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Transport with ultracold atoms at constant density
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We investigate the transport through a few-level quantum system described by a Markovian master equation
with temperature- and particle-density-dependent chemical potentials. From the corresponding Onsager relations
we extract linear response transport coefficients in analogy to the electronic conductance, thermal conductance,
and thermopower. Considering ideal Fermi and Bose gas reservoirs, we observe steady-state currents against
the thermal bias as a result of the nonlinearities introduced by the constraint of a constant particle density in
the reservoirs. Most importantly, we find signatures of the onset of Bose-Einstein condensation in the transport
coefficients.
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I. INTRODUCTION

Transport processes are widespread and commonly occur in
many fields of physics, chemistry, and biology. In electronic
and photonic systems, the chemical potential as well as the
temperature are normally treated as independently controllable
parameters [1–3].

In equilibrium thermodynamics, the chemical potential is in
general a function of the intensive properties of the gas such as,
e.g., temperature and particle density. In most setups studied so
far, assuming an independent, constant chemical potential is a
valid conjecture since the transport setup is usually embedded
in a much larger environment. This surrounding environment
acts as a particle and temperature reservoir providing the
necessary resources to fix the chemical potential at a constant
value.

However, there are also transport setups which can not
be treated in this manner. In particular, there has been a lot
of progress in the production and manipulation of ultracold
quantum gases. This includes the production of Bose-Einstein
condensates in electromagnetic traps [4–6] or even in standing
light fields [7,8] that allow for an experimental implementation
of Hubbard-type quantum models [9,10]. These ultracold
atomic gases have been studied in equilibrium situations for
quite a while and with huge success. Nowadays, the focus
shifts to investigating the nonequilibrium properties of such
systems [11–20].

Recently, there have been the first real transport experiments
with ultracold atoms [21–23]. In these setups, the transport
processes are driven by at least two reservoirs which are
initialized in different equilibrium states and attached to
the system of interest. Accompanying these experimental
advances, there has been also theoretical research involving
atomic reservoirs coupled to, e.g., a lattice system [24], a
potential trap [25], or even quantum dot systems [26].

Since the ultracold atoms are trapped in a high-vacuum
chamber, the gas is well separated from its environment such
that no additional particle reservoir is present. Therefore, in
these experiments the particle density is constant and the
chemical potential can not be treated as free accessible param-
eter but becomes a function of the temperature and particle
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number in the trap. This strongly motivates us to investigate
the influence of such a temperature- and particle-density-
dependent chemical potential on the transport properties of
a two-terminal open quantum system setup.

This analysis is especially interesting for systems that
undergo quantum phase transitions. For example, transport
through such systems contains information about such transi-
tions even in extreme nonequilibrium setups [27]. It should be
noted that such transitions only occur in the thermodynamic
limit (infinite system size), which suggests to investigate the
role of criticality within the reservoirs. In fact, criticality is nor-
mally associated with a characteristic change in the chemical
potential. Hence, it is crucial to describe the chemical potential
in dependence of the thermodynamic state variables of the gas
in order to correctly describe these critical phenomena.

Within this paper, we particularly investigate the difference
between the transport of fermionic and bosonic particles
through such systems. Since an ideal Bose gas shows a
quantum phase transition from a normal phase to a Bose-
Einstein condensate in thermodynamic equilibrium, we expect
to find signatures of this critical reservoir behavior in the
transport coefficients.

In Sec. II, we present the general theoretical framework
that we use throughout this paper. We review the properties of
ideal quantum gases in Sec. II A, derive the master-equation
formalism with which we describe the transport through an
open quantum system in Sec. II B, and analyze the steady-state
entropy production in Sec. II C. Finally, we apply a linear
response theory to extract the linear transport coefficients in
Sec. II D. Subsequently, we apply this formalism to ideal Fermi
gases in Sec. III and to ideal Bose gases in Sec. IV, respectively,
and summarize our results in Sec. V.

II. THEORETICAL FRAMEWORK

The main difference of our setup compared to the usual
schemes to describe transport through nanostructures lies in
the utilization of massive ultracold atoms with a temperature-
and density-dependent chemical potential. Consequently, the
reservoirs are modeled as ideal quantum gases in the ther-
modynamic limit. Due to their statistical properties, bosonic
reservoirs are fundamentally different from their electronic
counterpart. In particular, the bosonic reservoirs undergo a
quantum phase transition from a normal phase to a Bose-
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Einstein condensate [28,29]. Therefore, criticality is induced
in the transport setup via the reservoirs. This critical behavior
of the reservoirs is discussed in more detail in the following.

A. Atomic gases at constant density

The atomic baths are modeled as ideal gases of massive
particles with a bath Hamiltonian given by

Ĥ
(α)
B =

∑
k

ωα,k b̂
†
α,k b̂α,k (1)

with operators b̂
†
α,k and b̂α,k creating and annihilating a particle

with momentum k and energy ωα,k = k2/ (2mα) in reservoir
α. Note that we use natural units throughout this paper, i.e.,
kB = � = 1. In the weak coupling limit, the reservoirs enter
additively, such that it suffices to consider here just a single
reservoir. Therefore, we will drop the reservoir index α in this
section.

