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Dissipative preparation of phase- and number-squeezed states with ultracold atoms
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We develop a dissipative quantum state preparation scheme for the creation of phase- and number-squeezed
states. It utilizes ultracold atoms in a double-well configuration immersed in a background Bose-Einstein
condensate, with the latter consisting of an atom species different from the atoms in the double well and
acting as a dissipative quantum reservoir. We derive a master equation for this system starting from microscopic
physics and show that squeezing develops on a time scale proportional to 1/N , where N is the number of particles
in the double well. This scaling, caused by bosonic enhancement, allows us to make the time scale for the creation
of squeezed states very short. The lifetime of squeezed states is limited by dephasing arising from the intrinsic
structure of the setup. However, the dephasing can be avoided by stroboscopically switching the driving off and
on. We show that this approach leads to robust stationary squeezed states. Finally, we provide the necessary
ingredients for a potential experimental implementation by specifying a parameter regime for rubidium atoms
that leads to squeezed states.
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I. INTRODUCTION

The efficient generation of entanglement of macroscopic
ensembles is a central challenge in atomic physics both from
a fundamental point of view and for practical applications
such as quantum metrology and computation. One particularly
prominent example of entanglement generation is provided
by squeezed states. In phase- and number-squeezed states,
the uncertainty in phase or particle number can be made as
small as is compatible with the fundamental laws of quantum
mechanics. In recent years, there has been considerable interest
in squeezed states of ultracold atoms. This is motivated by their
applications in matter-wave interferometry [1–8].

A customary approach for the preparation of squeezed
states involves unitary evolution and a measurement. An
alternative strategy for quantum state preparation, based on
the utilization of tailored dissipation, has been advocated re-
cently [9–12]. In these schemes, a quantum bath is engineered
and coupled to a system of interest in such a way that the system
is driven into a desired target state. Advantages compared to
more traditional state engineering techniques [13] lie in the
self-driven and deterministic character of the state preparation.
Furthermore, the target state is reached starting from any initial
state and the engineered dissipation can overwrite unwanted
dissipation and decoherence mechanisms [14].

Beyond the state preparation aspects, such a scheme opens
up new scenarios for nonequilibrium many-body physics [15–
17] and quantum computation [12,18,19]. Various platforms
for the implementation of engineered dissipation have recently
been explored theoretically [20–26]. Experimental realizations
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have been achieved in milestone experiments with atomic spin
ensembles at room temperature [14,27,28] and systems of
trapped ions [29,30]. In Refs. [14,27,28] it was shown that
Einstein-Podolsky-Rosen-type entanglement of two distant
atomic spin ensembles can be established dissipatively, while
in Refs. [29,30], Bell and Dicke states have been created
deterministically.

In this work we propose a scheme for dissipative prepa-
ration of phase- and number-squeezed states using ultracold
atoms. It builds on a double-well geometry loaded with
ultracold rubidium atoms (see Fig. 1), which is coherently
driven in a double � configuration, and immersed in a
surrounding Bose-Einstein condensate (BEC) [31]. It realizes
the Lindblad or quantum jump operators generating dissipative
evolution proposed in Ref. [24] for establishing macroscopic
atomic entanglement. It extends the scheme proposed in
Ref. [11] by an additional � configuration, which is crucial for
the implementation of the squeezing dynamics. Our scheme
works if the number of particles in the double well, denoted
by N , is macroscopic. We show that squeezing is established
rapidly on a time scale τγ ∼ 1/Nγ , where γ is the overall rate
in the master equation extracted below from a microscopic
calculation and N is the number of particles in the double-
well system. This rapid time scale originates from bosonic
enhancement. In general, this setup leads to periodically
oscillating squeezing. We find that the oscillatory dynamics
can be suppressed by switching the � configuration lasers off
and on periodically in time. Using this stroboscopic method,
a robust and long-lived squeezed steady state can be created.

The rest of the paper is organized as follows. In Sec. II we
briefly review the dissipative generation of atomic phase and
number squeezing following Ref. [24], explain the entangling
mechanism, and outline a physical setup that realizes the
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FIG. 1. (Color online) Schematic diagram of the setup for the re-
alization of the squeezing jump operator (2). The two dips embedded
in a wide harmonic potential form a two-well configuration. Each of
the wells holds one of the two degenerate ground states φg,1 or φg,2,
which are identified as the relevant states 1 and 2 for the squeezing
jump operator, respectively. The harmonic potential with frequency
ω holds the even-parity state φe1,0 and the odd-parity state φe2,0.
The ground states φg,1 and φg,2 are coherently coupled to the excited
state φe1,0 (φe2,0) using Raman lasers with antisymmetric (symmetric)
Rabi frequencies �1 and −�1 (�2 and �2), respectively (green solid
arrows). This driven setting is immersed in a background BEC, which
acts as a reservoir of Bogoliubov excitations, so that atoms excited
to the upper levels φe1,0 and φe2,0 can decay back to the ground states
(black wavy arrows) via spontaneous phonon creation in the reservoir.
In this setup the conditions σg � x0 � σe and knx0 � 1 need to be
satisfied. Here σg and σe are the oscillator lengths of the well and the
harmonic potential, respectively, and kn is the wave number of the
phonons created in the reservoir (see Sec. II C). Efficient squeezing
requires ω/Nγ � 1 as discussed in detail in Sec. IV. It should be
noted that this figure does not reflect the actual scales.

dissipative dynamics leading to squeezed states. Based on a
microscopic calculation, we derive and discuss the properties
of the squeezing master equation in Sec. III, with details
given in Appendixes A–C. In particular, by analyzing limiting
cases analytically, we determine the time window over which
squeezed states exist. Analytical calculations yielding explicit
expressions for the achievable amounts of squeezing within
a mean-field approximation are corroborated and refined by
numerical analysis in Sec. IV. In the long-time limit, an un-
avoidable dephasing effect will destroy the entanglement. We
show how this dephasing can be avoided using a stroboscopic
method and demonstrate the conceptual feasibility of our
scheme by presenting parameter values that lead to squeezed
states in bosonic rubidium gases. We present our conclusions
in Sec. V. We set � = 1 throughout the paper.

II. SYSTEM FOR OBTAINING PHASE- AND
NUMBER-SQUEEZED STATES

A. Phase- and number-squeezing jump operators

In Ref. [24] we proposed an explicit form of squeezing
jump operators. These operators are constructed such that
their corresponding master equation has a phase- or number-

squeezed state as a unique steady state. Our goal in the present
paper is to implement in a physical setup the squeezing jump
operators to realize the dissipative preparation of phase- and
number-squeezed states of cold atomic gases.

