �(u)
xx (ρ,ρ) + �(u)

yy (ρ,ρ). (42)

In Fig. 5 we calculate the cross lines of the normalized in-
tensity distributionsI (p)(ρx,0)/I (r = 0),I (u)(ρx,0)/I (r = 0),
I (ρx,0)/I (r = 0) of the focused SCRP beam at several prop-
agation distances for different values of the initial coherence
width δ0 with f = 400 mm, λ = 632.8 nm, and σ0 = 1mm.
Here I (r = 0) represents the intensity distribution of the beam
at point r = 0 in the source plane. The intensity distribution of
the completely polarized part has a dark hollow beam profile,
and the intensity distribution of the completely unpolarized
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FIG. 5. (Color online) Cross lines of the normalized intensity distributions I (p)(ρx,0)/I (r = 0),I (u)(ρx,0)/I (r = 0),I (ρx,0)/I (r = 0) of
the focused SCRP beam at several propagation distances for different values of the initial coherence width δ0.

part has a Gaussian beam profile. The total intensity dis-
tribution is determined by the intensity distributions of two
parts together. When the propagation distance is short (z =
200 mm), the contribution of the completely unpolarized part
plays a dominant role, thus the total intensity distribution has
a Gaussian beam profile [see Figs. 5(a) and 5(d)]. With the
increase of the propagation distance, the contribution of the
completely polarized part gradually increases. For the case of
δ0 = 0.25 mm, the contribution of the completely polarized
part plays a dominant role in the geometrical focal plane, thus
the total intensity distribution has a dark hollow beam profile
[see Fig. 5(c)]. For the case of δ0 = 2 mm, the contribution
of the completely unpolarized part is the same as that of
the completely polarized part in the geometrical focal plane
(see Fig. 6), thus the total intensity distribution exhibits a
flat-topped beam profile [see Fig. 5(f)].

To learn about the power transition from the completely un-
polarized part to the completely polarized part on propagation
in detail, now we study the evolution of the normalized power
of the completely unpolarized part or polarized part, which is
defined as

η(l)(z) =
∫

I (l)(ρ)d2ρ∫
I (ρ)d2ρ

,(l = u,p), (43)

FIG. 6. Variation of the normalized powers of the completely
unpolarized part and the completely polarized part of the focused
SCRP beam with special correlation functions versus the propagation
distance for different values of the initial coherence width δ0.

where η(u)(z) and η(p)(z) represent the normalized powers of
the completely unpolarized part and the completely polarized
part, respectively. We calculate in Fig. 6 the variation of the
normalized powers of the completely unpolarized part and the
completely polarized part of the focused SCRP beam versus
the propagation distance for different values of the initial
coherence width δ0 withf = 400 mm, λ = 632.8 nm, and
σ0 = 1mm. The normalized power η(u)(z) of the completely
unpolarized part decreases on propagation, while the normal-
ized power η(p)(z) of the completely polarized part increases.
The power transition from the completely unpolarized part to
the completely polarized part occurs rapidly with the decrease
of the initial coherence width δ0. For the case of δ0 = 0.25 mm,
η(p)(z) reaches to 98.5%, which means the SCRP beam in the
geometrical focal plane becomes almost completely polarized.
For the case of δ0 = 2 mm, both η(p)(z) and η(u)(z) attain the
value of 0.5, implying that the contributions of the completely
polarized part and the completely unpolarized part are the
same. The results shown in Figs. 5 and 6 are strikingly different
from those of the RP beam with Schell-model correlation
functions [34]: for such a beam the power of the completely
polarized part transits to the completely unpolarized part
on propagation, and the beam becomes almost completely
unpolarized in the geometrical focal plane when the initial
coherence width δ0 is small.