The mean occupation of the kth energy level of an ideal
quantum gas is given by n̄(ωk) = 1/[eβ(ωk−μ) − ξ ], where
ξ = +1 corresponds to a Bose gas and ξ = −1 corresponds to
a Fermi gas. Here, we have introduced the inverse temperature
β = 1/T and the chemical potential μ. Since the lowest-
energy level of a free quantum gas is given by ω0 = 0, the
positivity of the mean occupation demands that for bosons,
in contrast to the electronic case, the chemical potential is
restricted to negative values −∞ < μ � 0. The exact value
of the chemical potential in the grand canonical ensemble is
determined by the condition that the mean total number of
particles

N̄ =
∑

k

n̄(ωk) =
∑

k

1

eβ(ωk−μ) − ξ
(2)

is constant. We assume that the gas is confined in a three-
dimensional (3D) cuboid of volume V with periodic boundary
conditions. In the thermodynamic limit where N̄ → ∞,
V → ∞ with n = N̄/V = const, the summation is replaced
by an integral 1

(2π)3

∑
k → ∫ ∞

0 dω g(ω) with the density of
states for an ideal, nondegenerate quantum gas given by
g(ω) = 2πVgs/ (2π )3 (2m)3/2 ω1/2. Here, gs = (2S + 1) is
the spin degeneracy coefficient. However, when replacing
the sum by an integral, we need to take extra care of the
ground-state occupation in the bosonic case since in the regime
where −βμ � 1 it can be macroscopically occupied. This
phenomenon does not occur in a Fermi gas due to the Pauli
principle and is known as Bose-Einstein condensation [28].
Keeping this in mind, the mean total particle density is given
by

n = gs

ξ

λ3
T

Li3/2(ξz) + n0(ξ ), (3)

n0(ξ ) =
{

gs

V
z

1−z
: ξ = +1,

0 : ξ = −1,
(4)

where we introduced the thermal de Broglie wavelength
λT = √

2π/(mT ), the fugacity z = eβμ, and the polylogarithm
Lis(z) = ∑∞

k=1 zk/ks [30]. The explicit ground-state contri-
bution n0(ξ ) is only present in Bose gases. This equation

μ
μ

μ
τ

FIG. 1. (Color online) Chemical potential (left) and its derivative
(right) with respect to the normalized temperature for the ideal Bose
(solid line) and the ideal Fermi gas (dashed line).

implicitly defines the chemical potential μ = μ(T ,n) as a
function of temperature and mean particle density. Due to the
complexity of the polylogarithm, the chemical potential can
not be determined analytically and one has to use numerical
methods. The results for the chemical potential of a Fermi and a
Bose gas are depicted in Fig. 1. Fortunately, all other quantities
of interest can be expressed in terms of the chemical potential,
leaving it to be the only numerical problem. Of special
interest for the further calculations are the first derivatives
of the chemical potential in the thermal phase which can be
calculated from Eq. (4) to

∂μ

∂T

∣∣∣∣
n

= μ

T
− 3 Li3/2(ξz)

2 Li1/2(ξz)
,

∂μ

∂n

∣∣∣∣
T

= T

n

Li3/2(ξz)

Li1/2(ξz)
. (5)

In a real experiment with cold atoms the chemical potential
can not be tuned directly by applying an external voltage as
usually considered for electronic transport. Instead, one can
introduce a thermal or density bias which causes a bias in
the chemical potentials of the reservoirs. From the left panel
in Fig. 1 we can see that applying a positive temperature
bias at constant density where T1 > T2 results in an opposite
chemical potential bias μ2 > μ1. The same effect occurs
for a density bias at constant temperature. Furthermore, if
the particle density is kept constant, one finds characteristic
temperatures for the respective ideal quantum gases. For a
Fermi gas, one defines the Fermi temperature TF that relates to
the Fermi energy EF = TF which equals the chemical potential
at absolute zero, i.e., μ(T = 0 K) = EF. For a Bose gas, one
finds a critical temperature Tc where the chemical potential
vanishes and all particles start to condense in the same ground
state. Thus, for temperatures below the critical point, the
Bose gas is in a mixed phase consisting of a normal thermal
phase and a condensate fraction. When the temperature is
absolute zero, all particles occupy the ground state and the gas
forms a pure Bose-Einstein condensate. These characteristic
temperatures are defined by

TF = 1

2m

(
6π2n

gs

)2/3

, Tc = 2π

m

(
n

gsζ (3/2)

)2/3

, (6)

where ζ (s) is the Riemann zeta function. Analogous to the
situation with constant density, we can also consider the case
that the temperature is constant. This allows us to define a
critical density nc for bosons and a Fermi density nF for
fermions according to

nc = gs

ζ (3/2)

λ3
T

, nF = 4gs

3
√

πλ3
T

. (7)
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FIG. 2. (Color online) Mean occupation for ideal quantum gases
with temperature- and density-dependent chemical potential. Left:
For an ideal Bose gas at ω = 0.5Tc (dashed line), ω = Tc (solid
line), and ω = 1.3Tc (dotted-dashed line). Using a constant chemical
potential, e.g., ω − μ = 0.5Tc (thin, dotted line) the occupation
increases exponentially with the temperature. Right: For an ideal
Fermi gas at ω = 0.5TF (dashed line), ω = TF (solid line), and ω =
1.3TF (dotted-dashed line). The fermionic occupation for a constant
chemical potential approaches 1

2 for large temperature. This value
is approached either from above if ω − μ < 0, e.g., ω − μ = −TF

(orange, dotted line) or from below if ω − μ > 0, e.g., ω − μ = TF

(green, dotted line). The circles indicate a set of temperatures with
the same occupation for a given transition frequency (compare with
Figs. 5 and 9).

