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Quantum shock waves and population inversion in collisions of ultracold atomic clouds
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Using a time-dependent density matrix renormalization group (TDMRG) approach we study the collision of
one-dimensional atomic clouds confined in a harmonic trap and evolving with the Lieb-Liniger Hamiltonian. It is
observed that the motion is essentially periodic with the clouds bouncing elastically, at least on the time scale of the
first few oscillations that can be resolved with high accuracy. This is in agreement with the results of the “quantum
Newton cradle” experiment of Kinoshita et al. [Nature (London) 440, 900 (2006)]. We compare the results for
the density profile against a hydrodynamic description, or generalized nonlinear Schrödinger equation, with the
pressure term taken from the Bethe ansatz solution of the Lieb-Liniger model. We find that hydrodynamics
can describe the breathing mode of a harmonically trapped cloud for arbitrary long times while it breaks down
almost immediately for the collision of two clouds due to the formation of shock waves (gradient catastrophe).
In the case of the clouds’ collision TDMRG alone allows one to extract the oscillation period which is found to
be measurably different from the breathing mode period. Concomitantly with the shock waves formation we
observe a local energy distribution typical of population inversion, i.e., an effective negative temperature. Our
results are an important step towards understanding the hydrodynamics of quantum many-body systems out of
equilibrium and the role of integrability in their dynamics.
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I. INTRODUCTION

The quantum dynamics of closed many-body quantum
systems is relatively unexplored [1] and has become the subject
of active research only recently with the advent of highly
tunable ultracold atomic gases [2,3]. In these systems the
almost perfect decoupling from the external environment and
the long time scales allow one to study details of the quantum
dynamics that are not easily accessible, e.g., in solid-state
systems. An example of the tunability of ultracold gases is the
use of optical lattices [2] to freeze the transverse motion and
confine the gas in one dimension, a regime where quantum
fluctuations play a prominent role [4]. Interestingly several
one-dimensional (1D) Hamiltonians relevant to ultracold gases
are known to be integrable; i.e., they possess an infinite number
of local conserved quantities [5–7].

The implications of integrability on the time evolution of
a quantum system is far from being understood as shown in
the highly debated “quantum Newton cradle” experiment of
Ref. [8] which promptly followed the realization of a Tonks-
Girardeau gas [9–14]. In this latter work a 1D gas of bosons
interacting via a contact potential (Lieb-Liniger model [15,16])
is separated in two symmetric clouds that subsequently collide
in a harmonic trap. Interestingly the clouds bounce off each
other several hundred times without noticeable decay of the
oscillatory motion. On the other hand, in three dimensions the
dynamics are dramatically different with the clouds merging
in a single motionless lump—i.e., a thermal state—after a
few bounces [8]. This sharp difference between the behaviors
in one and three dimensions has triggered a vast amount of
theoretical work [17,18] aimed at understanding the nature of
the asymptotic state (if any) reached when the time evolution
is dictated by an integrable Hamiltonian.
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It is fairly clear that integrability manifests itself only
in out of equilibrium dynamics whose accurate description
requires eigenstates with an energy substantially larger than the
ground state energy [8,19,20]. On the contrary 1D integrable
and nonintegrable models behave alike when the dynamics
are restricted to the low energy spectrum, i.e., in the linear
response regime. For instance, a large class of integrable
and nonintegrable 1D Hamiltonians are known to fall in
the universality class of the Tomonaga-Luttinger liquid, an
integrable model [4,7,21,22].

As illustrated in Ref. [8], ultracold gases can be easily
driven in different out of equilibrium and nonlinear regimes
while a substantial effort is needed to probe only their linear
response [23]. Unfortunately not many approaches are avail-
able to study the out of equilibrium dynamics of interacting
quantum systems. Only in 1D does a time-dependent density
matrix renormalization group (TDMRG) approach [24–27]
allow the—numerically exact—simulation of the real-time
dynamics for arbitrary Hamiltonians, with the restriction that
the entanglement content of the evolving wave function is
initially not too large and not growing too rapidly in time [27].

Alternatively one can discard the fine-grained description of
a system, such as the full wave function (or an approximation
thereof), and focus directly on the collective dynamics of the
observables of interest, the particle density being the easier
to access in the context of quantum gases. The collective
field approach has been very successful for Bose-Einstein
condensates, called also coherent matter waves [28]. At much
lower temperatures than the condensation temperature the only
relevant degree of freedom of a gas of weakly interacting
bosons is a space-dependent complex order parameter, namely,
the wave function in which a macroscopically large number of
particles condense, and interactions can be safely accounted
for at the mean-field level [29]. The evolution of the complex
order parameter is governed by the celebrated Gross-Pitaevskii
equation [30–32] which has proved to be very effective in
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providing quantitative predictions for the static, dynamic, and
thermodynamic properties of trapped Bose gases [28].