The squeezing jump operators were formulated for a
two-state Bose system that has N particles and is coupled
to a suitable environment. In this setting, assuming that the
dynamics results entirely from the dissipation such that the
Hamiltonian of the system vanishes [32], the dynamics of
the density operator ρ̂ of the two-state system is determined
by the master equation [24]

dρ̂

dt
= γ

2
(2ĉρ̂ĉ† − {ĉ†ĉ,ρ̂}), (1)

where γ is the dissipation rate, {Â,B̂} ≡ ÂB̂ + B̂Â, and ĉ is
a squeezing jump operator defined as

ĉ = (â†
1 + â

†
2)(â1 − â2) + ν(â†

1 − â
†
2)(â1 + â2)

= 2(1 + ν)Ŝz − 2i(1 − ν)Ŝy . (2)

Here âi annihilates an atom in state i = 1,2, −1 < ν < 1 is the
parameter by which we can control the squeezing [33], and we
have introduced the SU(2) generators defined as Ŝx = (â†

1â2 +
â
†
2â1)/2, Ŝy = −i(â†

1â2 − â
†
2â1)/2, and Ŝz = (â†

1â1 − â
†
2â2)/2.

In Ref. [24] we showed that, in the large-N limit, Eq. (1)
evolves an arbitrary initial state towards a steady state that
is phase or number squeezed provided the system is well
described by the two-mode approximation. If ν = 0, the steady
state of the master equation (1) is a coherent state defined as

ψcoh = 1√
2NN !

[â†
1 + â

†
2]N |vac〉

= 2−N/2
N∑

n=0

√
N !

n!(N − n)!
|n〉, (3)

where |vac〉 is the vacuum state and |n〉 is a Fock state with n

particles in the left well and N − n particles in the right well.
For ν = 0, the coherent state is annihilated by ĉ, ĉψcoh = 0,
and the system evolves towards ψcoh regardless of the initial
state [11]. If ν �= 0, the steady state is a phase- or number-
squeezed state. An explicit expression for this state can be
found in Ref. [24].

The coherent state ψcoh is an eigenstate of Ŝx with
the eigenvalue N/2, so 〈ψcoh|Ŝ2

x |ψcoh〉 = 〈ψcoh|Ŝx |ψcoh〉2 =
(N/2)2. For this reason, we call the approximation 〈Ŝ2

x〉 ≡
Tr[Ŝ2

x ρ̂] ≈ 〈Ŝx〉2, where 〈Ŝx〉 ≈ N/2 + O(N0), the coherent-
state approximation. It can be assumed to hold for the steady
state corresponding to any value of ν provided N 
 1 (see
Ref. [24] for discussion on the validity of this approximation).

The measures of phase and number squeezing are given,
respectively, by

ξP ≡
√

2〈Ŝ2
y 〉

|〈Ŝx〉|
, ξN ≡

√
2〈Ŝ2

z 〉
|〈Ŝx〉|

, (4)

with 〈Ŝ2
y,z〉 = 〈Ŝ2

y,z〉 − 〈Ŝy,z〉2. To obtain the steady-state

values for ξP and ξN , we first calculate d〈Ŝ2
y,z〉/dt =

Tr[Ŝ2
y,zdρ̂/dt] (d〈Ŝy,z〉/dt = Tr[Ŝy,zdρ̂/dt]) using Eq. (1) and

then set the equation equal to zero to obtain the steady-state
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value for 〈Ŝ2
y,z〉 (〈Ŝy,z〉). In evaluating the equation, we use the

approximations detailed in Ref. [24]. These approximations
will then be used to obtain an explicit form of 〈Ŝ2

y,z〉,
which, together with the coherent-state approximation, is
substituted in Eq. (4). This gives the following expression
for the steady-state value of ξP and ξN :

ξSS
P,N �

√
1 ± ν

1 ∓ ν
, (5)

where the upper (lower) sign in both the numerator and
denominator corresponds to the measure of phase (number)
squeezing. A phase-squeezed steady state (ξSS

P < 1 and ξSS
N >

1) is obtained for ν < 0, while a number-squeezed steady state
(ξSS

N < 1 and ξSS
P > 1) is obtained for ν > 0.

In the following we present a setup that yields the master
equation (1) with the squeezing jump operator (2) in the ideal
limit. Then we show to what extent the physics of the squeezing
jump operator can be realized in the actual setup.

B. Description of the system

In our setup we have N bosonic atoms (a atoms) with mass
ma trapped in a quasi-one-dimensional (quasi-1D) external
potential. This is a wide harmonic potential with two narrow
wells embedded in it, as illustrated in Fig. 1. Our setup realizes
a two-well configuration similar to the one used in the exper-
iments described in Ref. [1]. The wells have a characteristic
frequency ωwell and are located at −x0 and x0. Each well
holds one of the two degenerate ground states φg,1 and φg,2

with the energy εg ≡ εg,1 = εg,2. Here the first subscript of
φ and ε represents the energy level and the second subscript
represents the site. These two states are identified as states
1 and 2, respectively, for the squeezing jump operator. The
harmonic potential has a characteristic frequency ω and energy
levels εe1,0 and εe2,0 corresponding to an even-parity state φe1,0

and an odd-parity state φe2,0, respectively. Here the subscript 0
refers to the harmonic potential. The states in the two wells are
populated macroscopically with occupation number ∼ N (i.e.,
φg,i ∼ √

N 
 1 for i = 1,2) while the states in the harmonic
potential are not strongly occupied (i.e., φen,0 ∼ 1 for n = 1,2).

The ground states φg,1 and φg,2 of the wells are Raman
coupled to the excited states φe1,0 and φe2,0 using lasers
that are weak and far detuned. The Raman lasers coupling
φg,1 and φg,2 to φe1,0 (φe2,0) have antisymmetric (symmetric)
Rabi frequencies �1 and −�1 (�2 and �2), respectively, and
equal detuning 1 (2). This coherent coupling results in the
annihilation part ∼ (â1 − â2) [∼ (â1 + â2)] in the squeezing
jump operators (2).

This driven system is immersed in a BEC of a different
species of bosonic atoms (b atoms) with mass mb, which works
as a reservoir of Bogoliubov excitations [11]. Atoms excited
to φe1,0 and φe2,0 decay back to φg,1 and φg,2 by spontaneously
emitting Bogoliubov phonons into the background BEC. These
processes yield the creation parts of the squeezing jump
operator (2). The even (odd) parity of the state φe1,0 (φe2,0),
guaranteed by the symmetries of the harmonic-oscillator wave
functions, leads to the creation part ∼(â†

1 + â
†
2) [∼ (â†

1 − â
†
2)]

in Eq. (2). Here it is assumed that the decay events into φg,1

and φg,2 are indistinguishable (i.e., knx0 � 1 with kn being the

wave number of emitted phonons; this point will be discussed
in detail in Sec. II C).

The combination of the excitation and decay processes
results in the creation of phase- and number-squeezed states.
However, in order to maintain coherence between the two
� processes involving φe1,0 and φe2,0, the spacing between
εe1,0 and εe2,0 needs to be very small. This requires highly
tunable and stable Raman beams, which can be realized with
acousto-optical modulators.