In both cases, the chemical potential can be treated as a
function of a single dimensionless variable τ = T/Tc, τ =
T/TF or ν = n/nc, ν = n/nF for ideal Bose and Fermi gases,
respectively.

Inserting the temperature- and density-dependent chemical
potential into the definition of the bosonic and fermionic mean
occupations, we find a temperature dependence as shown in
Fig. 2. In the bosonic case, we see that the mean occupation
of a given energy level is peaked around a corresponding
characteristic temperature. For low temperatures close to
zero, the particles occupy lower-energy levels and, thus, the
mean occupation of the considered energy level decreases.
Analogously, for high temperatures the particles are excited
to higher-energy levels and the mean occupation of the
considered energy level decreases. In the case of ideal Fermi
gases we find a similar behavior if the considered energy level
lies above the Fermi energy (dotted-dashed line). However,
the situation changes if one considers the occupation of an
energy level below the Fermi energy (dashed line). Here, the
occupation becomes constant if the temperature is decreased
due to the Pauli principle. Contrary, in the case of an
independent chemical potential, the bosonic mean occupation
increases with increasing temperature (dotted line) and the
fermionic mean occupation approaches the value 1

2 as the
temperature is increased (dotted line). We therefore find that
the temperature-dependent chemical potential strongly affects
the high-temperature behavior of the mean occupations.

B. Transport master equation

We investigate a transport setup as depicted in Fig. 3 with
two reservoirs in thermal equilibrium described by T and n.
These reservoirs coupled to the transport system are denoted by
the labels L and R. We assume that the system-bath coupling
is weak such that we can use the Born-Markov-Secular
approximation (BMS) [31]. Starting from the von Neumann

FIG. 3. (Color online) General two-terminal transport scheme
with left and right reservoirs weakly coupled to a few-level quantum
system. The reservoirs α ∈ {L,R} are in thermal equilibrium and
characterized by a chemical potential μα(Tα,nα) that depends on
the respective temperature Tα and particle density nα . The system
dynamics is governed by the Hamiltonian HS and the weak system-
bath coupling is mediated by tunneling rates �α .

equation, this formalism allows us to extract a quantum master
equation that for nondegenerate system-energy eigenvalues
assumes the form of a rate equation for the reduced system
density matrix ρ in the system-energy eigenbasis [32]. For
sequential particle tunneling we can uniquely identify the jump
terms in the master equation which enables one to convert
it into a conditional master equation. This master equation
is conditioned on the number n of particles tunneled via
one reservoir into or out of the system and the amount of
energy E transferred from this reservoir into the system. Due
to conservation laws we just need to consider one transport
channel. Therefore, without loss of generality, we will focus on
the left reservoir only. The corresponding conditional master
equation reads as

ρ̇(E)
n = L0ρ

(E)
n +

∑
ω

(
L+

ωρ
(E−ω)
n−1 + L−

ωρ
(E+ω)
n+1

)
. (8)

Here, the superoperators L0, L+
ω , and L−

ω are acting on the
reduced system density matrix with L0 describing the internal
dynamics and L+

ω and L−
ω describing jumps out of and into the

system with transferred energy ω, respectively. This particle
number and energy-resolved master equation can also be
established using virtual detectors as bookkeeping operators
[33].

Subsequently, we perform a Fourier transformation
ρ (χ,η,t) = ∑

n

∫
dE ρ(E)

n (t) exp[i(nχ + Eη)] which intro-
duces a particle counting field χ [34] and an energy counting
field η [35] for the left reservoir. The resulting Liouville
superoperator for the left reservoir becomes a function of these
counting fields and reads as

L(χ,η) = L0 +
∑

ω

(L+
ω e+iχ+iωη + L−

ω e−iχ−iωη). (9)

From this Liouvillian together with the normalization
condition Tr {ρ̄} = 1, one can uniquely determine the steady-
state reduced system density matrix ρ̄ by solving the equation
0 = L(0,0) ρ̄. Subsequently, the steady-state particle current
JN and energy current JE for the left reservoir are obtained by

JN = −i Tr{∂χL(χ,η)|χ=η=0 ρ̄}, (10)

JE = −i Tr{∂ηL(χ,η)|χ=η=0 ρ̄}. (11)

The particle and energy conservation implies the relations
JN ≡ J

(L)
N = −J

(R)
N and JE ≡ J

(L)
E = −J

(R)
E for the currents

measured at the left and right reservoirs, respectively.
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Furthermore, we would like to point out that in real
experiments with ultracold atoms the reservoirs contain a finite
number of particles and energy only. Therefore, a flow through
the system would on longer time scales (that may, however,
be experimentally relevant) lead to an equilibration of the
reservoirs.

Assuming that the change of the temperature and density in
each reservoir are both linearly related to the respective heat
current and particle current, i.e.,

Ṫα(t) = 1

Cα

J
(α)
Q (t) and ṅα(t) = 1

Vα

J
(α)
N (t) , (12)

where Cα denotes the heat capacity, one may establish a closed
set of equations for ρ(t), Tα(t), and nα(t). These also determine
the chemical potentials of the reservoirs μα(t). For the case of
temperature-independent chemical potentials, this method has
already been applied [36].