The Gross-Pitaevskii equation is equivalent to the standard
Euler’s equations of fluid dynamics for an inviscid fluid, albeit
with an additional “quantum pressure” term. The Tomonaga-
Luttinger theory of 1D many-body systems is sometimes
called “hydrodynamics” [20] or the “harmonic fluid” approach
[33,34] since the canonical fields in the Hamiltonian are
the integrated density φ = ∫

ρ and the velocity θ = ∫
v and

represent the relevant collective modes at low energies and
long wavelength [4]. While the Gross-Pitaevskii’s is in essence
a classical nonlinear hydrodynamics, the Tomonaga-Luttinger
model is a linear—noninteracting—quantum field theory.
Nonlinear extensions of the Tomonaga-Luttinger theory have
been discussed in several contexts [35–41], but throughout
this work the “hydrodynamics description” will stand for a
system of nonlinear equations for a classical fluid. Incidentally,
this is the same approach used in time-dependent density
functional theory (TD-DFT) [42] in particular in its orbital
free formulation [43], where the density is the sole dynamical
variable.

For experiments such as the collision between degenerate
clouds comprising a large number of interacting atoms a
collective field description is usually the only available
option. Various phenomena have been studied in collision
experiments, such as the interference of matter waves [44],
dispersive shock waves in Bose-Einstein condensates [45,46],
superfluidity, shock wave formation and domain wall propaga-
tion in the unitary Fermi gas [47–50], spin transport [51], and
lack of thermalization in quasi-integrable 1D systems [1,8].

With reference to the experimental setup of Ref. [8], we
study the collision of two clouds of 1D bosons for arbitrary
interaction strength, by means of a TDMRG approach [24–27]
based on a matrix product state (MPS) approximation of the
full wave function.

A first important result presented here is that the numerical
simulation of the experiment in Ref. [8] for the first few (∼3)
oscillations is within reach of TDMRG and we provide details
on how this has been accomplished. Moreover, if the time
evolution is computed accurately, the entanglement is slowly
growing in the quenches that we perform, a fact that can
possibly allow times much longer than the ones considered
in this work to be reached. Assessing the maximal evolution
time allowed by TDMRG requires a more accurate analysis of
the numerical errors which is beyond the scope of the present
work. Therefore the important questions of thermalization and
of the nature of the asymptotic state are not the focus here.
However we put forward a definition of local temperature that
could be useful in this context (see below).

A second result presented here is the accurate comparison
of the exact quantum dynamics with a generalized Gross-
Pitaevskii equation or a generalized nonlinear Schrödinger
equation (GNLSE) [6] which, in hydrodynamic form, contains
a pressure term derived from the Bethe ansatz solution of the
Lieb-Liniger model. This is the best available hydrodynamic
description for the present problem. While hydrodynamics
works for several oscillations for the breathing mode, in the
case of the clouds’ collision the formation of shock waves
leads to a chaotic behavior which is not reflected in the periodic
behavior shown by the TDMRG data. Only from the latter can

the oscillation period as a function of the interaction strength
be accurately extracted and it is found to be different from
the breathing period, an easily testable prediction. This result
emphasizes that a better understanding of quantum shock
waves is instrumental to a—at least qualitatively—correct
hydrodynamic description of 1D quantum gases.

Finally, we further characterize the formation of shock
waves by studying the Wigner distribution function, a tool
used by other authors in the context of shock wave dynamics
of free fermions [52,53]. Starting from the Wigner function, we
show how it is possible to define a local energy distribution
function and that at the onset of shock wave formation the
latter shows population inversion; i.e., higher energy states
are more occupied than lower energy ones. Recently [54] a
negative temperature, namely, a population inversion in the
energy distribution of the motional degrees of freedom of
atomic gases, has been realized. Moreover, it has been shown in
Ref. [54] that population inversion does not necessarily imply
a fast decay to the true thermal equilibrium state, thus showing
the quite unique properties these systems possess. We suggest
that the small thermalization rate and the absence of visible
decay of the oscillatory motion in the density profiles observed
both in Ref. [8] and in our simulations are a dynamical
manifestation of the same remarkable (meta-)stability of the
negative temperature state realized in Ref. [54]. In fact,
we employ a possible definition of local temperature out
of equilibrium—put forward in Ref. [55]—and find again
negative values in correspondence of the shock wave formation
time.

II. MODEL AND METHODS

A. Lieb-Liniger model and quenches

The Lieb-Liniger model [15,16] provides an excellent
description of 1D ultracold bosonic atoms [56,57]. In terms
of the bosonic field �̂(x) its Hamiltonian reads

ĤLL=
∫

dx

[
�

2

2m
|∂x�̂(x)|2 + gB

2
|�̂(x)|4 + V (x)|�̂(x)|2

]
,

(1)

where gB ∈ [0, + ∞] is a coupling constant and m is the
atom mass. In the following we consider a time-dependent
external potential V (x,t) changing abruptly at t = 0 (quench).
Hamiltonian (1) is integrable for any gB when V (x) = 0, while
for V (x) �= 0 the exact eigenstates and eigenvalues are known
for free bosons gB = 0 and hard-core bosons gB = +∞,
the latter being equivalent to free fermions according to the
Bose-Fermi mapping theorem [9,10].