The degree of polarization of a partially coherent vector
beam is defined as [8]

P (ρ) = I (p)(ρ)

I (ρ)
=

√
1 − 4Det[�̂(ρ,ρ)]

[Tr�̂(ρ,ρ)]2
. (44)

Applying Eqs. (19)–(25) and (43) we obtain for the degree of
polarization a SCRP beam, the following expression

P (ρ) = ρ2

ρ2 + 2S2
0

[
(k/B)2 δ2

0S
2
0 − 1

] . (45)

We calculate in Fig. 7 the degree of polarization of the
focused SCRP beam versus the transverse coordinate ρx

(ρy = 0) for different values of the initial coherence width δ0
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FIG. 7. The degree of polarization of the focused SCRP beam
versus the transverse coordinate ρx (ρy = 0) for different values of
the initial coherence width δ0 and the propagation distance.

and the propagation distance withf = 400 mm, λ = 632.8nm,
and σ0 = 1 mm. One finds from Fig. 7 that the degree of
polarization of the focused SCRP beam increases as the
transverse coordinate increases or the propagation distance
increases or the initial coherence width decreases due to fact
that the contribution of the completely polarized part increases
as expected. The degree of polarization along the axis of
the beam ρx = ρy = 0 always equals to zero, and this can
be explained by the fact that the on-axis intensity of the
completely polarized part always vanishes.

IV. EXPERIMENTAL GENERATION OF A SCRP BEAM

In this section, we report about the experimental generation
of a typical SCRP for the first time and carry out experimental
study of its focusing properties.

Figure 8 shows our experimental setup for generating
a SCRP beam and measuring the degree of coherence,
correlation functions and the focused intensity. A linearly
polarized He-Ne laser beam with λ = 632.8nmpasses through
a radial polarization converter (RPC) and becomes a RP beam
whose vectorial electric field is expressed as [3]

E(v) = Ex(v)ex + Ey(v)ey

=
[

vx

ω0
exp

(
− v2

ω2
0

)
ex + vy

ω0
exp

(
− v2

ω2
0

)
ey

]
, (46)

FIG. 8. (Color online) Experimental setup for generating a SCRP
beam and measurement of the degree of coherence, correlation func-
tions, and the focused intensity. RPC, radial polarization converter;
RGGD, rotating ground-glass disk; L1, L2, L3, thin lenses; GAF,
Gaussian amplitude filter; BS, beam splitter; PBS, polarization beam
splitter; BPA, beam profile analyzer; CCD1, CCD2, charge-coupled
devices; PC1, PC2, personal computers.

where eα denotes the unit vector along αaxis. The BCP matrix
of the radially polarized beam reads as

F̂ (v1,v2) = 1

ω2
0

exp

(
−v2

1 + v2
2

ω2
0

)(
v1xv2x v1xv2y

v1yv2x v1yv2y

)
.

(47)

The RP beam emitted from the RPC illuminates a rotating
ground-glass disk (RGGD) producing an incoherent RP beam.
As shown in Ref. [73], the transmitted beam from the RGGD
can be regarded as an incoherent beam if the diameter
of the beam spot of the incident beam is larger than the
inhomogeneity scale of the ground glass, and this condition is
satisfied in our experiment. The BCP matrix of the incoherent
RP beam is given by Eq. (11). After passing through the thin
lens L1 with focal length f1 and the Gaussian amplitude
filter (GAF), the generated incoherent RP beam becomes
a SCRP beam, whose BCP matrix elements are given by
Eqs. (13)–(15).

The generated SCRP beam is split into two beams by the
beam splitter (BS). The transmitted beam passes through the
thin lens L2 with focal length f2 and arrives at the beam profile
analyzer (BPA), which is connected to a personal computer
(PC1) and is used to measure the intensity distribution of the
RP beam. The distance from the GAF (source plane) to L2

equals to f2 and the distance from L2 to the BPA equals to
z, thus the transfer matrix between the GAF and the BPA is
given by Eq. (27) just by replacing f with f2.

In order to measure the correlation functions and the degree
of coherence of the generated partially coherent RP beam,
the reflected beam from the BS passes through the thin
lens L3 with focal length f3 and then is further split into
two distinct imaging optical paths by the polarization beam
splitter (PBS), the transmitted beam (i.e., x component of
the field) and the reflected beam (i.e., y component of the
field) from the PBS arrives at two charge-coupled devices
CCD1, CCD2, respectively. The output signals from CCD1,
CCD2 are sent to a personal computer (PC2) to measure the
fourth-order correlation functions (i.e., intensity correlation
functions). Both the distances from the GAF to L3 and from
L3 to CCD1 and CCD2 are 2f3 (i.e., 2f -imaging system).
Therefore, the fourth-order correlation functions of the beam
at the detector planes are the same as those in the source
plane. The normalized fourth-order correlation functions are
expressed as