C. Entropy production

For the considered transport setup we calculate the entropy
production following the approach outlined in Ref. [37]. We
rewrite the time derivative of the Shannon entropy of the
system Ṡ = −∑

i Ṗi ln Pi as a sum over an internal entropy
production Ṡi and an entropy flow Ṡe from the system to the
environment. If the system is in its steady state, ¯̇S = 0 vanishes
and the internal entropy production of the system is given by
the negative entropy flow to the environment ¯̇Si = − ¯̇Se. The
steady-state entropy flow is given by

¯̇Se =
∑

α=L,R

βα

(
J

(α)
E − μαJ

(α)
N

)
, (13)

where J
(α)
E and J

(α)
N denote the energy and particle currents

from reservoir α into the system, respectively. Using the
conservation of particle number and energy, we obtain the
entropy production

¯̇Si = JN�μβ − JE�β, (14)

where we introduced the discrete affinities �μβ = μLβL −
μRβR and �β = βL − βR . In the following, we assume a small
thermal and chemical potential bias between the reservoirs
such that TL = T + �T /2, TR = T − �T /2 and μL = μ +
�μ/2, μR = μ − �μ/2. Linearizing Eq. (14) around the
equilibrium, i.e., �μ = �T = 0, and collecting the terms
associated to the affinity of the same intensive parameter yields
the linear response entropy production as a function of the
temperature and chemical potential

¯̇Si(T ,μ) = −JQ�β + JNβ�μ. (15)

Here, the quantity JQ = JE − μJN is the usual heat current.
Furthermore, we assume that the chemical potential is not
an independent parameter but a function μ(T ,n) of the
temperature and the particle density in the reservoir. Hence,
the chemical potential bias in Eq. (15) has to be replaced by
the linearized expression

�μ = ∂μ

∂n

∣∣∣∣
T

�n + ∂μ

∂β

∣∣∣∣
n

�β, (16)

and we find the linear response entropy production as a
function of the temperature and particle density

¯̇Si(T ,n) = −J̃Q�β + JNβ
∂μ

∂n
�n. (17)

Here, we introduced the generalized heat current

J̃Q = JE −
(

μ + β
∂μ

∂β

)
JN, (18)

which corresponds to the conventional heat current JQ with a
modified chemical potential. This modified chemical potential
correctly describes the classical limit: For high temperatures, it
assumes the value limT →∞ (μ + β∂μ/∂β) = 3/2kBT , which
is the classical amount of heat per particle in three dimensions.

Thus, we find that the constraint of a constant particle
density in the reservoirs leads to a modification of the chemical
potential in the heat current and the emergence of a density-
driven particle current. Both of these contributions arise from
the linearized affinity (16). They can be interpreted as the work
one needs to perform on a particle which is traveling through
the transport setup, in order to overcome the chemical potential
bias caused by the thermal or density bias, respectively.

D. Onsager theorem

It is well known that the Onsager theorem [38,39] is very
useful for describing linear, purely resistive systems. This
theorem has been analyzed and proven to be also valid for open
quantum systems [40,41]. In particular, the Onsager theorem
holds for open quantum systems which can be described by
Markovian master equations [42–44]. These are the quantum
mechanical analog to purely resistive classical systems, i.e.,
systems without memory. Within this section, we demonstrate
the validity of this theorem and extract the linear response
transport coefficients.

In order to appropriately describe an irreversible transport
process, one rewrites the entropy production as a sum ¯̇Si =∑2

j=1 JjFj over generalized fluxes Jj and their correspond-
ing affinities Fj [45]. The linear response entropy production
and, hence, the fluxes and affinities, will be different depending
on whether we assume a constant particle density or not. To
compare these two situations, we first consider the case without
density constraint, i.e., for an independent chemical potential,
and afterwards analyze the case with constant particle density.

1. Independent chemical potential

First, we review the usual electronic transport approach
with an independent chemical potential. Here, the entropy
production is given by Eq. (15) and, thus, the generalized
currents are given by

J1 = −JQ, J2 = JN, (19)

with the corresponding affinities

F1 = �β, F2 = β�μ. (20)

Linearizing these currents with respect to their respective
affinities around the equilibrium (�β = 0, �μ = 0) yields an
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Onsager system in the form(−JQ

JN

)
=

(
L11 L12

L21 L22

)(
�β

β�μ

)
≡ M

(
�β

β�μ

)
, (21)

where the entries of the Onsager matrix M with constant
chemical potential μ are defined as partial derivatives eval-
uated at the equilibrium values, i.e., Lij = (∂Ji/∂Fj )0. These
so-called kinetic coefficients fulfill the Onsager reciprocal
relation L12 = L21 which is related to the time-reversal
symmetry of physical laws [45]. Furthermore, the Onsager
matrix is positive definite which guarantees the positivity of
the entropy production in accordance with the second law of
thermodynamics.

From the Onsager system (21), one can subsequently
extract the linear transport relations for different setups. If
no thermal bias is present, i.e., �β = −1/T 2�T = 0, one
finds Ohm’s law JN = σ�μ with the electronic conductance
σ = L22/T . Similarly, one finds Fourier’s law JQ = −κ�T

for a thermocouple under the constraint of vanishing particle
current JN = 0. This defines the linear heat conductance
κ = D/(T 2L22) where D = det(M) is the determinant of
the Onsager matrix (21). Additionally, such a system can
produce a potential bias �μ = ��T as a response to a thermal
bias at vanishing particle current. This so-called Seebeck effect
is characterized by the thermopower � = L21/(T L22). The
reverse process where a thermal bias is created by applying
a bias in the chemical potentials is known as Peltier effect
which is characterized by the Peltier coefficient � = T �.
The efficiency of these processes can be characterized by the
dimensionless figure of merit ZT = �2/L with the Lorenz
number L = κ/(T σ ) defined by the Wiedemann-Franz law
[46].