We consider two kinds of quench. In the first one the
external potential is a harmonic well with a sudden change
in frequency at t = 0:

V (x,t) = 1

2
mω2

1(t)x2, ω1(t > 0) = ω1(t � 0)√
3

. (2)

This excites the breathing mode of a gas initially in the ground
state. In a second kind of quench we prepare the gas in the
ground state of the potential,

V (x,t � 0) = 1

2
mω2

0
(x2 − D2)2

4D2
, (3)
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TABLE I. Frequencies ω0 [Eq. (3)] and ω1 [Eq. (2)] and
oscillation half period τ = π/ω1(t > 0) used in the simulations
according to the value of gB . The table refers to the collision quench.
In the case of the quench exciting the breathing mode the initial
trapping frequency ω1(t � 0) is given in the third column of the
table, and the postquench frequency by ω1(t > 0) = ω1(t � 0)/

√
3

[Eq. (2)]. Times are in units of �/J = ma2/�. Changing these
parameter with the interaction strength is important in order to keep
the on-site density roughly constant when the compressibility of the
gas varies. The above choice works well as one can see in Fig. 1.

gB/(Ja) �ω0/J �ω1/J τJ/�

0.0 0.0005 0.0003 11107
0.002 0.0005 0.0003 11107
0.02 0.0009 0.0006 4967
0.2 0.0025 0.0012 2618
0.6 0.0040 0.0017 1756
1.0 0.0046 0.0022 1433
1.4 0.0049 0.0024 1328
2.0 0.0055 0.0025 1258
+∞ 0.0063 0.0033 956

in order to have two clouds of particles separated by a distance
∼D, and we let it evolve for t > 0 in the harmonic potential (2)
with ω1 < ω0 (microcanonical picture of transport [58,59]).
The values of the frequencies ω0 and ω1 depend on the
interaction strength and are reported in Table I.

B. TDMRG simulations

It is possible to access the dynamics of Eqs. (1)–(3)
in an essentially exact fashion using TDMRG. TDMRG
has been applied mainly to lattice systems for relatively
short time scales [60], but simulations of systems in the
continuum limit and for quite long time scales (of the order of
several periods) are feasible [61–67]. Details are provided in
Appendix A. In essence we use a wave function in a MPS form
that explicitly conserves the number of particles and is evolved
in time using a sixth-order Trotter expansion [27,62–64].
Moreover the sizes of the MPS matrices are allowed to
change dynamically both in space and in time by fixing the
discarded weight (see Appendix A). In our simulations we have
employed two different discretizations of Eq. (1) [61], either
as a Bose-Hubbard model (nonintegrable) or as a XXZ spin
chain (integrable) using the Bose-Fermi mapping for arbitrary
interaction strength gB [61,68,69]. The lattice Hamiltonians
are given in Appendix B. No substantial difference in the
results has been observed. Importantly we find that, for an
accurate time evolution of the MPS, the entanglement entropy
is bounded or very slowly increasing [70], which translates
into a manageable size of the MPS. Thus, in principle, longer
times could be explored but we show only results for the first
few half periods τ = π/ω1(t > 0).

In the following, lengths are expressed in units of the lattice
spacing a of the discretized model, which is a small, but
otherwise arbitrary, length scale; energy is in units of J =
�

2/(2ma2); and time is in units of the postquench oscillation
half period τ = π/ω1(t > 0). The interaction parameter gB is
given in units of Ja. Occasionally we use the Lieb-Liniger

parameter γ = mgB/(�2ρ) with ρ = 0.05/a, an indicative
value of the density in the inhomogeneous system considered
here. We ensured, by separately tuning ω0 and ω1 for each
value of the coupling gB (see Table I), that the particle density
per site never exceeds ∼0.15; thus lattice effects are negligible
(continuum limit) [62–64].

In our simulation we consider N = 20 particles in a lattice
of length L = 600a. The clouds’ distance is fixed at D = 120a

[see Eq. (3)]. With this choice of distance the two clouds
are always partially overlapping while simulations for well-
separated clouds are more numerically demanding.

In the actual experiment [8] the number of particles varies
between 40 and 250, figures not far from the one used in
our simulations. Moreover we will see that the dynamics can
be well described in the local density approximation, namely,
using the local pressure calculated in the thermodynamic limit.
Thus our results are significant for much larger system sizes, a
fact that we explicitly verified in the case of free fermions
where a scaling in the number of particles can be easily
performed.

C. Hydrodynamic description

In this work we compare our TDMRG results with the best
possible (to our knowledge) hydrodynamic description for the
present case, namely, a GNLSE [57,71–76],

i�∂t�(x,t) =
[
− �

2

2m
∂2
x + φ(ρ) + V (x,t)

]
�(x,t), (4)

where �(x) is a complex field, V (x,t) is specified by Eqs. (2)
and (3), ρ(x) = |�(x)|2 is the density, and φ(ρ) the Gibbs free
energy per particle, or chemical potential, obtained from the
Bethe ansatz solution of the Lieb-Liniger model. In the Gross-
Pitaevskii limit (gB → 0) φ(ρ) = gBρ while in the hard-core
limit (gB → +∞) φ(ρ) = π2

�
2

2m
ρ2. Accurate numerical values

of φ(ρ) for intermediate interactions are available [57].
Equation (4) can be written alternatively in a more standard

hydrodynamic form by using the de Broglie ansatz �(x,t) =√
ρ(x,t)eiS(x,t)/� and separating the real part and the imaginary

part. The result is the quantum Euler equations [76]:

∂tρ = −∂x (ρv) , (5)