g
(2)
αβ (r1,r2) = 〈Iα(r1,t)Iβ(r2,t)〉

〈Iα(r1,t)〉〈Iβ(r2,t)〉 ,(α = x,y; β = x,y), (48)

where the angular brackets denote ensemble average,
Ix(r1,t)andIy(r2,t) represent the instantaneous intensity distri-
butions captured by CCD1 and CCD2, respectively. Applying
the Gaussian moment theorem, Eq. (48) can be simplified as

g
(2)
αβ (r1,r2) = 1 + γ 2

αβ(r1,r2),(α = x,y; β = x,y). (49)

Equation (49) gives the relationship between the second-
order correlation functions and the normalized fourth-order
correlation functions. Thus we can determine the correlation
functions γxx , γyy , and γxy of the partially coherent RP beam by
measuring the fourth-order correlation functions g(2)

xx , g(2)
yy , and
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FIG. 9. (Color online) Experimental results of (a) the intensity
distribution and (b) the corresponding cross line (dotted curve) of
the generated partially coherent RP beam with special correlation
functions in the source plane. The solid curve is a result of the
theoretical fit.

g(2)
xy . In a similar way, we can obtain the following relationship

between the degree of coherence and the normalized fourth-
order correlation function

g(2)(r1,r2) = 1 + γ 2(r1,r2). (50)

In our experiment, CCD1 and CCD2 capture continuously
and synchronously the x component and y component of the
intensity distribution of the generated partially coherent RP
beam, respectively. Each CCD captures totally 2000 pictures,
and each frame is imported into MATLAB to be processed.
Each frame captured by CCD1 or CCD2 represents one
realization of the beam cross section in the detector plane,
and each realization is represented as a matrix I (n)

x (x,y) or
I (n)
y (x,y), where x and y are pixel spatial coordinates, I (n)

x

or I (n)
y is the recorded intensity at that point, n denotes

each realization and ranges from 1 to 2000. The correlation
functions γxx , γyy , and γxy can be evaluated as

γ 2
αβ(r1,r2 = 0) =

1
N

∑N
n=1 I (n)

α (x1,y1)I (n)
β (0,0)

Īα(x1,y1)Īβ(0,0)
,

× (α = x,y; β = x,y), (51)

where Īα(x1,y1) = ∑N
n=1 I (n)

α (x1,y1)/N denotes the
average intensity of all realizations, and Īβ(0,0) =

∑N
n=1 I

(n)
β (0,0)/Ndenotes the average intensity of all

realizations at the central point.
In order to measure the degree of coherence of the generated

partially coherent RP beam, we remove the PBS in Fig. 8, and
then the CCD1 captures the total intensity distribution and also
captures totally 2000 pictures, each frame (i.e., realization) is
represented as a matrix I (n) (x,y). The degree of coherence is
evaluated as

γ 2(r1,r2 = 0) =
1
N

∑N
n=1 I (n)(x1,y1)I (n)(0,0)

Ī (x1,y1)Ī (0,0)
, (52)

with Ī (x1,y1) = ∑N
n=1 I (n)(x1,y1)/N and Ī (0,0) =∑N

n=1 I (n)(0,0)/N .
Figure 9 shows our experimental results of the intensity

distribution and the corresponding cross line (dotted curve)
of the generated SCRP beam in the source plane. One finds
that the intensity distribution of the beam in the source
plane has a Gaussian profile, as expected. Via theoretical fit
(solid curve) of the experimental results, we obtain that σ0

is about 1 mm. Figure 10 shows our experimental results
of the square of the degree of coherenceγ 2(r1,r2 = 0), the
square of the correlation functions γ 2

xx(r1,r2 = 0), γ 2
yy(r1,r2 =

0), γ 2
xy(r1,r2 = 0) and the corresponding cross lines (dotted

curves) of the generated SCRP beam. One finds that the
distributions of the square of the degree of coherence and
the square of the correlation functions all have non-Gaussian
profiles as expected by Fig. 2. By the theoretical fit (solid
curve) of the experimental results, we obtain that δ0 is about
0.5 mm. In our experiment, we can adjust the value of δ0 by
varying the value of f1 in Fig. 8.