2. Dependent chemical potential

In analogy to the discussion in the previous paragraph, we
now focus on the situation where T and n are independent
variables. When the temperature and particle density in
the reservoirs are held at constant differences, the entropy
production is given by Eq. (17) with generalized currents

J1 = −J̃Q, J2 = JN, (22)

and their respective affinities [47]

F1 = �β, F2 = β
∂μ

∂n
�n. (23)

The corresponding linearized Onsager system reads as

(−J̃Q

JN

)
=

(
L̃11 L̃12

L̃21 L̃22

)(
�β

β
∂μ

∂n
�n

)
≡ M̃

(
�β

β
∂μ

∂n
�n

)
, (24)

where the kinetic coefficients L̃ij = (∂Ji/∂Fj )0 are now func-
tionals of the chemical potential μ(T ,n). Due to the linearity
of the system of equations, we can find a linear mapping which
transforms the Onsager matrices in Eqs. (21) and (24) into each
other (see Appendix A). Hence, we can rewrite the matrix M̃
using the kinetic coefficients defined in Eq. (21) which now
become functionals of the temperature- and density-dependent

chemical potential, i.e., Lij (μ) → Lij [μ(T ,n))]. This yields

M̃ =
(

L11 + β
∂μ

∂β

(
2L12 + ∂μ

∂β
L22

)
L12 + β

∂μ

∂β
L22

L21 + β
∂μ

∂β
L22 L22

)
,

(25)

where the Onsager reciprocal relation is preserved, i.e., L̃12 =
L̃21. From the above equation, we derive linear transport
coefficients analogous to the electronic case.

We see that in the absence of a thermal bias �T = 0, the
particle current JN = βL̃22

∂μ

∂n
�n becomes proportional to the

applied density bias. This yields an equation similar to Ohm’s
law JN = σ̃

∂μ

∂n
�n with an isothermal matter conductance σ̃

given by

σ̃ ≡ JN

∂μ

∂n
�n

= L̃22

T
= σ [μ(T ,n)] for �T = 0. (26)

In a similar way to the matter conductance, we can extract
the analog of the thermal conductance κ̃ from the modified
Fourier’s law J̃Q = −κ̃�T under the constraint JN = 0 which
yields

κ̃ ≡ − J̃Q

�T

= D̃

T 2L̃22
= κ[μ(T ,n)]. (27)

Here, D̃ = det(M̃) is the determinant of the Onsager matrix
M̃. Note that this transport coefficient vanishes if the de-
terminant is zero. In general, this happens in the so-called
tight-coupling limit where the energy current JE becomes
proportional to the particle current JN and, hence, the
generalized fluxes J1 and J2 are not independent of each
other [48,49].

Furthermore, we find that a vanishing particle current
JN = 0 for finite thermal and density bias implies β

∂μ

∂n
�n =

L̃21/(T 2L̃22)�T . Therefore, such a thermodynamic device
produces a density-induced chemical potential bias as a
response to a thermal bias. This allows us to define �̃

analogous to the thermopower by

�̃ ≡
∂μ

∂n
�n

�T

= L̃21

T L̃22
= �[μ(T ,n)] + β2 ∂μ

∂β
. (28)

This coefficient characterizes the linear density response to
a temperature difference at vanishing particle current. It is
related to the analog of the Peltier coefficient �̃ by the
Thomson relation �̃ = T �̃. Using these transport coefficients,
we can calculate the dimensionless figure of merit Z̃T [50]
which characterizes the efficiency of the thermodynamic
device. It is given by

Z̃T ≡ �̃2

L̃
= ZT [μ(T ,n)] +

β2 ∂μ

∂β

(
β2 ∂μ

∂β
+ 2�[μ(T ,n)]

)
L[μ(T ,n)]

,

(29)

with the modified Lorenz number L̃ = κ̃/(σ̃ T ). From the
definitions (26)–(29) we see that for an independent chemical
potential, where the derivative with respect to temperature
vanishes, i.e., ∂μ/∂β = 0, we recover the usual linear response
transport coefficients.
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FIG. 4. (Color online) Setup for fermionic particle transport. The
atomic reservoirs α ∈ {L,R} are in thermal equilibrium characterized
by temperature Tα and chemical potential μα = μ(Tα,Nα) for fixed
particle number Nα . The mean occupation n̄α(ω) of the transition
energy ω is given by the Fermi-Dirac distribution. The system is
composed of a double quantum dot in the Coulomb blockade regime
with two transition energies ω− = ε − g and ω+ = ε + g only.

III. IDEAL FERMI GASES

As a first example, we consider a fermionic system as shown
in Fig. 4 which is composed of a double quantum dot in the
Coulomb blockade regime and two fermionic terminals. The
system is described by the Hamiltonian

Ĥfermi
S = ε(ĉ†LĉL + ĉ

†
RĉR) + g(ĉ†LĉR + ĉ

†
RĉL) + V ĉ

†
LĉLĉ

†
RĉR.

(30)

Here, the operators ĉα and ĉ†α which obey the fermionic
anticommutation relation {ĉα,ĉ†α} = 1 annihilate and create
a fermion particle in quantum dot α, respectively. These two
quantum dots are labeled by L and R and they are coupled via
a coherent tunneling process with amplitude g. Each dot can be
empty or occupied by a single particle increasing the system
energy by ε. In the Coulomb blockade limit, the Coulomb
repulsion V � ε,g is the dominating energy scale. Hence,
the state corresponding to a doubly occupied double quantum
dot does not take part in the long-time dynamics and can
be safely neglected. The remaining energy eigenstates of the
system are the vacuum state |0〉 and the superposition states
|−〉 = 1/

√
2 (|01〉 − |10〉) and |+〉 = 1/

√
2 (|01〉 + |10〉) with

eigenvalues ω0 = 0, ω− = ε − g, and ω+ = ε + g, respec-
tively.