∂tv + v∂xv = − 1

m
∂x

(
φ(ρ) − �

2

2m

∂2
x

√
ρ√

ρ
+ V (x,t)

)
, (6)

where the velocity field v(x,t) = ∂xS(x,t)/m has been intro-
duced. Without the quantum pressure −(�2∂2

x

√
ρ)/(2m

√
ρ),

Eqs. (5) and (6) amount to a simple local density approximation
(LDA), but this term needs to be included in order to reproduce
the free bosons limit (gB → 0). Note that there are no free
parameters in Eq. (4) or equivalently in Eqs. (5) and (6).
The GNLSE, Eq. (4), has been solved numerically using a
time-splitting spectral method [77]. We used a fourth-order
Trotter expansion to perform imaginary time evolution in the
initial potential (3), thus providing the initial state �(x,t = 0).
A sixth-order Trotter expansion was used to evolve the system
in the quenched potential (2), the same expansion employed
for TDMRG.
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FIG. 1. (Color online) Comparison between TDMRG data (black line) and the solutions of the hydrodynamic equation (4) [red (gray)
line]. The top panels refer to the breathing mode quench while on the bottom ones the collision of clouds is illustrated. In each panel several
different values of gB are shown, from free bosons gB = 0 (bottom) up to the Tonks-Girardeau limit gB = +∞ (top). Density profiles for
different interaction strengths have been shifted vertically for clarity. Time is in units of the half period defined as τ = π/ω1 for the collision
quench and as τ = √

3π/ω1 for the breathing quench where the value of ω1 is given in Table I. In the case of the breathing mode the perfect
match between TDMRG and hydrodynamics (the density profiles are overlapping) is a strong indicator of the accuracy of the simulations. In
the case of the collision quench, shock wave formation is signaled by steep density profiles at t ∼ 0.35τ and the growth of oscillations present
only in the hydrodynamic profiles. The amplitude of these oscillations increases with gB and they are very evident for gB = 2.0Ja and in the
Tonks-Girardeau limit at t = 0.5τ . This leads to the breakdown of the hydrodynamic approximation, Eq. (4), which is unable to capture the
true quantum dynamics where the ripples are smoothed out by quantum fluctuations.

III. CLASSICAL AND QUANTUM HYDRODYNAMICS

A. Shock waves

TDRMG and hydrodynamics are compared in Fig. 1 both
for the breathing mode quench and the clouds’ collision for
different values of the interaction strength (gB = 0, . . . , +
∞). In the case of the breathing mode (upper panels) the
excellent agreement at all times—even longer than those
shown in Fig. 1 (see Fig. 2 and below)—and for all gB’s
indicates that lattice effects are negligible (continuum limit)
[63,64] and, quite surprisingly, the hydrodynamic description
works well for just N = 20 particles. An analogous rapid
crossover from a few-particle to a many-particle regime has
been observed in Ref. [63]. A feature that hydrodynamics
is unable to capture is the small oscillations in the density
profile visible in the TDMRG data for any t � 0 in the strongly
interacting limit. These are called shell effects [78–83] and are
a feature of the ground state that persists during the evolution.
We stress that the agreement between the results obtained
with two completely different methods such as TDMRG and
hydrodynamics is a strong check of the accuracy of our
simulations.

Contrary to the breathing mode, the hydrodynamic descrip-
tion can capture the dynamics of colliding clouds, shown in
the lower panels of Fig. 1, only up to a time t ∼ 0.35τ when
oscillations form in the GNLSE solutions, corresponding to the
formation of shock waves (gradient catastrophe [84,85]). The
oscillation amplitude increases with the interaction strength

and is maximal in the Tonks-Girardeau limit. These shock
waves with oscillatory behavior are known as dispersive
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ρ
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t = 0τ

1.09τ
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t = 0τ

1.06τ
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FIG. 2. (Color online) Comparison between TDMRG (black
line) and hydrodynamic [red (gray) line] density profiles at t = 0
(bottom), after one oscillation period τ ∗(gB ) (middle), and after two
periods (top). The density profiles at different times have been shifted
in the vertical direction. How the renormalized oscillation period has
been extracted from the TDMRG data is explained in Sec. III B and
Fig. 3. Note that the hydrodynamic simulations match the TDMRG
results for several oscillation periods in the case of the breathing mode
while in the collision of clouds the approximation breaks down before
a single oscillation is completed due to shock wave formation (see Fig.
1). In both cases the full quantum dynamics exhibit (quasi-)periodicity
for any interaction strength (the data shown here refer to gB = 1.0Ja).
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and occur in inviscid fluids, e.g., Bose-Einstein condensates
[45,46,85,86].

Our TDMRG results are very similar to the experimental
data reported in Ref. [47] where viscosity was introduced in the
hydrodynamic equations to describe shock waves, while in the
TD-DFT calculation in Ref. [50] a renormalized kinetic term,
λ∂2

x�, was used for the same reason. This is not justified here
since Eq. (4) has no free parameters and it is an excellent
approximation up to the gradient catastrophe for any gB .
Introducing viscosity would contradict the fact that almost
no dissipation is present in our system as we show below. It is
however unclear what kind of dispersive term should be used
in our case to reproduce the exact quantum dynamics where
the oscillations are suppressed with respect to the GNLSE
dynamics. A discussion of the dissipative or dispersive nature
of shock waves in quantum gases can be found in Refs. [50,86].

