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Two-species hard-core bosons on the triangular lattice: A quantum Monte Carlo study
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Using worm-type quantum Monte Carlo simulations, we investigate bosonic mixtures on a triangular lattice of
two species of bosons, which interact via nearest-neighbor intraspecies (V ) and on-site interspecies (U ) repulsions.
For the case of symmetric hopping amplitude (tA/V = tB/V ) and U/V = 1, we determine a rich ground-state
phase diagram that contains double-solid, double-superfluid, supersolid (SS), solid-superfluid (solid-SF), and
counterflow supersolid (CSS) states. The SS, solid-SF, and CSS states exhibit spontaneous symmetry breaking
among the three sublattices of the triangular lattice and between the two species, which leads to a nonzero
crystalline density wave order in each species. We, furthermore, show that the CSS and the SS states are present
for tA/V �= tB/V , and the latter even survives up to the tA/V → ∞ or tB/V → ∞ limit. The effects induced
by the variation of U/V and by the imbalance of particle numbers of the two species are also explored.
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I. INTRODUCTION

Ultracold bosons held in optical lattices provide an ideal
realization of the single-species Bose-Hubbard model [1], and
attract extensive interest from both experimental and theo-
retical research communities (for review, see, e.g., Refs. [2]
and [3]). Recently, more and more attention has been paid to
two-species bosons, where novel quantum phases can emerge
due to interspecies and intraspecies interactions [4–20], which
can be tuned experimentally by Feshbach resonances [21,22].

Quantum phases and phase transitions in two-species
bosons on bipartite lattices with on-site interspecies in-
teraction (U ) have been extensively studied. Kuklov and
Svistunov demonstrated a novel quantum phase—the so-called
counterflow superfluid (CSF)—and constructed an effective
Hamiltonian [5]. The CSF state features a nonzero CSF density
but a vanishing pair superfluid (PSF) density between the two
species. Altman et al. investigated the hard-core case with
each species at half-integer filling (ρA = ρB = 1/2) within
a mean-field approach and established for U > 0 a phase
diagram on the tA/U -tB/U plane [6]. The phase diagram
contains CSF, checkerboard solid, and superfluid (SF) phases.
Using a worm-type quantum Monte Carlo method, Söyler et

al. [7] found that in the strongly asymmetric region, the phase
diagram for the square lattice differs from the mean-field
result [6]. More direct evidence for the emergence of the
CSF phase can come from measurement of pair-correlation
functions [8]. The robustness of these quantum ordered phases
against thermodynamic fluctuations was then explored by
Capogrosso-Sansone et al. [9], and finite-temperature phase
transitions were obtained for the square and simple-cubic
lattices. For systems away from the half-integer fillings [10]
or with attractive on-site interspecies interaction U < 0 [11],
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other quantum phases can be found, e.g., the emergence of
a PSF phase in the latter. Systems of two-species soft-core
bosons have also been studied [12,13].

In the past few years, significant experimental progress has
been achieved and ultracold atoms can be loaded into different
optical lattices, such as the triangular [23], kagomé [24], and
dice [25] lattices, on which rich physics can occur due to the
distinct band structure or geometric frustration, etc. [26,27].
For two-species soft-core bosons on a triangular lattice with
on-site intraspecies and on-site interspecies interactions, a
phase diagram has been established recently [14].

In this work, we perform extensive Monte Carlo simulations
on bosonic mixtures on a triangular lattice, which are made
up of two species of hard-core bosons with both on-site
interspecies and nearest-neighbor intraspecies repulsions. This
model was recently studied by Trousselet et al. using a mean-
field approach combined with exact diagonalizations [15]. The
organization of the paper is as follows. Section II introduces
the model and presents an analysis for some limiting cases.
Measured quantities are defined in Sec. III. Section IV
describes numerical results, and a brief discussion is given
in Sec. V.