There are two key differences in our setup compared to
the scheme presented in Ref. [11]. First, there is an additional
excited level φe2,0. The absence of this level effectively cor-
responds to ν = 0, which reproduces the setting of the above
reference. In this case, the steady state is the phase-locked
symmetric superposition of the two lower wells, without any
squeezing (i.e., a coherent state with relative phase 0). Simi-
larly, by switching off the coupling to the lower excited level
φe1,0 (formally achieved by sending ν → ∞) (see Ref. [33]), a
phase-locked antisymmetric superposition of the lower wells
would be generated (i.e., a coherent state with relative phase
π ); the symmetry properties of the phase locking reflect the
parity of the harmonic-oscillator wave functions as anticipated
above. However, only simultaneous coupling to the excited
states allows for the preparation of squeezed states. The second
difference is that here the occupation number ∼N of each of the
lower wells is macroscopic, while the setup in Ref. [11] targets
optical lattices whose occupation number per site is typically
of order one or less. We will find theoretically in Sec. III, and
validate numerically in Sec. IV, that the large occupation of
the quantum wells is important for the practical achievement
of macroscopic squeezed states. In the long-time limit t → ∞,
the proposed setup will always suffer from dephasing, which
destroys the number or phase squeezing of the state due to
the nonzero energy separation ω between the excited states.
There will, however, be a time window 1/Nγ < t < 1/ω over
which a squeezed state can be produced efficiently. Moreover,
combining this setting with a stroboscopic element leads to
robust stationary entangled states.

C. Requirements on length and energy scales

In our setup we assume that the temperature of the back-
ground BEC is T � 0. More precisely, the temperature is such
that T/εn � 1, where we have defined εn ≡ εen,0 − εg , n =
1,2 (see Fig. 1). By energy conservation, εn corresponds to the
energy carried away by a phonon into the bath. As long as the
relation T/εn � 1 holds, the phonons will be emitted into an
energy range where no excitations exist, so the BEC indeed acts
as an effective zero-temperature reservoir [34]. We can there-
fore work with bath occupations 〈b̂†kb̂k〉 � 0 and 〈b̂kb̂

†
k〉 � 1,

where b̂k annihilates a Bogoliubov excitation of momentum k.
Regarding the configuration of the trap, we assume that

sites 1 and 2 hold only the well ground states φg,1 and φg,2,
respectively (i.e., ωwell 
 ε1 and ε2). We also assume that the
lasers coupling φg,1 and φg,2 to φe1,0 and φe2,0 are weak and far
detuned, so |�n/n| � 1, where n = 1 and 2. To eliminate
any effect that higher-energy levels in the harmonic potential
might have on the scheme, we require that |n/ω| � 1.

In addition, we require that ωwell 
 ω so that σg � σe,
where σg ≡ √

1/maωwell is the oscillator length of the well and
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σe ≡ √
1/maω is that of the harmonic trap. We further require

that σg � x0 so that the overlap between φg,1 and φg,2 is small
and tunneling between the two wells can be neglected [35].
Finally, we require a wide trap x0 � σe, which helps in making
the trap energy levels εe1,0 and εe2,0 as close as possible to
each other. With these requirements, the three lengths are then
ordered as follows: σg � x0 � σe.

To maintain interwell coherence in the spontaneous emis-
sion process, the condition knx0 � 1 must be satisfied. Here
kn is the wave number of the phonons created in the reservoir.
By energy conservation, it is determined by the condition
Ekn

= εn ≡ εen,0 − εg , where Ek is the Bogoliubov excitation
spectrum in the background BEC. The Bogoliubov spectrum
is given by

Ek =
√

εk(2ρbU0 + εk), (6)

where εk = k2/2mb, U0 = 4πabb/mb, abb is the intraspecies
scattering length between two b atoms, and ρb is the number
density of b atoms. The condition knx0 � 1 physically means
that wells 1 and 2 are indistinguishable from each other.
Therefore, we obtain a coherent superposition of populations
in these wells whose relative sign is determined by the
symmetry of the harmonic-oscillator wave functions φe,1

[a symmetric superposition ∼(â†
1 + â

†
2) is created] and φe,2

[an antisymmetric superposition ∼ (â†
1 − â

†
2) results]. The

condition knx0 � 1 can be satisfied by choosing εn comparable
to ω, i.e., kn ∼ 1/σe (because x0 � σe, we readily see that the
condition knx0 � 1 holds if kn ∼ 1/σe).

As we consider a quasi-1D situation for simplicity, we need
to assume that ω⊥ 
 εn and a⊥ � x0. Here ω⊥ and a⊥ ≡√

1/maω⊥ are the frequency and the oscillator length of the
trap in the transverse directions, respectively.

III. MASTER EQUATION

We start with the Hamiltonian for the trapped ultracold
atomic gas, the background BEC, and the interaction between
the trapped atomic gas and the BEC. The total Hamiltonian is
given by

Ĥ = Ĥa + Ĥb + Ĥab, (7)

with Ĥa = ∑
n,i εn,i â

†
n,i ân,i the Hamiltonian of the trapped

atoms (a atoms), Ĥb = ∑
k Ekb̂

†
kb̂k the Hamiltonian of the

Bogoliubov excitations emitted into the BEC of b atoms,
and Ĥab the Hamiltonian describing the interaction between
the trapped atoms and the Bogoliubov excitations. Here ân,i

annihilates an a atom in the state φn,i . In the following, n and n′
are the labels of the energy levels and i and i ′ are the labels of
the sites. The possible values of the indices are n,n′ = g,e1,e2

and i,i ′ = 0,1,2.
The term Ĥab is obtained using the field operators for

the trapped atoms and the background BEC, with their
explicit forms given, together with further details on the
derivation of Ĥab, in Appendix A. Explicitly, Ĥab has the

form

Ĥab �
∑
k �=0

gkÂ
†
kb̂k + H.c., (8)

with

gk ≡2πaab

μ

√
ρbS

1/2
k , Sk ≡ k2

2mbEk

, (9)

Â
†
k ≡ e−k2

⊥a2
⊥/4

∑
n,n′
i,i′

A(n,n′)
kx ;i,i ′ â

†
n,i ân′,i ′ . (10)

Here aab is the interspecies scattering length between the a

atoms and the b atoms, k⊥ and kx are the wave numbers in
the transverse directions and the x direction respectively, a⊥
is the oscillator length of the trap in the transverse directions,
and μ = (ma + mb)/mamb is the reduced mass. The operator
Â

†
k describes the transition of an a atom from εn′,i ′ to εn,i due

to an interaction between an a atom and a Bogoliubov exci-
tation [11]. The functions A(n,n′)

kx ;i,i ′ ≡ ∫
dx eikxxφ∗

n,i(x)φn′,i ′ (x),
appearing in Eq. (10), are the overlap integrals between the
states φn,i(x) and φn′,i ′ (x). Details about their evaluation are
provided in Appendix B.