As is nicely illustrated in Fig. 1, the dynamics of these
quantum shock waves for finite gB are in fact continuously
connected to the Tonks-Girardeau limit (free fermion, gB →
+∞), a fact anticipated in Ref. [52]. Surprisingly enough the
hydrodynamics of free fermions is still poorly understood and
has been the subject of recent work [52,53].

B. Oscillation frequency shift

Although the system has a strongly nonequilibrium and
nonlinear dynamics we find from the TDMRG simulations
that the initial density profile and thus the initial state are
recovered after a time of order τ for any gB ∈ [0, + ∞], both
in the breathing and in the collision quenches. This remarkable
recurrence, which would be expected only in the limit of
small oscillations, is shown in Fig. 2 for gB = 1.0Ja. The
hydrodynamic results for the breathing quench (right panel
of Fig. 2) show a remarkable agreement with the quantum
dynamics for times at least as long as a few oscillation periods,
while they deviate rapidly in the collision quench (left panel).

The profiles in Fig. 2 are shown at times t = 0, τ ∗(gB), and
2τ ∗(gB), where the renormalized oscillation period τ ∗(gB) has
been extracted as follows. We use the mean square deviation
of the density profile at time t from the initial one,

�(t) = 1

N

√∫
dx[ρ(x,t) − ρ(x,0)]2, (7)

shown in the upper panel of Fig. 3 for the collision quench.
These curves have been obtained from TDMRG data since
hydrodynamics is unreliable in this case. Moreover we
have compared results using the two different discretizations
employed (Appendix B) and found no significant differences.
�(t) essentially drops to zero at times t ∼ τ and t ∼ 2τ ,
indicating that the system has approximately returned to the
initial state. The times at which the first minimum occurs is
precisely τ ∗(gB). The second minimum occurs at 2τ ∗(gB) to a
good approximation. The results for the renormalized period
are shown in the lower panel of Fig. 3. In the exactly solvable
limits gB = 0 and gB = +∞ the period is not renormalized.
In between these extrema it has a nonmonotonic behavior with
a maximum in the interval 0.02 < gB/(Ja) < 0.2 (0.2 < γ <

2). The almost perfect periodicity observed for any gB is a
strong indication of very small dissipation, in agreement with
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τ
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τ

FIG. 3. Upper plot: Deviation �(t) as a function of time [Eq. (7)].
The black dashed lines are the data relative to the Bose-Hubbard
discretization and the light gray solid ones are relative to the XXZ

spin chain discretization. The arrows indicate the instants where the
density is closest to the initial one [minima of �(t)]. In the lower plot
the renormalized oscillation period τ ∗(gB )/τ is shown as a function
of the interaction strength gB extracted from the minima of �(t) (see
the upper plot). The light gray triangles (black circles) refer to the
XXZ (Bose-Hubbard) discretization. The gray squares are relative to
the breathing period for which hydrodynamics and TDMRG agree.
The light gray (gray) arrow at the bottom left represents the frequency
extracted from the gB = 0 data for the collision (breathing) quench.
They deviate from the exact result τ ∗(0) = τ in the continuum limit
since lattice effects distort the density profile in time. As can be seen
in Fig. 1, higher densities are explored in the gB = 0 case; thus the
continuum limit approximation is less accurate.

experimental results [8]. The collision period is found to be
measurably larger than the breathing period—for which the
hydrodynamics is accurate [87]—a fact that could be easily
tested experimentally.

While the dynamics obtained from TDMRG are essentially
periodic, the ones obtained from Eq. (4) are rather chaotic in
the case of the collision quench. We remind the reader that the
static density and the dynamics up to the gradient catastrophe
are well captured by the GNLSE (4) (see the left panels of
Fig. 1). A simple explanation of this phenomenon is that
in the case of the breathing mode the density is slowly
varying in space and what counts is just the local pressure
in the LDA sense, which is reproduced by Eq. (4), or by
Eqs. (5) and (6), by definition. However in the case of the
collision quench where shock waves are formed, gradient
corrections on top of the LDA become crucial and the quantum
pressure is inadequate since it leads to a qualitatively different
evolution. A different point of view is that Eq. (4) with the
external potential set to zero entails the conservation only
of particle number, momentum, and energy and produces a
chaotic dynamics, while the full quantum dynamics is subject
to an infinite number of conservation laws or, in other words,
the Lieb-Liniger Hamiltonian is integrable [5]. It appears that
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FIG. 4. (Color online) (a) Snapshots of the density profile ρ(x,t) for the clouds’ collision as in Fig. 1 (gB = 0.2Ja, γ = 2). (b) Energy
distribution function f (x,ε,t) (9) calculated from the Wigner function (8). The color plots show the values of f (x,ε,t) in the (x,ε) plane at
the corresponding times in panel (a). The vertical black, gray, and light gray lines correspond to the sections for fixed x of f (x,ε,t) shown in
Fig. 5. Note that shock-wave formation is characterized by a highly nonequilibrium distribution. (c) and (d) Same as panels (a) and (b) but for
gB = 2.0Ja (γ = 20).

the integrability breaking due to the external potential is small
in this case and slightly affects the quantum dynamics.