II. MODEL

Let the two species of hard-core bosons be specified by A

and B and the associated creation (annihilation) operators be
a
†
i (ai) and b

†
i (bi); the Hamiltonian studied in this work can

be written as

H = −tA
∑

〈ij〉
a
†
i aj − tB

∑

〈ij〉
b
†
i bj

+ V
∑

〈ij〉

(
nA

i nA
j + nB

i nB
j

)

+ U
∑

i

nA
i nB

i − μ
∑

i

(
nA

i + nB
i

)
, (1)
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where tA and tB are the hopping amplitudes, and V and U

are the nearest-neighbor intraspecies and on-site interspecies
repulsions, respectively. The symbols nA

i = a
†
i ai and nB

i =
b
†
i bi are the particle-number operators. Due to the hard-core

constraint, one has {ai,ai} = {a†
i ,a

†
i } = {bi,bi} = {b†i ,b†i } = 0

and {ai,a
†
i } = {bi,b

†
i } = 1. The Hamiltonian is the same as

that studied in Ref. [15] and similar to that in Ref. [13].

A. Particle-hole symmetry

Employing the particle-hole transformations, U+
A aUA =

a+ and U+
B bUB = b+, we have

U+
A U+

B H (μ)UBUA = H (6V + U − μ). (2)

Therefore, model (1) exhibits an exact particle-hole symmetry
at μ = 3V + U/2. It follows that, to simulate the model
with a half-integer filling factor for each species, one can
perform grand-canonical simulations with μ = 3V + U/2.
This treatment was elaborated in Ref. [17] and also employed
in a dynamical mean-field study of bosonic mixtures [16].

B. Classical limit (tA/V = tB/V = 0)

In the zero-hopping limit tA/V = tB/V = 0, Hamilto-
nian (1) reduces to

H = V
∑

〈ij〉

(
nA

i nA
j + nB

i nB
j

) + U
∑

i

nA
i nB

i

− μ
∑

i

(
nA

i + nB
i

)
. (3)

At zero temperature, T = 0, thermal fluctuations are frozen,
and there are two possible solid states:

(1) the 2-solid–1/3 state— two sublattices are fully occu-
pied by A and B bosons, respectively, and the remaining one
is empty; and

(2) the 2-solid–2/3 state—one sublattice is fully occupied
by both A and B bosons, and the other two are fully occupied
by A and B bosons, respectively.

These two solid states are both of degenerate degree 6, and
the internal energies are given by

E1/3 = −2Nμ/3 (4)

and

E2/3 = N (2V + U/3 − 4μ/3), (5)

where N is the number of lattice sites. The two solid states
coexist at μ = 3V + U/2, where E1/3 = E2/3.

C. Decoupled case (U = 0)

For U = 0, the two species are decoupled and Hamilto-
nian (1) reduces to

H =
∑

α∈{A,B}
Hα, (6)

with

Hα = −tα
∑

〈ij〉
α
†
i aj + V

∑

〈ij〉
nα

i nα
j − μ

∑

i

nα
i . (7)

Hamiltonian (7) describes a single species of hard-core bosons
with nearest-neighbor repulsion V . It has been extensively
studied by different groups [26], and a supersolid (SS) state
was found in the region near the half-integer filling (μ = 3V ).

III. MEASURED QUANTITIES

We use the worm-type quantum Monte Carlo method to
simulate Hamiltonian (1). The worm algorithm is an unbiased
algorithm that works in continuous imaginary time [28];
see Refs. [29] and [30] for a review. In the simulation,
the linear lattice size L took several values in the range of
12 ≤ L ≤ 72. The inverse temperatures were mostly chosen as
β ≡ 1/T = L, while simulations at lower temperatures were
also performed for some cases.

To explore quantum ordered phases, we measure physical
quantities such as the following:

(1) Particle density for each species ρα = 〈Nα/N〉, with
Nα the particle number of species α (α ∈ {A,B}).

(2) SF density ρS
α = L2−d〈W 2

α 〉/β, where W is the winding
number [31].

(3) Static structure factor SQ
α = 〈ρQ

α ρ†Q
α 〉, where ρQ

α =
(1/N )

∑
i n

α
i exp(iQri) and Q = (4π/3,0), corresponding to√

3 × √
3 ordering.

(4) CSF stiffness ρCSF = L2−d〈(WA − WB)2〉/β, and PSF
stiffness ρPSF = L2−d〈(WA + WB)2〉/β.

IV. RESULTS

Our main findings are the phase diagrams shown in Figs. 1
and 2. Figure 1 illustrates the phase diagram for tA/V = tB/V

(say, t/V ) and U/V = 1 on the t/V -μ/V plane, which
includes 2-solid–1/3, 2-solid–2/3, double-SF (2SF), SS, solid-
SF, and counterflow supersolid (CSS) states. For a given t/V ,
the lattice is empty below chemical potential μ = −6t , which
is the energy to add into the lattice a pair of bosons of different
species. From the particle-hole transformation, it is known
that the phase boundaries are symmetric with respect to the
line μ = 7V/2.