Figure 11 shows our experimental results of the intensity
distribution and the corresponding cross line (dotted curve)
of the generated SCRP beam after its passing through the
thin lens L2 at several propagation distances for the case of
δ0 = 0.5 mm. Figure 12 shows our experimental results of
the intensity distribution and corresponding cross line (dotted
curve) of the generated SCRP beam in the geometrical focal
plane for different values of the initial coherence width δ0. For
the convenience of comparison, the corresponding theoretical

FIG. 10. (Color online) Experimental results of the square of the degree of coherence γ 2(r1,r2 = 0), the square of the correlation functions
γ 2

xx(r1,r2 = 0), γ 2
yy(r1,r2 = 0), γ 2

xy(r1,r2 = 0) and the corresponding cross lines (dotted curves) of the generated SCRP beam. The solid curve
is a result of the theoretical fit.
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FIG. 11. (Color online) Experimental results of the intensity dis-
tribution and corresponding cross line (dotted curve) of the generate
beam after passing through the thin lens L2 at several propagation
distances for the case ofδ0 = 0.5 mm. The solid curve is the theoretical
result.

results (solid curves) calculated by Eq. (26) are also shown in
Figs. 11 and 12. One sees from Fig. 11 that the beam profile of
the generated partially coherent RP beam after passing through
the thin lens gradually transforms from a Gaussian beam
profile to a dark hollow beam on propagation as expected by
Fig. 3, and a flat-topped beam profile can be formed at suitable
propagation distance. One finds from Fig. 12 that the intensity
profile of the generated SCRP beam in the geometrical focal
plane gradually transforms from a dark hollow beam profile
to a Gaussian beam profile with the increase of δ0 as expected
by Fig. 4, and a flat-topped beam profile can be formed for
suitable value of δ0. Our experimental results agree well with
the theoretical predictions.

The degree of polarization of the SCRP beam can be
measured through the procedure used in Ref. [34]. Figure 13
shows our experimental results of the degree of polarization
of the beam after passing the thin lens versus the transverse
coordinate ρx (ρy = 0) for different values of the initial
coherence width δ0 and the propagation distance. For the
convenience of comparison, the corresponding theoretical
results calculated by Eq. (45) are also shown in Fig. 13. One

FIG. 13. (Color online) Experimental results of the degree of
polarization of the generated SCRP beam after passing the thin lens
versus the transverse coordinate ρx (ρy = 0) for different values of
the initial coherence width δ0 and the propagation distance. The solid
curve is the theoretical result.

finds from Fig. 13 that the degree of polarization increases as
the transverse coordinate increases or the propagation distance
increases or the initial coherence width decreases as expected
by Fig. 7. Our experimental results are also consistent with the
theoretical results.

V. CONCLUSION

As a summary, we have outlined briefly the sufficient
condition for constructing the BCP matrix of a partially
coherent vector beam, and we have proposed an optical
system for generating a partially coherent vector beam with
special correlation functions. In particular, we have introduced
the theoretical model for a class of partially coherent RP
beam with special correlation functions (SCRP) and derived
its propagation formula. Furthermore, we have carried out
the experimental generation of the SCRP beam, studied its
focusing properties both experimentally and theoretically, and
verified that our experimental results agree well the theoretical
predictions. Our results have shown that a SCRP beam displays
unique features on propagation properties, which are substan-
tially different from those of a RP beam with conventional
Schell-model correlation functions. Our results will be useful
in particle trapping and material thermal processing.

FIG. 12. (Color online) Experimental results of the intensity distribution and corresponding cross line (dotted curve) of the generated SCRP
beam in the geometrical focal plane for different values of the initial coherence width δ0. The solid curve is the theoretical result.

013801-9



CHEN, WANG, LIU, ZHAO, CAI, AND KOROTKOVA PHYSICAL REVIEW A 89, 013801 (2014)

ACKNOWLEDGMENTS

This work is supported by the National Natural
Science Foundation of China under Grants No. 11274005,
No. 11104195, and No. 11374222, the Huo Ying Dong
Education Foundation of China under Grant No. 121009, the
Key Project of Chinese Ministry of Education under Grant No.
210081, the Universities Natural Science Research Project of

Jiangsu Province under Grants No. 11KJB140007 and No.
10KJB140011, the Project Funded by the Priority Academic
Program Development of Jiangsu Higher Education Institu-
tions, and the Project Sponsored by the Scientific Research
Foundation for the Returned Overseas Chinese Scholars,
State Education Ministry. O.K.’s research is sponsored by US
AFOSR (Grant No. FA9550-12-1-0449) and US ONR (Grant
No. N00189-12-T-0136).