The system is coupled to the reservoirs by the system-bath
interaction Hamiltonian

ĤSB =
∑
α,k

(tα,k b̂
†
α,k ĉα + H. c.), (31)

where the tunneling amplitude of a particle hopping from the
reservoir α into the respective quantum dot or vice versa is
proportional to t∗α,k and tα,k , respectively.

A. Steady-state current

We start by calculating the steady-state particle and energy
currents according to Eq. (10) (see Appendix B). This yields
for the steady-state current measured at reservoir α the
relations

J
(α)
N =

∑
n∈{+,−}

I (α)
n , J

(α)
E =

∑
n∈{+,−}

ωnI (α)
n , (32)

where we defined the abbreviation

I (α)
n = −�α

2
{n̄α(ωn)ρ̄0 − [1 − n̄α(ωn)]ρ̄n}, (33)

with the steady-state density vector ρ̄ = (ρ̄0,ρ̄−,ρ̄+)T. Since
the complete expression is too long, we state here the particle
current in the limit of a single-transition frequency only. This
limit can be obtained by shifting the second transition energy
to high values such that transport through this level is strongly
suppressed. In consequence, we find a current involving the
lowest transition energy only which reads as

lim
ω+→∞ JN = �̄

2
[n̄L(ω−) − n̄R(ω−)], (34)

with the effective coupling rate �̄ = �L�R/ (�L + �R). Thus,
the particle current through a system with transition energy ω−
is proportional to the difference of the mean occupations of
the corresponding energy level in the reservoirs. The particle
current through a double-dot system with two transition fre-
quencies is shown in Fig. 5. We observe two different regimes

(a) (b)

(c) (d)

FIG. 5. (Color online) Steady-state particle current of the
fermionic system with different transition frequencies versus the
dimensionless temperatures of the reservoirs at fixed density. In
the plots, we set ε = 0.7EF (a), ε = 1.5EF (b), and ε = 1.2EF (d)
and used the same tunneling amplitude g = 0.2EF . In plot (c), we
used ε = 11.3EF and set the tunneling amplitude to g = 10EF . For
all plots, the rates are set to �L = �R = �. The circles in the plots
(b) and (c) correspond to the set of temperatures marked in Fig. 2.
The dashed curves indicate a vanishing of the corresponding energy
current JE .
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σ

Γ
σ

Γ

κ
/Γ

FIG. 6. (Color online) Plot of the matter conductance σ̃ , conduc-
tance σ (left), and the modified thermal conductance κ̃ (right) for ideal
Fermi gas reservoirs with different onsite energies ε = 0.7EF (dashed
line), ε = 1.5EF (dotted-dashed line), and ε = 1.2EF (solid line)
versus the normalized temperature and density, respectively. In both
plots, we assume equal tunneling rates �L = �R = � and a constant
coherent coupling strength of g = 0.2EF . For the conductance with
constant chemical potential we use ε = 1.2EF , g = 0.2EF , and
additionally set μ = 0.5EF (dotted line).

reflecting the different behavior of the mean occupations for
energies below and above the Fermi energy as shown in Fig. 2.
If at least one transition energy lies below the Fermi energy,
as shown in Fig. 5(a), we observe a finite steady-state current
against the thermal bias. This is due to the fact that in the hotter
reservoir the particles are excited to higher-energy states. Since
the density is fixed, there are not enough particles to refill
the depleted energy levels. The occupation in these levels
decreases leading to a flow from the colder reservoir, where
the energy levels are occupied, to the hotter reservoir. This
behavior is a consequence of the mean occupation under the
restraint of constant particle density.

If all transition energies are above the Fermi energy, as
shown in Figs. 5(b) and 5(c), this behavior changes such that
for a small thermal bias the steady-state current flows with the
bias. However, if the thermal bias is increased above a critical
value the current flows against the bias again. Moreover, there
is always a finite steady-state current for an arbitrary high
thermal bias although it is exponentially suppressed away from
the optimal temperature.

Taking a look at Eq. (34), we see that the critical lines where
the current vanishes are defined by the relation n̄L (ω−) =
n̄R (ω−). This is trivially fulfilled in equilibrium where �β =
�n = 0. Away from equilibrium, we find that the particle
current (34) only vanishes if the mean occupation of a given
transition energy in the reservoirs takes on the same value for
different temperatures. Comparing with the result presented in
Fig. 2 we can immediately deduce that this condition can only
be satisfied for transition frequencies above the Fermi energy.
In this case, one always finds a set of two different temperatures
for the left and right reservoirs where the current vanishes.
As an example, we indicated such a set of temperatures
in Fig. 2 and show the corresponding points in the current
plots in Figs. 5(b) and 5(c). In Fig. 5(c), we chose the dot
energy ε and the tunneling amplitude g in such a way that
the transition energy ω+ is shifted to high energies. Thus, the
corresponding particle current can be approximately described
by the single-level limit given in Eq. (34). Comparing the
currents plotted in Figs. 5(b) and 5(c), we see that for a system
with two transition frequencies [Fig. 5(b)] the line of vanishing
particle current it shifted to higher temperatures compared to