Using the Born-Markov approximation, the second-order
master equation can be written as

˙̂ρ(t) = Lρ̂ = −
∫ ∞

0
dt ′TrR[Ĥab(t),[Ĥab(t − t ′),ρ̂(t) ⊗ R̂]],

(11)

where TrR is the trace over the background BEC variables and
R̂ the density matrix of the reservoir. Following Ref. [10], we
obtain the master equation

˙̂ρ(t) �
∑

k

π |gk|2δ(Ek − εn){[Âk(t),ρ̂Â
†
k(t)] + H.c.}, (12)

where

Â
†
k(t) =e−k2

⊥a2
⊥/4

∑
n,i=1,2

eiεntA(en,g)
kx ;0,i â

†
en,0

âg,i . (13)

In deriving the master equation, we use the assumption that
T ≈ 0 for the background BEC so that the trapped a atoms
are not excited to higher-energy states by Ĥab. Also, since the
occupation number of the lowest-energy well states φg,i is of
order N and that of the harmonic-trap energy states φe1,0 and
φe2,0 is of order unity, terms corresponding to the transition
en → g are a factor

√
N larger than those corresponding to

the transition e2 → e1. Consequently, assuming that N 
 1,
the dominant terms in Â

†
k are â

†
e1,0

âg,i and â
†
e2,0

ag,i and their
conjugates. These are the terms appearing in the master
equation (12).

We replace the summation over k with an integration over
k in Eq. (12). After integrating, we adiabatically eliminate
the harmonic trap energy states âen,0, with details for the
integration and adiabatic elimination given in Appendix C.
Finally, we obtain the following form for the master equation:

Lρ̂ � γ

2
{(2ĉ

†
+ĉ−ρ̂ĉ

†
−ĉ+ − {ĉ†−ĉ+ĉ

†
+ĉ−,ρ̂}) + ην2(2ĉ

†
−ĉ+ρ̂ĉ

†
+ĉ− − {ĉ†+ĉ−ĉ

†
−ĉ+,ρ̂})

+ ν(e−it(ε2−ε1)[ĉ†−ĉ+,ρ̂ĉ
†
−ĉ+] + eit(ε2−ε1)[ĉ†+ĉ−ρ̂,ĉ

†
+ĉ−]) + ην(e−it(ε2−ε1)[ĉ†−ĉ+ρ̂,ĉ

†
−ĉ+] + eit(ε2−ε1)[ĉ†+ĉ−,ρ̂ĉ

†
+ĉ−])}, (14)
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where

η(k1,k2) ≡ k2γ2/k1γ1, (15)

γ ≡ 4
√

πk1σgγ1φ
2
e1,0(x0)

(
�1

1

)2

, (16)

γn ≡ 1

(2π )3

2π2kn|gkn
|2

vn

, vn ≡ ∂Ek

∂k

∣∣∣∣
k=kn

, (17)

ν ≡ �2

�1

1

2
ν̃, ν̃ ≡ φe2,0(x0)

φe1,0(x0)
, (18)

ĉ+ ≡ âg,1 + âg,2, ĉ− ≡ âg,1 − âg,2. (19)

We learn from these relations that any value of the squeezing
parameter ν can be generated in our setup by adjusting the
relative strengths of the Rabi frequencies and detunings. Note,
however, that this has to be done in a fashion that does
not invalidate the scale hierarchies described in Sec. II C. If
εn/ρbU0 � 1 for n = 1,2 as in the case that we will consider
in Sec. IV B, η is well approximated as

η(k1,k2) �
(

ε2

ε1

)3

=
(

1 + ω

ε1

)3

. (20)

Comparing Eq. (14) to the master equation in Ref. [11], we
see that there are two fundamental differences. The first is
the presence of ν in Eq. (14), which is due to the use of
two different � processes in our scheme. The second is the
presence of the time-dependent exponential factors e±it(ε2−ε1)

following from the nonzero separation ω ≡ ε2 − ε1 between
the first two energy levels of the harmonic trap.

To bring out the physics of this equation more clearly, let
C11 = 1, C22 = ην2, C12 = ν, and C21 = ην. Also, let

F̂1 ≡ F̂
†
2 ≡ ĉ

†
+ĉ−. (21)

We can then write Eq. (14) as

Lρ̂ � γ

2

∑
n,n′=1,2

Cnn′(e−it(εn−εn′ )[F̂nρ̂,F̂
†
n′ ] + H.c.). (22)

This makes it clear that there is no frame of reference where the
energies could be gauged away in general. Let us now study
important limiting cases of this equation. We first consider the
limit ε2 − ε1 → 0, which implies k2 → k1 and γ2 → γ1, so
that in turn η → 1. Then the explicit time dependence vanishes
and the matrix C takes a factorized form C = �v�vT , with �v =
(1,ν)T . In this, and only this case, the jump operators do not
appear in an incoherent sum of both processes F1 and F2, but
they rather take the form of a coherent superposition

ĉ ≡ �vT · �F = F̂1 + νF̂2

= (â†
1 + â

†
2)(â1 − â2) + ν(â†

1 − â
†
2)(â1 + â2). (23)

The master equation (22) then reduces to the form anticipated
in Sec. II A:

Lρ̂ � γ

2
(2ĉρ̂ĉ† − ĉ†ĉρ̂ − ρ̂ĉ†ĉ), (24)

where ĉ is the squeezing jump operator given in Ref. [24].
In contrast, if ε2 − ε1 → ∞, we can neglect the last two

terms in Eq. (14) due to the rapidly oscillating exponential
factors e±it(ε2−ε1) so that the master equation will have the

following form:

Lρ̂ � γ

2
[(2F̂1ρ̂F̂

†
1 − {F̂ †

1 F̂1,ρ̂})

+ ην2(2F̂2ρ̂F̂
†
2 − {F̂ †

2 F̂2,ρ̂})]. (25)

This master equation describes two incoherent processes, each
of them similar to those described in Ref. [11]. The processes
described by the first and second lines of Eq. (25) are used
to prepare phase-locked states with relative phase of 0 and π ,
respectively.

This discussion makes it clear that at long times t(ε2 −
ε1) 
 1, the energy difference between the excited levels will
unavoidably lead to dephasing of the squeezed state. It is
therefore crucial to compare the time scale

Tω = 2π

ω
= 2π

ε2 − ε1
(26)

of the trapping potential, which marks the onset of dephasing,
to the time scale τγ over which squeezing builds up. The latter
is obtained from the equation of motion for 〈Ŝ2

y,z〉 discussed in
Ref. [24] and is given by

τγ = 1

4Nγ (1 − ν2)
. (27)

Crucially, the effective rate for squeezing γeff = τ−1
γ =

4Nγ (1 − ν2) ∝ N is proportional to the number of atoms
trapped in the wells [36]. This can be traced back to bosonic
amplification. A squeezed state is then generated in the time
window

τγ < t < Tω, (28)

in which nontrivial quantum mechanical correlations have built
up, but dephasing is still negligible.