[1] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).

[2] C. Brosseau, Fundamentals of Polarized Light: A Statistical
Approach (Wiley, New York, 1998).

[3] Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
[4] D. James, J. Opt. Soc. Am. A 11, 1641 (1994).
[5] F. Gori, Opt. Lett. 23, 241 (1998).
[6] E. Wolf, Phys. Lett. A 312, 263 (2003).
[7] E. Wolf, Opt. Lett. 28, 1078 (2003).
[8] E. Wolf, Introduction to the Theory of Coherence and Polariza-

tion of Light (Cambridge University Press, Cambridge, 2007).
[9] O. Korotkova, M. Salem, and E. Wolf, Opt. Lett. 29, 1173 (2004).

[10] O. Korotkova and E. Wolf, Opt. Commun. 246, 35 (2005).
[11] O. Korotkova and E. Wolf, Opt. Lett. 30, 198 (2005).
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[41] P. Wróbel, J. Pniewski, T. J. Antosiewicz, and T. Szoplik, Phys.

Rev. Lett. 102, 183902 (2009).
[42] H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T.

Chong, Nature Photon. 2, 501 (2008).
[43] W. Chen, D. Abeysinghe, R. Nelson, and Q. Zhan, Nano Lett.

9, 4320 (2009).
[44] C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, Phys.

Rev. Lett. 106, 123901 (2011).
[45] H. Ono, H. Wakabayashi, T. Sasaki, A. Emoto, T. Shioda, and

N. Kawatsuki, Appl. Phys. Lett. 94, 071114 (2009).
[46] J.-X. Li, Y. I. Salamin, B. J. Galow, and C. H. Keitel, Phys. Rev.

A 85, 063832 (2012).
[47] S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean,

C. Tchervenkov, F. Legare, M. Piche, and J. C. Kieffer, Appl.
Phys. Lett. 101, 041105 (2012).

[48] R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and
E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).

[49] H. Kang, B. Jia, J. Li, D. Morrish, and M. Gu, Appl. Phys. Lett.
96, 063702 (2010).

[50] H. Lajunen and T. Saastamoinen, Opt. Lett. 36, 4104 (2011).
[51] L. Waller, G. Situ, and J. W. Fleisher, Nature Photon. 6, 474

(2012).
[52] Z. Tong and O. Korotkova, Opt. Lett. 37, 3240 (2012).
[53] S. Sahin and O. Korotkova, Opt. Lett. 37, 2970 (2012).
[54] O. Korotkova, S. Sahin, and E. Shchepakina, J. Opt. Soc. Am.

A 29, 2159 (2012).
[55] Z. Mei and O. Korotkova, Opt. Lett. 38, 91 (2013).
[56] H. Lajunen and T. Saastamoinen, Opt. Express 21, 190 (2013).
[57] F. Wang, X. Liu, Y. Yuan, and Y. Cai, Opt. Lett. 38, 1814

(2013).
[58] Z. Mei and O. Korotkova, Opt. Lett. 38, 2578 (2013).