FIG. 1. (Color online) Phase diagram for U/V = 1 and tA/V =
tB/V :≡ t/V . Symbols represent critical points obtained from the
simulations; solid and dashed lines denote continuous and discontin-
uous phase transitions, respectively.
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FIG. 2. (Color online) Phase boundaries for different U values at
the half-integer filling of each species. Symbols represent critical
points obtained from the simulations; solid lines denote phase
boundaries. Dashed black lines correspond to the SS-SF transitions
in model (7).

Figure 2 shows the phase boundaries on the tA/V -tB/V

plane with each species at half-filling, for U/V = 1/2, 1,
and 2, including the CSS, SS, and 2SF states. The quantum
ordered phases can be determined by examining the robustness
of measured quantities in the limit of L → ∞ and β → ∞.

(1) 2-solid–1/3 state: ∀ α ∈ {A,B}, ρα = 1/3, ρS
α = 0,

SQ
α > 0; ρCSF = 0, ρPSF = 0.

(2) 2-solid–2/3 state: ∀ α ∈ {A,B}, ρα = 2/3, ρS
α = 0,

SQ
α > 0; ρCSF = 0, ρPSF = 0.

(3) 2SF state: ∀ α ∈ {A,B}, ρS
α > 0, SQ

α = 0; ρCSF > 0,
ρPSF > 0.

(4) CSS state: ∀ α ∈ {A,B}, ρS
α > 0, SQ

α > 0; ρCSF > 0,
ρPSF = 0.

(5) SS state: ∀ α ∈ {A,B}, ρS
α > 0, SQ

α > 0; ρCSF > 0,
ρPSF > 0.

(6) Solid-SF state: ρS
A = 0, ρS

B > 0 or ρS
A > 0, ρS

B = 0; ∀
α ∈ {A,B}, SQ

α > 0; ρCSF > 0, ρPSF > 0.
To further explore these quantum phases, we also took snap-

shots of world-line configurations and performed histogram
analyses.

In comparison with the classical limit, which only exhibits
the 2-solid–1/3 and 2-solid–2/3 states, quantum fluctuations
lead to many unusual states that break a variety of symmetries.
In the 2SF state, an off-diagonal SF order develops for
each species, and the U(1) × U(1) symmetry is broken. The
solid-SF, SS, and CSS states exhibit simultaneously broken
translational and U(1) symmetries, as well as broken symmetry
between the two species.

The following subsections present numerical evidence for
the aforementioned findings. Section IIA constructs the phase
diagram in Fig. 1 for tA/V = tB/V and U/V = 1. Section
IIB determines the phase boundaries in Fig. 2 at half-integer
fillings and reveals the effects induced by the variation of U/V .

A. tA/V = tB/V and U/V = 1

1. Half-integer fillings

We perform grand-canonical simulations with μ/V =
7/2, which yield particle density ρA = ρB = 0.5000(1) [see

FIG. 3. (Color online) Quantities ρA (a), ρPSF (b), and S
Q
A

(c) versus t/V at μ/V = 3.5 and U/V = 1.

Fig. 3(a)]. As the hopping amplitude t increases, the PSF
stiffness ρPSF starts to become nonzero near t/V ∼ 0.15,
as shown in Fig. 3(b). To more precisely locate the phase
transition point, we perform a finite-size scaling analysis of
the ρPSF data. At the transition point, it is expected that the
PSF stiffness scales as ρPSF = L2−d−zf (β/Lz), where the
dynamical critical exponent z equals 1 if the system has
particle-hole symmetry. The inset in Fig. 3(b) plots the scaled
PSF stiffness LρPSF versus t/V , which yields the transition
point as t/V = 0.144(2) from the approximate common
intersection for different L values. The S

Q
A data in Fig. 3(c)

suggest another transition point at t/V = 0.20(1) beyond
which the crystalline order vanishes. These two transition
points should separate three phases, which are identified below.