IV. POPULATION INVERSION

In order to study in more detail the shock wave dynamics
we use the Wigner function [52,53]

W (x,p,t) = 1

�π

∫
dyρ(x + y,x − y; t)e

2ipy

� , (8)

where ρ(x ′,x; t) = 〈�̂†(x,t)�̂(x ′,t)〉 is the one-body density
matrix. The one-body density matrix can be easily extracted
by contracting the wave function in the MPS form [27].
Neglecting negative values, W (x,p,t) can be thought of
as a local momentum (p) distribution as in the Boltzmann
equation. Oscillations and negative values of the Wigner
function obviously spoil its interpretation as a local momentum
distribution. However, we have found in the case of free
fermions, where a scaling with the number of particles is
possible, that such features do not preclude a well-defined
Fermi step with increasing N .

The local energy distribution f (x,ε,t) is defined with
respect to the local comoving (Lagrangian) reference
frame with the velocity mv(x,t) = j (x,t)/ρ(x,t) [58], with
j (x,t) = ∫

dppW (x,p,t) and ρ(x,t) = ∫
dpW (x,p,t). Thus∫

dpW [x,p − mv(x),t] = 0 and the energy distribution reads

f (x,ε,t) = 2π�

∑
s=±

W [x,s
√

2mε − mv(x)]. (9)

This is the quantity shown in the color plots in Fig. 4 and for
selected values of the position x in Fig. 5. At t = 0 (bottom
of Fig. 4 and left panels of Fig. 5) the distribution f (x,ε,t)
decreases monotonically with ε (leaving aside oscillations
related to the finite particle number), indicating an equilibrium
energy distribution.

In correspondence with the shock-wave formation (t ∼
0.3τ ) the energy distribution is no longer an equilibrium
one, f (x,ε,t) is larger for values of ε away from zero (right

panels of Fig. 5), signaling a population inversion, namely,
an effective negative temperature. Population inversion leads
to the breakdown of the LDA and to the deviation from the
GNLSE (Eq. 4) solution. The energy distribution function
in the usual sense is

√
m/(2ε)f (x,ε,t) and contains the 1D

density of states factor
√

m/(2ε). However, for our purposes
the definition in Eq. (9) is more appropriate since for a classical
system at equilibrium f (x,ε,t) ∝ e−βε and a monotonically
increasing behavior in the distribution directly corresponds to a
negative temperature. This would not be immediately apparent
if the 1D density of states had been taken into account.

A. Negative temperature

In order to corroborate the presence of a negative tempera-
ture out of equilibrium we characterize the state of the system

0
10
20
30

t = 0τ
gB = 0.2Ja

t = 0.38τ

10−4 10−3 10−2 10−1

ε/J

0
5

10
15

f
(x

,ε
,t

)

t = 0τ
gB = 2.0Ja

10−3 10−2 10−1

t = 0.32τ

FIG. 5. Energy distribution function f (x,ε,t) corresponding to
the first (t = 0τ ) and third (t ∼ 0.3τ ) snapshots in Figs. 4(b) and
4(d). The black, gray, and light gray lines correspond to x/a = 25,
40, and 60 for the two upper quadrants (gB = 0.2Ja) [Fig. 4(b)],
and x/a = 15, 30, and 50 for the two lower quadrants (gB = 2.0Ja)
[Fig. 4(d)], respectively. Note that neglecting oscillations for large ε—
due to the finite number of particles—the initial distribution decreases
monotonically, while a maximum develops for finite ε after the shock-
wave formation at t ∼ 0.3τ , i.e., a population inversion.
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with the information compressibility [55], which measures the
relative change of the number of available microstates of an
open system in response to an energy variation. In our case we
deal with a closed and finite quantum system. However, it is
always possible to trace out part of the system and study the
remaining half as an open one. In our case we focus on the
reduced density matrix of half of the chain

ρ̂half(t) =
∑

nL/2+1,...,nL

〈n1, . . . ,nL/2,nL/2+1, . . . ,nL|�〉

× 〈�|n1, . . . ,nL/2,nL/2+1, . . . ,nL〉. (10)

The concept of information compressibility has been intro-
duced in Ref. [55] as a mean to characterize out of equilibrium
states of open systems. Expectation values can be easily
extracted from ρhalf(t) if the state 〈{ni}|�〉 is in the MPS
form [27]. Call � the number of microstates available to the
system. The information compressibility is then defined as the
relative variation of the number of microstates with respect to
the energy variation at time t [55]:

KI (t) = 1

�

δ�

δE

∣∣∣∣
t

. (11)

Using the microcanonical relation � = exp (S/kB) one arrives
at the computationally more convenient definition

KI (t) = 1

kB

∂S

∂t

∂t

∂E

∣∣∣∣
t

. (12)

Note the similarity of this quantity with the thermodynamic
definition of inverse temperature [55]. Given a system with
density matrix ρ̂(t) and Hamiltonian Ĥ, the energy is
E(t) = Tr[ρ̂(t)Ĥ] and the thermodynamic entropy S(t) =
−kBTr [ρ̂(t) ln ρ̂(t)]. We used for ρ̂(t) the density matrix of
half of the system ρ̂half(t) defined above and Ĥ = Ĥinternal is
the part of the Hamiltonian relative to the internal energy of
the system, namely, the sum of the kinetic energy and the
interaction energy but excluding the potential energy due to
external forces:

Ĥinternal =
∫

dx

[
�

2

2m
|∂x�̂(x)|2 + gB

2
|�̂(x)|4

]
. (13)

This is consistent with the thermodynamic definition of inverse
temperature as the derivative of the entropy with respect to the
internal energy.
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J
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FIG. 6. Inverse information compressibility as a function of time
for various interaction strengths gB/(Ja) = 0.2, 1.0, and 2.0. Note
the divergence in correspondence to a fully developed shock wave at
t = 0.4–0.5τ . See Fig. 4, snapshots at t = 0.38τ in panel (a) and at
time t = 0.32τ in panel (c).

The inverse information compressibility is shown in
Fig. 6 for various interaction strengths. The interesting point
is the divergence of K−1

I (t) in all cases for t/τ ∼ 0.4, i.e., in
correspondence to a fully developed shock wave, and negative
values of this quantity at later times. If we interpret the inverse
compressibility as an effective temperature, this behavior is
clearly suggestive of a population inversion, in agreement with
our previous results.

V. CONCLUSIONS AND PERSPECTIVES

In this work we have used TDMRG, an essentially exact
method, and an approximate hydrodynamic description based
on the GNLSE to study numerically the debated “quantum
Newton cradle” experiment [8]. We find that, when the
two clouds of atoms collide, shock waves occur almost
immediately after the quench, a fact which has been pre-
viously overlooked, suggesting interesting connections with
the growing literature on the subject of shock waves in
ultracold gases [45–50,85,86]. On the contrary, in a quench
where the breathing mode is excited shock waves are absent.
Interestingly, while shock waves greatly affect the GNLSE
dynamics by triggering an aperiodic and chaotic behavior, this
does not occur in the full quantum dynamics where the system
is found to return to the initial state after (approximately) half
of the harmonic trap period, as in the case of the breathing
period. We observe essentially no decay within the time scales
that we have been able to explore (�3τ ), an indication of the
extremely small dissipation in the system. This suggests that
the shock structure is controlled by a dispersive term which is
however rather different from the quantum pressure in Eq. (6),
since it leads to a qualitatively different dynamics and to an
oscillatory structure different from the usual one [52,53,84,86].
We provide results for the oscillation period as a function of
the interaction strength in the case of the collision of clouds, a
nonperturbative result that, to our knowledge, can be obtained
with no method other than TDMRG.

The experiment in Ref. [8] is important for the problem
of thermalization, namely, what is the appropriate statistical
ensemble that can describe the state asymptotically reached
by an integrable system. Although this is not our main focus
here, we point out that TDMRG could be useful in the
future for this purpose since in the kind of quench that we
study the entanglement has very little or no growth, which
implies that the computational cost grows linearly with the
maximum time reached in a simulation (see Ref. [70] and
Appendix A). In the present case we study only the first few
oscillations. Notice, however, that in a 3D collision of two
Bose-Einstein condensates the thermalization scale is �2τ [8],
well within reach of our method. Importantly, we observed that
the dynamics for finite interaction strength gB is continuously
connected [52] to the Tonks-Girardeu case (free fermions,
gB = +∞) for which the dynamics in a harmonic trap is stricly
periodic; i.e., there is no decay towards a stationary asymptotic
state. Understanding if this is the case also for arbitrary finite
interactions is an important question, and in the future it may
be possible to provide some lower bounds on the decay rate
using TDMRG.

The results presented here are also relevant to the broad
problem of understanding the hydrodynamics of quantum
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gases, namely, to provide an effective description using as
dynamical variables only the observables of interest, such as
density and velocity fields [58]. Such a description can be of
great value since it is computationally more affordable than
full quantum simulations such as those provided by TDMRG.
This is the same point of view adopted by TD-DFT in its orbital
free formulation [43]. In fact the Runge-Gross theorem [42] of
TD-DFT guarantees that an exact hydrodynamic description
of quantum dynamics exists [58], although the analytical
expression of the stress tensor is unknown even for free
fermions [52,53]. The use of DMRG to study DFT in an
exact setting has been put forward in Ref. [66] in the context
of ground-state calculations. Here, we have approached the
dynamical problem for one of the simplest many-body systems
in the same fashion. We emphasize that a better understanding
of shock waves even in the Tonks-Girardeau limit is an
important step towards the goal of a better hydrodynamic
description of ultracold gases.

Finally, we have shown that quantum shock waves lead
to a population inversion in the local energy distribution,
namely, to a negative effective temperature, a result confirmed
by a possible definition of temperature out of equilibrium
put forward in Ref. [55]. Our results suggest that statistical
ensembles with negative temperatures for the motional degrees
of freedom, as shown in Ref. [54], are a common feature in
collision experiments with ultracold gases [8].
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APPENDIX A: TDMRG SIMULATIONS

In the TDMRG simulations a MPS representation [27] of
the wave function has been employed:

〈n1,n2, . . . ,nL−1,nL|�〉 = A[n1] · A[n2] · . . . · A[nL−1] · A[nL] ,

(A1)

with {ni}i=1,...,L being a given set of occupancies of the lattice
with length L. The matrix A[ni ] for fixed ni has dimension
mi−1 × mi , where mi is called the link dimension, an integer
number attached to the link connecting site i and site i + 1.
The link dimension is position dependent and it is the crucial
parameter that needs to be tuned to find a balance between
accuracy and speed [27]. For open boundary conditions m0 =
mL = 1. The dot “ · ” denotes the matrix multiplication.