013801-10

http://dx.doi.org/10.1364/AOP.1.000001
http://dx.doi.org/10.1364/AOP.1.000001
http://dx.doi.org/10.1364/AOP.1.000001
http://dx.doi.org/10.1364/AOP.1.000001
http://dx.doi.org/10.1364/JOSAA.11.001641
http://dx.doi.org/10.1364/JOSAA.11.001641
http://dx.doi.org/10.1364/JOSAA.11.001641
http://dx.doi.org/10.1364/JOSAA.11.001641
http://dx.doi.org/10.1364/OL.23.000241
http://dx.doi.org/10.1364/OL.23.000241
http://dx.doi.org/10.1364/OL.23.000241
http://dx.doi.org/10.1364/OL.23.000241
http://dx.doi.org/10.1016/S0375-9601(03)00684-4
http://dx.doi.org/10.1016/S0375-9601(03)00684-4
http://dx.doi.org/10.1016/S0375-9601(03)00684-4
http://dx.doi.org/10.1016/S0375-9601(03)00684-4
http://dx.doi.org/10.1364/OL.28.001078
http://dx.doi.org/10.1364/OL.28.001078
http://dx.doi.org/10.1364/OL.28.001078
http://dx.doi.org/10.1364/OL.28.001078
http://dx.doi.org/10.1364/OL.29.001173
http://dx.doi.org/10.1364/OL.29.001173
http://dx.doi.org/10.1364/OL.29.001173
http://dx.doi.org/10.1364/OL.29.001173
http://dx.doi.org/10.1016/j.optcom.2004.10.078
http://dx.doi.org/10.1016/j.optcom.2004.10.078
http://dx.doi.org/10.1016/j.optcom.2004.10.078
http://dx.doi.org/10.1016/j.optcom.2004.10.078
http://dx.doi.org/10.1364/OL.30.000198
http://dx.doi.org/10.1364/OL.30.000198
http://dx.doi.org/10.1364/OL.30.000198
http://dx.doi.org/10.1364/OL.30.000198
http://dx.doi.org/10.1364/OE.11.001137
http://dx.doi.org/10.1364/OE.11.001137
http://dx.doi.org/10.1364/OE.11.001137
http://dx.doi.org/10.1364/OE.11.001137
http://dx.doi.org/10.1038/nphoton.2007.30
http://dx.doi.org/10.1038/nphoton.2007.30
http://dx.doi.org/10.1038/nphoton.2007.30
http://dx.doi.org/10.1038/nphoton.2007.30
http://dx.doi.org/10.1103/PhysRevE.75.056609
http://dx.doi.org/10.1103/PhysRevE.75.056609
http://dx.doi.org/10.1103/PhysRevE.75.056609
http://dx.doi.org/10.1103/PhysRevE.75.056609
http://dx.doi.org/10.1364/JOSAA.25.001016
http://dx.doi.org/10.1364/JOSAA.25.001016
http://dx.doi.org/10.1364/JOSAA.25.001016
http://dx.doi.org/10.1364/JOSAA.25.001016
http://dx.doi.org/10.1016/j.optcom.2007.12.047
http://dx.doi.org/10.1016/j.optcom.2007.12.047
http://dx.doi.org/10.1016/j.optcom.2007.12.047
http://dx.doi.org/10.1016/j.optcom.2007.12.047
http://dx.doi.org/10.1364/OL.33.001180
http://dx.doi.org/10.1364/OL.33.001180
http://dx.doi.org/10.1364/OL.33.001180
http://dx.doi.org/10.1364/OL.33.001180
http://dx.doi.org/10.1364/OL.33.002266
http://dx.doi.org/10.1364/OL.33.002266
http://dx.doi.org/10.1364/OL.33.002266
http://dx.doi.org/10.1364/OL.33.002266
http://dx.doi.org/10.1364/OE.16.015834
http://dx.doi.org/10.1364/OE.16.015834
http://dx.doi.org/10.1364/OE.16.015834
http://dx.doi.org/10.1364/OE.16.015834
http://dx.doi.org/10.1103/PhysRevA.78.063815
http://dx.doi.org/10.1103/PhysRevA.78.063815
http://dx.doi.org/10.1103/PhysRevA.78.063815
http://dx.doi.org/10.1103/PhysRevA.78.063815
http://dx.doi.org/10.1364/OL.34.003394
http://dx.doi.org/10.1364/OL.34.003394
http://dx.doi.org/10.1364/OL.34.003394
http://dx.doi.org/10.1364/OL.34.003394
http://dx.doi.org/10.1364/OE.17.021472
http://dx.doi.org/10.1364/OE.17.021472