We first present numerical evidence for the CSS state in
the region t/V < 0.144(2). The nonzero crystalline order for
each species is demonstrated in Fig. 3(c) and in the inset,
which plots S

Q
A versus 1/L for t/V = 0.13. It is known [9] that

the CSF density ρCSF is fragile against thermal fluctuations.
Thus, to detect the CSS order, we simulate at temperature
β = 5L for t/V = 0.13. As shown in Fig. 4 and the inset,
the CSF density ρCSF clearly approaches a nonzero value as L

increases; in contrast, the PSF density ρPSF drops drastically, to
0. This evidence establishes the CSS state for t/V < 0.144(2).
A histogram analysis is performed to further explore the
particle-number distribution. In addition to the broken U(1)
symmetry due to the long-range off-diagonal order ρCSF, it is
observed that both the symmetry among the three sublattices
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FIG. 4. Quantity ρCSF versus 1/L at μ/V = 3.5, t/V = 0.13,
and U/V = 1. Inset: ρPSF versus 1/L. For these two figures,
simulations were performed with β = 5L (see text).

and the symmetry between the two species are spontaneously
broken. Namely, the particle density ρα,s on sublattice s for
species α can vary for different species and for different
sublattices (say S1, S2, S3). There are sixfold ground states,
in one of which the filling factor is arranged as (1, 1

4 , 1
4 ) for A

bosons and (0, 3
4 , 3

4 ) for B bosons. The bosons on sublattice S1

are pinned, and the counter-flow superfluidity arises from S2

and S3, which form a honeycomb lattice. Finally, we note that
despite the symmetry breaking between A and B bosons, the
total particle numbers are identical for the A and B bosons;
i.e.,

∑
s ρα,s = 3/2, and the summed filling factor of the two

species is unity for each sublattice, i.e.,
∑

α ρα,s = 1.
In the region 0.144(2) < t/V < 0.20(1), the system is in

the SS state and characterized by a nonzero crystalline order
and nonzero SF density for both species, as demonstrated in
Figs. 3(b) and 3(c). In comparison with the CSS state, the
degenerate degree of the ground state is also 6 but the particle
distribution is distinct, arranged as ( 1

6 , 2
3 , 2

3 ) for one species
and ( 5

6 , 1
3 , 1

3 ) for the other. Also, note that the two species have
equal total numbers of bosons and the summed filling factor on
each sublattice is unity. The bosons on the sublattice of filling
factor

(
1
6 + 5

6

)
are pinned, while those on the remaining two

sublattices account for the superfluidity. Figure 5 illustrates a

FIG. 5. (Color online) Typical particle distributions on a world-
line configuration in the SS state (t/V = 0.175, μ/V = 3.5, and
U/V = 1) for A (left) and B (right) species, respectively. This world-
line configuration was obtained after sufficient Monte Carlo steps to
achieve equilibrium. The simulation was on a 36 × 36 lattice, but for
illustrative purposes, we show a block of 12 × 12 sites.

FIG. 6. (Color online) The quantities ρA (a), S
Q
A (b), and ρS

A

(c) versus μ/V for t/V = 0.1 and U/V = 1. The region between the
two dashed lines corresponds to the solid-SF state, for which the data
are average results of Monte Carlo simulations with different initial
conditions.

snapshot of the particle-number distribution for t/V = 0.175
and L = 36, which is averaged over the imaginary-time axis
of a world-line configuration.

For t/V > 0.20(1), the system is in a 2SF state, featuring a
nonzero SF density and zero crystalline order for both species.

2. t/V = 0.1

We describe the simulations for U/V = 1 and away from
the symmetric line μ/V = 7/2 in the example of t/V =
0.1 with varying μ/V values. As the chemical potential μ

increases, the system in the 2SF phase is driven into the
2-solid–1/3 state by a first-order phase transition at μ/V =
0.32(3), reflected by the discontinuities of ρA, ρS

A, and S
Q
A in

Fig. 6.
In the region 2.77(2) < μ/V < 3.10(5), the system is

detected to be in a novel quantum state which exhibits a
nonzero crystalline order for both species but a nonzero SF
density for one species only. The ground state is still sixfold,
and the particle distribution on sublattice (S1,S2,S3) is arranged
as (1,0,0) for one species—say A bosons—and (0, 3ρB

2 , 3ρB

2 ) for
B bosons, where ρB is a function of μ/V . The A bosons are
pinned on sublattice S1 and do not exhibit a visible SF density.
The B bosons are only present on sublattices S2 and S3 and
contribute to the nonzero SF density. Unlike in the CSS and
SS states, the total particle numbers of the A and B bosons are
no longer identical; one has ρA = (1/3)