Nonzero energy difference ω between the excited levels is
unavoidable in our setting if the scale hierarchy of Sec. II C is
to be respected. This has two physically distinct effects: First, it
introduces dephasing as explained above, and second, it leads
to η �= 1 [see Eq. (15)]. While dephasing will always destroy
entanglement in the long-time limit, a small deviation of η from
unity will still allow for phase- and number-squeezed states
[see Eq. (31) below]. This motivates us to consider a modified
continuous evolution with a stroboscopic element, where the
evolution is interrupted at intervals shorter than Tω and is im-
mediately restarted. In this way, we disentangle the two effects
of the finite excited level spacing. It will allow us to generate
effectively stationary entanglement between the two wells.

IV. NUMERICAL RESULTS

A. Properties of the master equation

We now study the dynamics numerically. An important
quantity characterizing the density operator is the purity P [ρ̂],

P [ρ̂] = 1

N
{(N + 1)Tr[ρ̂2] − 1}. (29)

For a pure state P [ρ̂] = 1 and for the maximally mixed
state P [ρ̂] = 0. It is in general preferable to maximize the
purity of squeezed states. As can be seen from Eq. (28),
the dimensionless ratio τγ /Tω ∝ ω/Nγ characterizes the time
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FIG. 2. (Color online) Purity and measures of phase and number
squeezing for the ideal case corresponding to Eq. (24) and the
completely incoherent case corresponding to Eq. (25). In the top
panel, the solid (dashed) line refers to the ideal (incoherent) case. In
the bottom panel, the solid (dotted) line gives ξP (ξN ) for the ideal
case. For the incoherent case, ξP and ξN are equal and are denoted
by the dashed line. The horizontal dash-dotted and dashed lines show
the theoretical steady-state values of squeezing given by Eqs. (5)
and (30), respectively. Here N = 100, γ > 0 is arbitrary, ν = −0.4,
and η = 1.

interval during which the system is in a squeezed state. For all
the numerical calculations shown below, we take a coherent
state with relative phase 0 as the initial state. The main
conclusions do not change if another initial state is used.

We study first the behavior of the purity and the measure
of phase squeezing in the ideal case τγ /Tω = 0 and η = 1
[Eq. (24)] and in the completely incoherent case τγ /Tω = ∞
[Eq. (25)]. Here and in what follows the term “ideal” refers
to the simplified master equation (24) studied in Ref. [24].
The time evolution is shown in Fig. 2. In the ideal case, ρ̂

evolves towards a pure phase- or number-squeezed state. The
steady-state values of ξP,N , indicated by the horizontal dash-
dotted lines, are given by Eq. (5). In the case of the incoherent
master equation (25), the steady state is a mixed state. The
measures ξP and ξN are equal throughout the time evolution
and approach the steady-state value given by

ξ
SS,inco
P = ξ

SS,inco
N =

√
1 + ην2

1 − ην2
. (30)
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FIG. 3. (Color online) Purity and measure of phase squeezing for
a system with N = 100, ν = −0.4, and η = 1. The solid, dashed,
dotted, thin solid, and thin dashed lines correspond to τγ /Tω = 0.001,
0.01, 0.1, 1, and 10, respectively. The horizontal dash-dotted and
dashed lines show the theoretical steady-state values of squeezing
corresponding to the ideal case [Eq. (5)] and completely incoherent
case [Eq. (30)], respectively. The larger τγ /Tω is, the earlier ξP starts
to deviate from the behavior of the ideal case.

This expression is derived in a manner similar to that used to
derive Eq. (5), except that dρ̂/dt is calculated using Eq. (25)
instead of Eq. (1). Note that ξSS,inco

P and ξ
SS,inco
N are both greater

than or equal to 1.
In a realistic experimental setup, τγ /Tω is finite and the

dynamics lies somewhere between the two extreme cases
studied above. We illustrate the dependence of the purity and
squeezing on the ratio τγ /Tω in Fig. 3. By comparing the
solid lines in Figs. 2 and 3, we see that at τγ /Tω = 0.001,
the time evolution of P and ξP is very close to that of the
ideal system during the time interval shown in the figure.
As τγ /Tω increases, the dynamics becomes significantly
different from the ideal case, as shown by the dashed, dotted,
and thin solid curves in Fig. 3. The purity decreases and
ξP,N oscillates with an oscillation period Tω. The oscillatory
behavior can be attributed to the time-dependent phase factors
e±iωt appearing in Eq. (22). These factors will cause ρ̂ to
dephase, leading to the loss of purity. An approach to suppress
this dephasing will be detailed in the next section. Despite
the oscillations, squeezing can be maintained for an interval of
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FIG. 4. (Color online) Purity and measure of phase squeezing
for different values of the particle number. Here τγ /Tω = 0.02,
ν = −0.4, and η = 1.

time equal to half of the oscillation period. Consequently, even
under nonideal conditions (ω > 0), it is possible to observe
squeezing over experimentally relevant time scales if Tω is
sufficiently large and τγ is sufficiently small. This is promising
for the experimental implementation of our state preparation
scheme. Around τγ /Tω ≈ 1, the behavior of P and ξP begins
to resemble that described by the incoherent master equation
[Eq. (25)].

Finally, we briefly discuss the N dependence of the purity
and the measure of squeezing for fixed τγ /Tω. In experiments,
N can be on the order of 103 or larger. Numerical calculations
with this large particle number are very time consuming.
Fortunately, the particle number dependence of squeezing
and purity becomes weak already at N ≈ 100. That is, the
dynamics of these quantities for a fixed τγ /Tω is almost
independent of N if N is comparable to or larger than 100. We
illustrate this in Fig. 4, where the measure of phase squeezing
and purity corresponding to N = 50 and 100 can be seen to
be nearly identical. In all the numerical simulations reported
in this article, we have chosen N = 100.

B. Implementation with ultracold atoms

We start by presenting experimentally relevant values for
the parameters of the system. They have been chosen to ensure
that all the assumptions outlined in Sec. II are satisfied. Our
choice for the trapped atoms (a atoms) is 85Rb. This makes
it possible to use Feshbach resonances to set the scattering
length of a atoms to zero, which in turn helps to minimize
the phase diffusion. We choose 87Rb as the background atoms
(b atoms). The values of the scattering length of the b atoms
abb and the interspecies scattering length aab are taken from
Ref. [37] and are given, together with the rest of the parameters,
in Table I. The numerical values of the parameters appearing
in the master equation are given in Table II. The results of our
numerical simulations are shown in Fig. 5. Since τγ /Tω ∝
ω/Nγ , increasing the number of particles makes the time
interval during which the system is in a squeezed state longer.
Alternatively, the oscillatory behavior of ξP and ξN can be
suppressed altogether by using a stroboscopic approach. In
this approach, we let the state evolve via Eq. (22) up to a
short period of time τint � Tω so that we can avoid dephasing.
At t = τint, we turn off the lasers for a very short interval of
time, after which we turn the lasers on again, allowing the
time evolution to continue for τint. Repeating this procedure
periodically, we can suppress the oscillations of ξP,N .