http://dx.doi.org/10.1364/OE.17.021472
http://dx.doi.org/10.1364/OE.17.021472
http://dx.doi.org/10.1016/j.optcom.2010.04.076
http://dx.doi.org/10.1016/j.optcom.2010.04.076
http://dx.doi.org/10.1016/j.optcom.2010.04.076
http://dx.doi.org/10.1016/j.optcom.2010.04.076
http://dx.doi.org/10.1364/OE.18.012587
http://dx.doi.org/10.1364/OE.18.012587
http://dx.doi.org/10.1364/OE.18.012587
http://dx.doi.org/10.1364/OE.18.012587
http://dx.doi.org/10.1016/j.optcom.2010.05.043
http://dx.doi.org/10.1016/j.optcom.2010.05.043
http://dx.doi.org/10.1016/j.optcom.2010.05.043
http://dx.doi.org/10.1016/j.optcom.2010.05.043
http://dx.doi.org/10.1103/PhysRevA.84.033836
http://dx.doi.org/10.1103/PhysRevA.84.033836
http://dx.doi.org/10.1103/PhysRevA.84.033836
http://dx.doi.org/10.1103/PhysRevA.84.033836
http://dx.doi.org/10.1364/OL.36.002722
http://dx.doi.org/10.1364/OL.36.002722
http://dx.doi.org/10.1364/OL.36.002722
http://dx.doi.org/10.1364/OL.36.002722
http://dx.doi.org/10.1364/OE.19.008700
http://dx.doi.org/10.1364/OE.19.008700
http://dx.doi.org/10.1364/OE.19.008700
http://dx.doi.org/10.1364/OE.19.008700
http://dx.doi.org/10.1364/OL.36.001677
http://dx.doi.org/10.1364/OL.36.001677
http://dx.doi.org/10.1364/OL.36.001677
http://dx.doi.org/10.1364/OL.36.001677
http://dx.doi.org/10.1364/OE.19.005979
http://dx.doi.org/10.1364/OE.19.005979
http://dx.doi.org/10.1364/OE.19.005979
http://dx.doi.org/10.1364/OE.19.005979
http://dx.doi.org/10.1364/OE.20.015908
http://dx.doi.org/10.1364/OE.20.015908
http://dx.doi.org/10.1364/OE.20.015908
http://dx.doi.org/10.1364/OE.20.015908
http://dx.doi.org/10.1103/PhysRevA.86.013840
http://dx.doi.org/10.1103/PhysRevA.86.013840
http://dx.doi.org/10.1103/PhysRevA.86.013840
http://dx.doi.org/10.1103/PhysRevA.86.013840
http://dx.doi.org/10.1063/1.3681802
http://dx.doi.org/10.1063/1.3681802
http://dx.doi.org/10.1063/1.3681802
http://dx.doi.org/10.1063/1.3681802
http://dx.doi.org/10.1364/OE.20.028301
http://dx.doi.org/10.1364/OE.20.028301
http://dx.doi.org/10.1364/OE.20.028301
http://dx.doi.org/10.1364/OE.20.028301
http://dx.doi.org/10.1063/1.4819202
http://dx.doi.org/10.1063/1.4819202
http://dx.doi.org/10.1063/1.4819202
http://dx.doi.org/10.1063/1.4819202
http://dx.doi.org/10.1364/OE.21.027682
http://dx.doi.org/10.1364/OE.21.027682
http://dx.doi.org/10.1364/OE.21.027682
http://dx.doi.org/10.1364/OE.21.027682
http://dx.doi.org/10.1103/PhysRevLett.91.233901
http://dx.doi.org/10.1103/PhysRevLett.91.233901
http://dx.doi.org/10.1103/PhysRevLett.91.233901
http://dx.doi.org/10.1103/PhysRevLett.91.233901
http://dx.doi.org/10.1103/PhysRevLett.85.4482
http://dx.doi.org/10.1103/PhysRevLett.85.4482
http://dx.doi.org/10.1103/PhysRevLett.85.4482
http://dx.doi.org/10.1103/PhysRevLett.85.4482
http://dx.doi.org/10.1364/OE.7.000077
http://dx.doi.org/10.1364/OE.7.000077
http://dx.doi.org/10.1364/OE.7.000077
http://dx.doi.org/10.1364/OE.7.000077
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1103/PhysRevLett.86.5251
http://dx.doi.org/10.1103/PhysRevLett.102.183902
http://dx.doi.org/10.1103/PhysRevLett.102.183902