∑
s ρs,A = 1/3, while

ρB = (1/3)
∑

s ρs,B varies with μ/V . We provide further
analyses by simulating, at a rather low temperature, β = 720
for (μ/V = 2.9,L = 36). We define a vector order parameter
for each species nα = ρ1,α + ρ2,αei2π/3 + ρ3,αei4π/3 (α = A
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FIG. 7. (Color online) Histogram of quantities nA and nB ob-
tained from a single simulation in the solid-SF state. The simulation
is for the parameter set t/V = 0.1, μ/V = 2.9, U/V = 1, L = 36,
and β = 720 and determines ρA = 0.333(1) and ρB = 0.480(1).
The determined particle density of species A is consistent with
the expected value 1/3 (with a tiny relative error), providing
more evidence supporting the formation ofa commensurate solid by
species A.

and B). The histogram is shown in Fig. 7, where the probability
distribution of nA is around point (1,0) and that of nB is
around point (− 3ρB

2 ,0) with ρB = 0.480(1). The imbalance
of the total particle numbers of the two species is clearly
seen. A snapshot of the particle distribution is shown in
Fig. 8. A nonzero SF density ρS

B is observed, while ρS
A is

0.0000(1), consistent with 0. Note that the density wave of
the B species is induced by the A species, which forms an
insulating solid. Therefore, the B species should be known
as SF rather than SS, and the mixture can be called solid-SF.
This treatment was also discussed in Ref. [7]. We conclude
this paragraph by mentioning the following. In Ref. [15], a
similar phase was observed away from the half-filling case
in the parameter region including (U/V = 2,t/V = 0.15),
which is characterized by a threefold order for both species
and a nonzero SF density for one species only. This phase was
referred to the supersolid–threefold-order (SS-3FO) phase.
However, according to Ref. [15], the SS-3FO phase has a rather
distinct particle distribution: two sublattices are respectively
filled by the two species, while in the remaining sublattice,

FIG. 8. (Color online) Typical particle distribution in a world-
line configuration in the solid-SF state (t/V = 0.1, μ/V = 2.9, and
U/V = 1) for species A (left) and B (right), respectively. This world-
line configuration was obtained after sufficient Monte Carlo steps to
achieve equilibrium. The simulation is on a 36 × 36 lattice, but for
illustrative purposes, we show a block of 12 × 12 sites.

a species of bosons accounts for the superfluidity. This is
inconsistent with our observation for the solid + SF phase,
in which the superfluidity arises from one species of bosons
on two sublattices that form a honeycomb lattice.

For the region 3.10(5) < μ/V � 3.5, the system is in the
CSS state, supported by the robust crystalline order for each
species together with the vanishing pair superfluidity and
nonzero counterflow superfluidity.

The whole phase diagram in Fig. 1 is constructed by
simulations with a variety of (t/V , μ/V ) values.

B. tA/V �= tB/V and/or U/V �= 1

In this subsection, we study the effects induced by the
asymmetry between the A and the B bosons due to imbalanced
hopping amplitudes tA/V �= tB/V . The effects caused by
tuning interaction U/V are also considered.

1. U/V = 1 and μ/V = 7/2

We first study the tA/V �= tB/V effect for (U/V = 1,
μ/V = 7/2), with each species at half-integer filling. We
simulate at tA/V = 0.05 with varying tB/V , and Fig. 9(a)
shows LρPSF for different L values, indicating a continuous
phase transition at tB/V = 0.19(1). Near this point, a kink is
observed in S

Q
A [Fig. 9(b)]. Nevertheless, no sharp decrease in

S
Q
A exists on either side of the transition; actually, S

Q
A in the

whole tB/V range converges to nonzero values as L → ∞.
A finite-size analysis is shown in the inset in Fig. 9(b) for
t/V = 0.45. A similar feature is found for S

Q
B [Fig. 9(c)]. This

means that both species exhibit a crystalline order over the
whole tB/V range. Together with the behavior of ρCSF (not

FIG. 9. (Color online) Quantities LρPSF (a), S
Q
A (b), and S

Q
B

(c) versus tB/V at tA/V = 0.05 and U/V = 1.