Σ
,Σ

FIG. 7. (Color online) Plot of the modified thermopower �̃ and
conventional thermopower � (left) and the figure of merit for
dependent and constant chemical potential (right) versus the nor-
malized temperature for an ideal Fermi gas and different symmetric
onsite energies ε = 0.7EF (dashed line), ε = 1.2EF (solid line),
and ε = 1.5EF (dotted-dashed line). For ε = 1.2EF and a constant
chemical potential μ = 0.5EF (thin, dotted line), the thermopower
approaches 0 for large T and the figure of merit takes on a constant
value depending on the system transition frequencies. In both plots,
we fixed the coherent tunneling amplitude at g = 0.2EF .

the effective single-level result [Fig. 5(c)]. This effect results
from the additional transport channel which modifies the
condition for a vanishing particle current. In fact, depending
on the number and values of the transition frequencies in the
system, there can also by more lines where the particle current
vanishes [see Fig. 5(d)].

Finally, we note that the energy current JE in general
vanishes (dashed lines) for different parameters than the
particle current JN . Thus, we can observe a finite-energy
current even for a vanishing-particle current in a fermionic
system with two transition frequencies. Moreover, in the
upper right corner of Fig. 5(c) we even find a regime for
high temperatures where the energy current flows against the
particle current.

B. Transport coefficients

In this section, we calculate the linear transport coefficients
for the fermionic transport setup. For reasons of brevity, we use
the wide-band limit with energy-independent rates �α(ω) =
�α .

We plot some results for these transport coefficients in
Figs. 6 and 7. In all these plots, we analyze three differ-
ent transport channel configurations. The first configuration
corresponds to a system with transition energies below the
Fermi energy of the reservoirs (dashed line). The second
configuration corresponds to a system with transition energies
above the Fermi energy of the reservoirs (dotted-dashed line).
In the third configuration, we analyze a system whose lowest
transition energy is exactly equal to the Fermi energy of
the reservoirs (solid line). The results in these situations are
discussed in more detail within the following sections.

1. Matter conductance

Calculating the matter conductance in the wide-band limit
according to Eq. (26) yields the relation

σ̃ = �̄[1 − n̄(ω−)][1 − n̄(ω+)][n̄(ω−) + n̄(ω+)]

2T [1 − n̄(ω−)n̄(ω+)]
. (35)
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For n̄(ω+) = 0, i.e., in the limit of a single-transition frequency
ω+ → ∞, this expression coincides with limω+→∞ σ̃ =
�̄/(8T cosh2 [(ω− − μ) /(2T)]), the well-known Coulomb
blockade conductance peak for a single resonant level [51].
Similarly, in the limit g → 0, i.e., ω− → ω+ the matter
conductance approaches a limiting value. However, at g =
0 the energies ω− = ω+ = ε are degenerate and our rate-
equation approach can not be applied. Furthermore, the whole
temperature dependence of the chemical potential enters
implicitly via the mean occupations of the energy levels in
the reservoirs in compliance with Eq. (26).

In the left panel of Fig. 6, we plot the matter conductance
as a function of the normalized temperature for different
onsite energies and a constant tunneling amplitude. For a
configuration where both transition energies lie below the
Fermi energy of the reservoirs (dashed line), we observe a
maximal conductance at a specific temperature which basically
depends on the frequency ε. Decreasing the temperature
further diminishes the conductance as the respective energy
levels in the reservoirs become occupied and the current
decreases. We observe a similar behavior for a configuration
where both transition energies lie above the Fermi energy of
the reservoirs (dotted-dashed line). In this situation, the con-
ductance vanishes for decreasing temperature due to the fact
that the transition energy in the reservoirs gets exponentially
depleted.

Finally, we show the result for a configuration where
the lower transition energy equals the Fermi energy of the
reservoirs (solid). Only in this case we observe a nonvanishing
conductance as the temperature approaches 0. This is due to
the fact that the Fermi energy level in the reservoirs is at most
half-filled whereas all other energy levels are either completely
filled or empty. Therefore, particle transport is possible even
for low temperatures. However, the observation that in this case
the matter conductance σ̃ diverges like �̄/T is unphysical. This
behavior stems from the fact that the Born-Markov-Secular
master equation breaks down if T � �̄. In all three situations,
the conductance vanishes for increasing temperature due to
the reduction of the occupation of the energy levels in the
reservoirs.

For comparison, we also plotted the conductance σ for
a constant chemical potential (dotted line). In this situation,
we find qualitatively the same behavior as for the modified
matter conductance. For low temperatures, the respective
energy levels in the reservoirs are depleted and, hence, the
conductance vanishes. Contrary for high temperatures they
are equally filled which leads to a vanishing net current.
Thus, the modified matter conductance σ̃ basically follows
σ . However, the high-temperature behavior is changed due to
the temperature dependence of the chemical potential.

2. Heat conductance

From Eq. (27) we find that the heat conductance in the
wide-band limit is given by

κ̃ = n̄(ω−)n̄(ω+)(ω− − ω+)2

T [n̄(ω−) + n̄(ω+)]2
σ̃ . (36)

This expression has no explicit dependence on the chemical
potential and, thus, formally corresponds to the thermal

conductance for an independent chemical potential as shown
in Sec. II D 2. Furthermore, we immediately see that the above
equation obeys the Wiedemann-Franz law, i.e., κ̃ = T L̃σ̃ with
the dimensionless Lorenz number L̃. In the limit of a single-
transition frequency, i.e., ω+ → ∞, the heat conductance κ̃

vanishes trivially because there is no pure heat flow through a
single level without particle flow.