http://dx.doi.org/10.1103/PhysRevLett.102.183902
http://dx.doi.org/10.1103/PhysRevLett.102.183902
http://dx.doi.org/10.1038/nphoton.2008.127
http://dx.doi.org/10.1038/nphoton.2008.127
http://dx.doi.org/10.1038/nphoton.2008.127
http://dx.doi.org/10.1038/nphoton.2008.127
http://dx.doi.org/10.1021/nl903145p
http://dx.doi.org/10.1021/nl903145p
http://dx.doi.org/10.1021/nl903145p
http://dx.doi.org/10.1021/nl903145p
http://dx.doi.org/10.1103/PhysRevLett.106.123901
http://dx.doi.org/10.1103/PhysRevLett.106.123901
http://dx.doi.org/10.1103/PhysRevLett.106.123901
http://dx.doi.org/10.1103/PhysRevLett.106.123901
http://dx.doi.org/10.1063/1.3089236
http://dx.doi.org/10.1063/1.3089236
http://dx.doi.org/10.1063/1.3089236
http://dx.doi.org/10.1063/1.3089236
http://dx.doi.org/10.1103/PhysRevA.85.063832
http://dx.doi.org/10.1103/PhysRevA.85.063832
http://dx.doi.org/10.1103/PhysRevA.85.063832
http://dx.doi.org/10.1103/PhysRevA.85.063832
http://dx.doi.org/10.1063/1.4738998
http://dx.doi.org/10.1063/1.4738998
http://dx.doi.org/10.1063/1.4738998
http://dx.doi.org/10.1063/1.4738998
http://dx.doi.org/10.1063/1.1327271
http://dx.doi.org/10.1063/1.1327271
http://dx.doi.org/10.1063/1.1327271
http://dx.doi.org/10.1063/1.1327271
http://dx.doi.org/10.1063/1.3302461
http://dx.doi.org/10.1063/1.3302461
http://dx.doi.org/10.1063/1.3302461
http://dx.doi.org/10.1063/1.3302461
http://dx.doi.org/10.1364/OL.36.004104
http://dx.doi.org/10.1364/OL.36.004104
http://dx.doi.org/10.1364/OL.36.004104
http://dx.doi.org/10.1364/OL.36.004104
http://dx.doi.org/10.1038/nphoton.2012.144
http://dx.doi.org/10.1038/nphoton.2012.144
http://dx.doi.org/10.1038/nphoton.2012.144
http://dx.doi.org/10.1038/nphoton.2012.144
http://dx.doi.org/10.1364/OL.37.003240
http://dx.doi.org/10.1364/OL.37.003240
http://dx.doi.org/10.1364/OL.37.003240
http://dx.doi.org/10.1364/OL.37.003240
http://dx.doi.org/10.1364/OL.37.002970
http://dx.doi.org/10.1364/OL.37.002970
http://dx.doi.org/10.1364/OL.37.002970
http://dx.doi.org/10.1364/OL.37.002970
http://dx.doi.org/10.1364/JOSAA.29.002159
http://dx.doi.org/10.1364/JOSAA.29.002159
http://dx.doi.org/10.1364/JOSAA.29.002159
http://dx.doi.org/10.1364/JOSAA.29.002159
http://dx.doi.org/10.1364/OL.38.000091
http://dx.doi.org/10.1364/OL.38.000091
http://dx.doi.org/10.1364/OL.38.000091
http://dx.doi.org/10.1364/OL.38.000091
http://dx.doi.org/10.1364/OE.21.000190
http://dx.doi.org/10.1364/OE.21.000190
http://dx.doi.org/10.1364/OE.21.000190
http://dx.doi.org/10.1364/OE.21.000190
http://dx.doi.org/10.1364/OL.38.001814
http://dx.doi.org/10.1364/OL.38.001814
http://dx.doi.org/10.1364/OL.38.001814
http://dx.doi.org/10.1364/OL.38.001814
http://dx.doi.org/10.1364/OL.38.002578
http://dx.doi.org/10.1364/OL.38.002578
http://dx.doi.org/10.1364/OL.38.002578
http://dx.doi.org/10.1364/OL.38.002578


GENERATION AND PROPAGATION OF A PARTIALLY . . . PHYSICAL REVIEW A 89, 013801 (2014)

[59] S. Du, Y. Yuan, C. Liang, and Y. Cai, Opt. Laser Technol. 50,
14 (2013).

[60] Y. Yuan, X. Liu, F. Wang, Y. Chen, Y. Cai, J. Qu, and H. T.
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