We show numerically obtained results for two values of τint

in Fig. 5. In the numerical calculations, we set the length of the

TABLE I. Possible choice for the system parameters. Here a

refers to 85Rb, b refers to 87Rb, and a0 is the Bohr radius. The values
for abb and aab are obtained from Table IV of Ref. [37].

System parameter Numerical value

ma 84.9 a.u.

mb 86.9 a.u.

abb 100a0

aab 213a0

ρb 1021 m−3

N 105

σg 100 nm
x0 350 nm
σe 2.5 μm
ωwell 2π × 11.9 kHz
ω = ε2 − ε1 2π × 19.0 Hz
ε1 2π × 500 Hz
|�1/1| 0.075
|�2/2| 0.15

time interval during which the lasers are switched off to zero.
We find that if τint is short enough, the dynamics is very close to
that of a system with ω = 0. In particular, the steady-state value
of squeezing can be almost identical in systems with ω = 0
and ω �= 0 if the stroboscopic method is used in the latter case.
Replacing dρ̂/dt with Eq. (22) in the derivation of Eq. (5) and
setting ω = 0, we find that the steady-state value reads

ξ
SS,ω=0
P,N �

√
1 ± ην

1 ∓ ην
. (31)

Here the upper sign corresponds to the measure of phase
squeezing and the lower sign to that of number squeezing.
The thick solid line in Fig. 5, obtained using the stroboscopic
method, can be seen to approach the horizontal dash-dotted
lines corresponding to the steady-state values of the measure
of squeezing given by Eq. (31). As τint becomes longer, the
dynamics starts to deviate from that of a system with ω = 0
(see the thin solid lines in Fig. 5). The system remains in a
squeezed state, but the amount of squeezing fluctuates in time
and the purity is smaller than one.

Even though the stroboscopic method makes it possible to
effectively obtain ω = 0, the value of η is not in general equal
to one. This means that the dynamics deviates from that of the

TABLE II. Numerical values of the parameters appearing in the
master equation (22), calculated using the values given in Table I. Here
η is determined by the ratio ε2/ε1, γ is the overall dissipation rate
appearing in the master equation, ν controls the amount of squeezing,
and τγ and Tω give the time scales characterizing the creation of
squeezed states and the onset of dephasing, respectively.

Parameter Numerical value

η 1.12
γ 0.00116 s−1

|ν| 0.396
γeff = τ−1

γ 391 s−1

τγ /Tω 0.049
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FIG. 5. (Color online) Purity and measures of phase and number
squeezing for a system with N = 100, γ = 1.16 s−1, ω = 2π ×
19.0 Hz, ν = −0.396, and η = 1.12. For these parameter values,
τγ /Tω ≈ 0.049 and γeff ≈ 391 s−1, which are the same as those given
in Table II. The dashed line is obtained from Eq. (22). The thick
solid line (thin solid line) is obtained using the stroboscopic method
with τint = 0.019Tω = 1 ms (τint = 0.095Tω = 5 ms). The horizontal
dash-dotted lines are obtained using the analytical result (31).

ideal case, characterized by ω = 0 and η = 1. From Eq. (31)
we see that the larger η is, the more squeezing the stroboscopic
method yields. It should be noted, however, that an increase in
η leads to a decrease in purity unless τint is short enough. The
main motivation for using the stroboscopic approach is that
it allows us to obtain long-lived phase- and number-squeezed
states using a relatively small number of particles.

V. CONCLUSION

We have worked out a dissipative scheme for the preparation
of phase- and number- squeezed states using trapped ultracold

atoms in a double-well setup immersed in a background
BEC. Our scheme employs a coherent superposition of two
� systems coupled to the background BEC. We derived a
master equation for the system and found that the dynamics
is accelerated by Bose statistics so that a squeezed state is
achieved on a time scale ∼1/Nγ . We observed that this process
suffers from dephasing on a time scale ∼1/ω defined by the
energy separation ω between the excited states corresponding
to the upper levels of the � configurations. However, this
dephasing can be circumvented efficiently by combining the
continuous time evolution with a stroboscopic element. This
leads to a robust long-lived entanglement. Bosonic rubidium
isotopes 85Rb and 87Rb offer favorable scattering properties for
the implementation of this scheme. In more detail, the trapped
85Rb atoms have a sufficiently large interspecies scattering
length with the 87Rb bath species and the scattering length
between the 85Rb atoms confined in the double well can be
set to zero using Feshbach resonances. In summary, we have
shown that our dissipative preparation scheme for phase- and
number-squeezed states using ultracold atoms is conceptually
possible and we have provided the necessary ingredients for
its experimental realization.
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APPENDIX A: FIELD OPERATORS AND THE
INTERACTION HAMILTONIAN

In deriving the interaction Hamiltonian given by Eq. (8),
we make use of the field operators for the trapped atoms ψ̂a

and the background BEC ψ̂b, given by

ψ̂a(r) = [φg,1(x)âg,1 + φg,2(x)âg,2 + φe1,0(x)âe1,0

+φe2,0(x)âe2,0]wy(y)wz(z) (A1)

and

ψ̂b = √
ρb + δψ̂b(r) (A2)

with

δψ̂b(r) = 1√
V

∑
k

(ukb̂ke
ik·r + vkb̂

†
ke

−ik·r). (A3)
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Here wy and wz are the ground-state wave functions of the trap
in the transverse directions and the coefficients uk and vk are
uk = 1/

√
1 − L2

k and vk = Lk/
√

1 − L2
k , where Lk ≡ [Ek −

(k2/2mb) − mbc
2]/mbc

2, Ek ≡ ck
√

1 + (k/2mbc)2 , mb is the
mass of b atoms, c ≡ √

gbbρb/mb is the sound velocity in the
background BEC, and gbb is the interaction strength between
b atoms. Then Ĥab is given by

Ĥab = 1

2

4πaab

μ

∫
d3r ψ̂†

aψ̂aψ̂
†
bψ̂b. (A4)

In evaluating this integral, we consider only terms that are
linear in b̂k and b̂

†
k. This results in Eq. (8).