A standard trick for increasing the speed of TDRMG is the
use of the conservation of the number of particles (

∑
i ni =

N ). This leads to a block structure for the matrices A[ni ]. It can
be easily checked that large blocks of A[ni ] are zero and the
size of the MPS is greatly reduced.

During the time evolution the link dimension mi is kept
to a low value by performing a singular value decomposition

(SVD) [27] of a two-site matrix M [nini+1]
�i−1�i+1

= ∑
�i

A[ni ]
�i−1�i

A[ni+1]
�i�i+1

and discarding the lowest singular values compatibly with the
condition

ε >
∑

discarded σ�i

σ 2
�i

, (A2)

where σ1 � σ2 � · · · � σmi−1 � σmi
are the singular values

obtained by SVD and ε is the discarded weight, a small
parameter that controls the precision. Note that according
to this truncation procedure the link dimension mi adapts
automatically in space and time to the evolving wave function
of an inhomogeneous and out of equilibrium system. The
block structure carries over to M [nini+1]

�i−1�i+1
and the SVD can

be performed blockwise with considerable speed-up [27]. A
MPS with a block structure imposed by the conservation of the
number of particles and the truncation prescription described
above are the two ingredients that enable one to simulate
reliably the quench protocol presented in the main text for
long enough times to observe several collisions of the clouds.
The same techniques have been employed successfully for the
Fermi-Hubbard model in Ref. [63] and for the Bose-Hubbard
model with two species in Ref. [64]. Additional details on the
structure imposed on the MPS by particle number conservation
can be found in Ref. [88].

In our simulations we used a discarded weight ε = 10−10

and we employed a sixth-order Trotter expansion for the time
evolution [63,64,89] with time step �t = 0.1�/J for the BH
discretization and �t = 0.05�/J for the XXZ discretization.
The reason for using a sixth-order expansion has been
discussed in Ref. [63]. The reliability of our simulations has
been controlled in several ways. First, we checked our results
against exactly solvable cases, namely, free bosons and free
fermions (hard-core limit gB → +∞), verifying that the exact
diagonalization results are indistinguishable from the TDMRG
ones over several oscillation half periods τ = π/ω1(t > 0), the
scale of one collision. Second, the discarded weight has been
lowered to ε = 10−11 without observing significant differences
in the evolved density profile ρ(x,t). Finally the comparison
between hydrodynamic and TDMRG data in the case of the
breathing mode quench (see Figs. 1 and 2) is by itself an
unbiased check, for any value of the interaction strength, of the
accuracy of our simulations over several oscillation periods.

In the Supplemental Material [70] we provide animations
of the density profiles obtained both with TDMRG and
GNLSE, alongside the corresponding link dimension mi and
block entropy Si [27], illustrating the important point that in
our TDMRG simulation the entanglement growth is not so
dramatic, which allows one in principle to reach longer times
than those presented here.

APPENDIX B: DISCRETIZATION OF THE LIEB-LINIGER
HAMILTONIAN

The Lieb-Liniger model has been discretized in two distinct
ways.

(i) Bose-Hubbard discretization [60,64,65]:

ĤBose-Hubbard = −J
∑

i

(b̂†i b̂i+1+H.c.) + U

2

∑
i

n̂2
i +

∑
i

Vi n̂i ,

(B1)
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with b̂i and b̂
†
i being the bosonic annihilation and creation

operators on the ith site and n̂i = b̂
†
i b̂i being the corresponding

on-site density operator. The maximal occupancy has been
truncated to ni � 6 in the simulations.

(ii) XXZ spin chain discretization [61,90]:

ĤXXZ = −J
∑

i

(ĉ†i ĉi+1 + H.c.)

− 2J

1 + U/(4J )

∑
i

n̂i n̂i+1 +
∑

i

Vi n̂i , (B2)

where ĉi and ĉ
†
i are the fermionic annihilation and creation

operators and n̂i = ĉ
†
i ĉi is the on-site density operator. The

Hamiltonian (B2) is equivalent to a XXZ spin chain after a

Jordan-Wigner transformation. The equivalence between the
Lieb-Liniger model and the low density limit of Hamiltonian
(B2) is a consequence of the Bose-Fermi mapping in 1D for
arbitrary gB discussed in Refs. [68,69]. The discretization of
the Hamiltonian for p-wave interacting fermions is carried out
in Ref. [61].

The couplings in the above Hamiltonians are related to
the continuum model as J = �

2/(2ma2), U = gB/a, and
Vi = V (x = ia). In our simulations we used the lattice spacing
a as the unit of length and the hopping energy J as the
unit of energy. For a system with density 〈n̂i〉/a = ρ the
dimensionless Lieb-Liniger parameter [15,16] reads

γ = mgB

�2ρ
= U

2J 〈n̂i〉 . (B3)
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