013628-5



JIAN-PING LV, QING-HU CHEN, AND YOUJIN DENG PHYSICAL REVIEW A 89, 013628 (2014)

shown), it can be established that the system is in the CSS
state for tB/V < 0.19(1) and the SS state for tB/V > 0.19(1).

It is interesting to note that as tB/V increases, the crystalline
order of B bosons is not destroyed. The underlying reason is
that such an order is induced by the translational symmetry
breaking due to A bosons which are in the SS state.

Simulations have been carried out for a variety of tA/V

values for (U/V = 1, μ/V = 7/2). The phase diagram in the
(tA/V,tB/V ) plane (Fig. 2) contains the CSS, SS, and 2SF
states.

2. U/V varies

To study the effects induced by variation of the interaction
ratio U/V , we simulate for U/V = 1/2 and 2 at half-integer
filling (μ = 3V + U/2). The phase diagrams (Fig. 2) for
different U/V values are of similar topology and contain
two phase boundaries separating the CSS, SS, and 2SF states.
As U/V increases, the CSS region gets broader, while the
SS phase near the symmetric line tA/V = tB/V drastically
shrinks. As U/V decreases, the SS-2SF phase boundary gets
closer and closer to tA/V ≈ 0.12 or tB/V ≈ 0.12, which are
the SS-SF transition points of model (7) (denoted dashed
black lines in Fig. 2) [26]. The SS state is persistent up to
asymmetric hopping limits (tA/V → ∞, tB/V � 0.12) and
(tA/V � 0.12, tB/V → ∞).

V. DISCUSSION

We have explored the quantum ordered phases in bosonic
mixtures on a triangular lattice, which are constituted by two
species of hard-core bosons, by using extensive Monte Carlo
simulations. These quantum ordered phases are determined
by complementary approaches: examining the robustness of
measured quantities, analyzing world-line configurations, and
performing histogram analyses. For tA/V = tB/V (say, t/V )
with U/V = 1, we constructed a complete ground-state phase
diagram (Fig. 1) in the t/V -μ/V plane, which includes
2-solid–1/3, 2-solid–2/3, 2SF, SS, solid-SF, and CSS states.
We then considered cases with tA/V �= tB/V and found that
the SS and CSS states are present in a broad parameter
range (Fig. 2). Further, the SS state even survives up to the
asymmetric limits of hopping amplitudes. We also explored
the effects induced by variation of the interaction ratio U/V ,
which is experimentally tunable.

In the CSS, SS, and solid-SF states, both the symmetry
among the three sublattices and the symmetry between the
two species are spontaneously broken, and the ground state

is sixfold. To further check the robustness of these states
and the sixfold degeneracy, we slightly break the balance
of the chemical potentials of the two species such that
μA = μ + 0+ and μB = μ + 0−. No qualitative change is
observed in the CSS state, but the SS and solid-SF states
both become threefold. In the SS state, A bosons prefer the
filling arrangement ( 1+0+

6 , 2+0+
3 , 2+0+

3 ), while the B species is

of the ( 5+0−
6 , 1+0−

3 , 1+0−
3 ) structure. In the solid-SF phase with

μ < 3V + U/2, the B species is in the solid state with filling
factor (1,0,0), while the A bosons are in the SF phase. This
demonstrates that the whole region of the SS and solid-SF
states is a surface of first-order phase transitions.

While finishing most of the Monte Carlo simulations for
this paper, we became aware of the recent work by Trousselet
et al. [15], who studied the same system with a mean-field
approach and exact diagonalizations. While most of the
quantum phases in our work have already been predicted in
Ref. [15], a quantitative difference does exist in the location of
phase boundaries. Furthermore, via snapshots of world-line
configuration and histogram analyses, this work provides
strong and direct evidence for the CSS, SS, and solid-SF
phases, which are, respectively, termed the “color supersolid,”
“bosonic pinball,” and “SS-3FO” phases in Ref. [15]. Finally,
the filling factors in the solid-SF phase are found to be
qualitatively different.

Experimental studies of bosonic mixtures on triangular
optical lattices are called for to test the novel quantum phases
in this work and in Ref. [15]. Since the present model has
many tunable parameters, other nontrivial quantum ordered
states which are located in certain parameter ranges may be
still uncovered, which request further theoretical work. For
example, a pair-SS state may emerge if the on-site interspecies
interaction becomes attractive (U < 0) [13]. The present
algorithm is potentially applicable in some spin-boson models
such as those in Refs. [32] and [33].
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