APPENDIX B: EVALUATION OF OVERLAP INTEGRALS

The overlap integrals can be simplified under some assump-
tions for the trap parameters. Let us first consider the integrals

A(e1,g)
kx ;0,1 =

∫
dx eikxxφ∗

e1,0(x)φg,1(x), (B1)

A(e1,g)
kx ;0,2 =

∫
dx eikxxφ∗

e1,0(x)φg,2(x). (B2)

Here φe1,0 is the ground state of a harmonic oscillator. It is
therefore an even function φe1,0(x) = φe1,0(−x). Due to the
symmetry of the setup the states φg,1 and φg,2 are related as
φg,1(x) = φg,2(−x). Using these equations and changing the
integration variable as x → −x we get

A(e1,g)
kx ;0,1 =

∫
dx e−ikxxφ∗

e1,0(x)φg,2(x). (B3)

Due to the δ functions appearing in Eq. (12), the largest
possible value of k = ‖k‖ is k = k2 and consequently −k2 �
kx � k2. The trap parameters are chosen in such a way that
k2x0 � 1, where x0 denotes the point around which φg,2 is
peaked. We also assume that φg,2 is essentially zero outside
the interval (x0 − d,x0 + d), where d � x0. We then see that
e−ikxx � 1 in the region where the integrand of the integral (B3)
is non-negligible. Comparing Eqs. (B2) and (B3), we see that

A(e1,g)
k1;0,1 � A(e1,g)

k1;0,2. (B4)

In a similar fashion, by noting that φe2,0 is an odd function, we
get

A(e2,g)
k2;0,1 � −A(e2,g)

k2;0,2. (B5)

Having obtained the relationship between the overlap in-
tegrals, we now proceed to the evaluation of these inte-
grals. Since σg � σe and φe1,0 and φe2,0 are real functions,
A(en,g)

kx ;0,i ′ = ∫
dx eikxxφ∗

en,0
(x)φg,i ′ (x) ∼ σ

1/2
g eikxx0φen,0(x0). For

concreteness, taking φg,i(x) as a Gaussian with width σg ,

φ±
g (x) = 1

π1/4σ
1/2
g

exp

[
− (x ± x0)2

2σ 2
g

]
(B6)

−−−→
σg→0

√
2π1/4σ 1/2

g δ(x ± x0), (B7)

we obtain

A(en,g)
kx ;0,i ′ �

√
2π1/4σ 1/2

g e±ikxx0φen,0(±x0). (B8)

Here + (−) corresponds to i ′ = 2 (i ′ = 1).

APPENDIX C: INTEGRATION OVER k AND ADIABATIC
ELIMINATION OF âen

The integration over k in Eq. (22) will be performed using
cylindrical coordinates in k. Let k2 = k2

⊥ + k2
x with k2

⊥ = k2
y +

k2
z . Integrating with respect to k⊥ and the azimuthal angle of k

in Eq. (22) gives us

Lρ̂ � 1

(2π )3

∫
d3k |gk|2{[Âk(t),ρ̂(t)Â†

k(Ek,t)] + H.c.}

=
∑
n=1,2

γn

∫ kn

−kn

dkx e−(k2
n−k2

x )a2
⊥/2

× [
e−iε1t

(
A(e1,g)

kx ;0,1

∗
â
†
g,1 + A(e1,g)

kx ;0,2

∗
â
†
g,2

)
âe1,0

+ e−iε2t
(
A(e2,g)

kx ;0,1

∗
â
†
g,1 + A(e2,g)

kx ;0,2

∗
â
†
g,2

)
âe2,0,

ρ̂eiεnt â
†
en,0

(
A(en,g)

kx ;0,1âg,1 + A(en,g)
kx ;0,2âg,2

)] + H.c. (C1)

Then we perform the kx integration in Eq. (C1). The
kx dependence of the integrand in Eq. (C1) comes from
e±ikxx0 in A(n,n′)

kx ;i,i ′ and the overall factor e−(k2
n−k2

x )a2
⊥/2. Using

the assumptions made about the system in Sec. II, we get
kna⊥ � knx0 ∼ x0/σe � 1. This means that e±ikxx0 � 1 and
e−(k2

n−k2
x )a2

⊥/2 � 1 throughout the integration range and the kx

integration simply yields
∫ kn

−kn
dkx → 2kn. Performing the kx

integration, we obtain the following explicit form of the master
equation:

Lρ̂ = 4
√

πk1γ1σgφ
2
e1,0(x0)

{[
ĉ
†
+âe1,0, ρ̂â

†
e1,0

ĉ+
]

+ ν̃e−it(ε2−ε1)
[
ĉ
†
−âe2,0, ρ̂â

†
e1,0

ĉ+
]

+ k2γ2

k1γ1

(
ν̃2[ĉ†−âe2,0,ρ̂â

†
e2,0

ĉ−
]

+ ν̃eit(ε2−ε1)
[
ĉ
†
+âe1,0, ρ̂â

†
e2,0

ĉ−
])} + H.c. (C2)

Next we perform the adiabatic elimination of âe1,0 and âe2,0.
This can be done as the Raman lasers coupling the states of the
double well (ϕg,1 and ϕg,2) to the states of the harmonic trap
(ϕe1,0 and ϕe2,0) are weak and far detuned. After the adiabatic
elimination of âe1,0 and âe2,0 we get

âe1,0 � �1√
21

(âg,1 − âg,2), (C3)

âe2,0 � �2√
22

(âg,1 + âg,2). (C4)

Finally, by substituting Eqs. (C3) and (C4) into Eq. (C2)
and simplifying the resulting equation using the notation
introduced in Eqs. (15)–(19), we obtain the master equation
given by Eq. (14).
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Lett. 104, 073602 (2010).

[5] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler,
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P. Treutlein, Nature (London) 464, 1170 (2010).

[7] J. Grond, U. Hohenester, I. Mazets, and J. Schmiedmayer, New
J. Phys. 12, 065036 (2010).

[8] C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Front. Phys. 7,
109 (2012).

[9] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 77, 4728
(1996).

[10] A. J. Daley, P. O. Fedichev, and P. Zoller, Phys. Rev. A 69,
022306 (2004).

[11] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and
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(2012).

[25] E. G. Dalla Torre, J. Otterbach, E. Demler, V. Vuletic, and
M. D. Lukin, Phys. Rev. Lett. 110, 120402 (2013).

[26] R. Sweke, I. Sinayskiy, and F. Petruccione, Phys. Rev. A 87,
042323 (2013).

[27] C. A. Muschik, E. S. Polzik, and J. I. Cirac, Phys. Rev. A 83,
052312 (2011).

[28] C. A. Muschik, H. Krauter, K. Jensen, J. M. Petersen, J. I. Cirac,
and E. S. Polzik, J. Phys. B 45, 124021 (2012).

[29] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M.
Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt, Nature
(London) 470, 486 (2011).

[30] P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A. Martinez,
M. Hennrich, T. Monz, S. Diehl, P. Zoller, and R. Blatt, Nat.
Phys. 9, 361 (2013).

[31] The trapped atoms and background BEC atoms need to
experience a different trapping potential. Furthermore, we set
the scattering length of the trapped atoms to zero using Feshbach
resonances. The scattering length of the background BEC atoms,
in contrast, is taken to be positive. For these reasons, we assume
that the trapped atoms and background BEC atoms are of
different species.

[32] In the double-well setting described by the two-site Bose-
Hubbard Hamiltonian, for example, this can be achieved by
making the potential barrier between the wells high enough
so that the tunneling is suppressed and by using Feshbach
resonances to reduce the scattering length so that the on-site
interaction strength can be zero.

[33] The parameter ν in the region of |ν| < 1 yields the squeezing
around the coherent state with relative phase 0. In contrast, ν in
the region of |ν| > 1 yields the squeezing around the coherent
state with relative phase π . In this case, the steady-state values
of ξP and ξN are given by ξSS

P = √
(1 + ν−1)/(1 − ν−1) and

ξSS
N = √

(1 − ν−1)/(1 + ν−1), respectively [cf. Eq. (5)] and the
time constant τγ of the equations of motion of 〈Ŝ2
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2â1) with J ≡ ∫

dxφ±
g (x)[(−�

2/2ma)∇2 +
Vtrap(x)]φ∓

g (x), where φ±
g (x) are defined in Eq. (B6) and Vtrap(x)

is the trap potential shown in Fig. 1, which is well approximated
by a harmonic potential with frequency ωwell for each well. Thus,
using the parameter values given in Table I, J is estimated as
J ∼ �ωwelle

−x2
0 /σ 2

g = O(10−1) s−1. This is much smaller than
the effective rate of squeezing γeff = 391 s−1. Hence tunneling
is negligible on the time scale τγ = γ −1

eff over which squeezing
builds up.

[36] Note that τγ diverges at |ν| = 1. Physically this means that we
cannot achieve either ξP = 0 or ξN = 0 with the squeezing jump
operator if the particle number N is finite.

[37] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

013620-10

http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1038/nature07332
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1103/PhysRevLett.104.073602
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1088/1367-2630/12/6/065036
http://dx.doi.org/10.1088/1367-2630/12/6/065036
http://dx.doi.org/10.1088/1367-2630/12/6/065036
http://dx.doi.org/10.1088/1367-2630/12/6/065036
http://dx.doi.org/10.1007/s11467-011-0228-6
http://dx.doi.org/10.1007/s11467-011-0228-6
http://dx.doi.org/10.1007/s11467-011-0228-6
http://dx.doi.org/10.1007/s11467-011-0228-6
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevLett.77.4728
http://dx.doi.org/10.1103/PhysRevA.69.022306
http://dx.doi.org/10.1103/PhysRevA.69.022306
http://dx.doi.org/10.1103/PhysRevA.69.022306
http://dx.doi.org/10.1103/PhysRevA.69.022306
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1073
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.99.110501
http://dx.doi.org/10.1103/PhysRevLett.99.110501
http://dx.doi.org/10.1103/PhysRevLett.99.110501
http://dx.doi.org/10.1103/PhysRevLett.99.110501
http://dx.doi.org/10.1103/PhysRevA.78.051601
http://dx.doi.org/10.1103/PhysRevA.78.051601
http://dx.doi.org/10.1103/PhysRevA.78.051601
http://dx.doi.org/10.1103/PhysRevA.78.051601
http://dx.doi.org/10.1103/PhysRevLett.81.021604
http://dx.doi.org/10.1103/PhysRevLett.81.021604
http://dx.doi.org/10.1103/PhysRevLett.81.021604
http://dx.doi.org/10.1103/PhysRevLett.81.021604
http://dx.doi.org/10.1103/PhysRevLett.81.043621
http://dx.doi.org/10.1103/PhysRevLett.81.043621
http://dx.doi.org/10.1103/PhysRevLett.81.043621
http://dx.doi.org/10.1103/PhysRevLett.81.043621
http://dx.doi.org/10.1103/PhysRevLett.107.206806
http://dx.doi.org/10.1103/PhysRevLett.107.206806
http://dx.doi.org/10.1103/PhysRevLett.107.206806
http://dx.doi.org/10.1103/PhysRevLett.107.206806
http://dx.doi.org/10.1080/00268976.2012.681309
http://dx.doi.org/10.1080/00268976.2012.681309
http://dx.doi.org/10.1080/00268976.2012.681309
http://dx.doi.org/10.1080/00268976.2012.681309
http://dx.doi.org/10.1103/PhysRevA.85.053624
http://dx.doi.org/10.1103/PhysRevA.85.053624
http://dx.doi.org/10.1103/PhysRevA.85.053624
http://dx.doi.org/10.1103/PhysRevA.85.053624
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.107.080503
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://dx.doi.org/10.1103/PhysRevLett.105.015702
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nphys1614
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevA.83.012304
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1103/PhysRevLett.110.110501
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1103/PhysRevLett.106.090502
http://dx.doi.org/10.1364/JOSAB.29.001535
http://dx.doi.org/10.1364/JOSAB.29.001535
http://dx.doi.org/10.1364/JOSAB.29.001535
http://dx.doi.org/10.1364/JOSAB.29.001535
http://dx.doi.org/10.1088/1367-2630/14/5/055005
http://dx.doi.org/10.1088/1367-2630/14/5/055005
http://dx.doi.org/10.1088/1367-2630/14/5/055005
http://dx.doi.org/10.1088/1367-2630/14/5/055005
http://dx.doi.org/10.1088/1367-2630/14/5/053022
http://dx.doi.org/10.1088/1367-2630/14/5/053022
http://dx.doi.org/10.1088/1367-2630/14/5/053022
http://dx.doi.org/10.1088/1367-2630/14/5/053022
http://dx.doi.org/10.1103/PhysRevA.85.023604
http://dx.doi.org/10.1103/PhysRevA.85.023604
http://dx.doi.org/10.1103/PhysRevA.85.023604
http://dx.doi.org/10.1103/PhysRevA.85.023604
http://dx.doi.org/10.1103/PhysRevLett.110.120402
http://dx.doi.org/10.1103/PhysRevLett.110.120402
http://dx.doi.org/10.1103/PhysRevLett.110.120402
http://dx.doi.org/10.1103/PhysRevLett.110.120402
http://dx.doi.org/10.1103/PhysRevA.87.042323
http://dx.doi.org/10.1103/PhysRevA.87.042323
http://dx.doi.org/10.1103/PhysRevA.87.042323
http://dx.doi.org/10.1103/PhysRevA.87.042323
http://dx.doi.org/10.1103/PhysRevA.83.052312
http://dx.doi.org/10.1103/PhysRevA.83.052312
http://dx.doi.org/10.1103/PhysRevA.83.052312
http://dx.doi.org/10.1103/PhysRevA.83.052312
http://dx.doi.org/10.1088/0953-4075/45/12/124021
http://dx.doi.org/10.1088/0953-4075/45/12/124021
http://dx.doi.org/10.1088/0953-4075/45/12/124021
http://dx.doi.org/10.1088/0953-4075/45/12/124021
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1038/nphys2630
http://dx.doi.org/10.1103/PhysRevLett.96.130404
http://dx.doi.org/10.1103/PhysRevLett.96.130404
http://dx.doi.org/10.1103/PhysRevLett.96.130404
http://dx.doi.org/10.1103/PhysRevLett.96.130404
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225
http://dx.doi.org/10.1103/RevModPhys.82.1225