In the right panel of Fig. 6 we plot the modified thermal
conductance versus the inverse normalized particle density for
different onsite energies and different tunneling amplitudes
according to Eq. (36). For all considered configurations, we
observe qualitatively the same behavior. The heat transport is
maximal at a characteristic density. This maximum is shifted
to higher densities with increasing transition energies. For low
densities, the thermal conductance vanishes as the reservoir
energy levels become less occupied. For high densities, the
heat conductance vanishes because the transition energies in
both reservoirs become maximally occupied and the matter
conductance vanishes.

3. Thermopower

Next, we determine the analog to the thermopower defined
in Eq. (28). For our setup we find the expression

�̃ = 〈φf (ω−,ω+)〉
T

, (37)

where we defined the average energy

〈φf (ω−,ω+)〉 = n̄(ω−)φ(ω−) + n̄(ω+)φ(ω+)

n̄(ω−) + n̄(ω+)
. (38)

Here, the expression

φ(ωi) = μ − T ∂μ/∂T − ωi, (39)

describes the amount of energy one particle traveling through
a transport system with only a single-transition energy ωi takes
from one reservoir to the other. We can formally recover the
result for the conventional thermopower with an independent
chemical potential by setting ∂μ/∂T = 0.

In the left panel of Fig. 7 we plot the temperature
dependence of the modified thermopower �̃ for different
transition energies in the case of Fermi reservoirs according to
Eq. (7). When the temperature decreases, we observe different
behavior for the modified thermopower depending on the
transport system. If the lower transition energy is below the
Fermi energy, the modified thermopower remains positive
for all temperatures. As the temperature approaches zero,
the average energy (38) approaches a constant positive value
and, thus, the modified thermopower diverges like 1/T . If the
transition energies are above the Fermi energy, we observe a
similar behavior but the coefficient becomes negative since
below some critical temperature the transition frequencies
exceed the chemical potentials. Only for the case when the
lower transition energy equals the Fermi energy the average
energy and hence the modified thermopower vanishes at T =
0. For high temperatures, the average energy 〈φf (ω−,ω+)〉
is dominated by the classical thermal energy contribution
of 3/2kBT per particle. Therefore, we observe that the
modified thermopower assumes a constant positive value of
3
2 for high temperature independent of the respective tran-
sition energies. This behavior can not be predicted if the
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chemical potential is treated as an independent parameter.
In this conventional approach, the thermopower vanishes for
high temperatures independent of the transition frequencies
(dotted line). Furthermore, the conventional thermopower
never changes its sign as a function of the temperature. In
this situation, the sign is fixed by the choice of the constant
chemical potential.

4. Figure of merit

Finally, we analyze the figure of merit for the thermody-
namic device. This coefficient is defined in Eq. (29) which
relates to the efficiency of the device. For the considered
fermionic setup, the figure of merit reads as

Z̃T = [n̄(ω−) + n̄(ω+)]2〈φf (ω−,ω+)〉2

n̄(ω−)n̄(ω+)(ω− − ω+)2
. (40)

In the right panel of Fig. 7, we plot the linear response
figure of merit for different onsite energies. We find that the
figure of merit increases exponentially for high temperatures
independent of the transition frequencies. In contrast, for a
constant chemical potential the figure-of-merit approaches a
constant value for high temperatures. Additionally, we see
that there are specific temperatures where the figure of merit
vanishes. These are the temperatures for which the linear
response particle current vanishes and, hence, no power can
be extracted.

If the temperature approaches zero, we observe that the
figure of merit increases again except for the situation
where the transition frequencies lie below the Fermi energy
of the reservoir. In this case, the figure of merit assumes
a finite value as the temperature approaches zero. This is
again caused by the fact that the relevant energy levels in
the reservoirs are occupied for low temperatures. However,
although the conversion of energy into particle currents seems
to be very efficient for low and high temperatures, this picture
is misleading since in these regimes the actually generated
particle current is exponentially suppressed and so is the power.
Thus, one has to look out for a high efficiency at maximum
power [48,49,52,53]. It turns out that for the specific situations
presented in Fig. 7 the currents become maximal in the interval
T/TF ∈ [0.13, 0.23] (not shown) and, thus, we find that at
maximum power the figure of merit for the configuration with
the transition energies above the Fermi energy is largest with
ZT ∼ 12. Least efficient is the configuration with the lowest
transition frequency equal to the Fermi energy. Here, only a
figure of merit at maximum power of ZT ∼ 0.04 is reached.
Whereas for the configuration with both energies below the
Fermi energy we find ZT ∼ 4 at maximum power. Usually,
in experiments figures of merit of about ZT ∼ 2 and higher
are considered as efficient. Of course, in our model we assume
ideal quantum gases and, thus, the calculated figure of merit is
probably overestimated. However, from our results we argue
that by optimizing the parameters efficiencies at maximum
power close or even equal to the optimum are possible. The
optimum efficiency in linear response theory is given by half
the linear response Carnot efficiency ηmax = (Thot − Tcold) /T

[54].

FIG. 8. (Color online) Setup for bosonic particle transport. The
atomic reservoirs are in thermal equilibrium characterized by tem-
perature T and chemical potential μ for fixed particle number N .
The mean occupation n̄(ω) of the energy level ω is given by the
Bose-Einstein distribution. The system is described by a harmonic
oscillator of frequency � with an additional interaction energy U if
two particles are present.

IV. IDEAL BOSE GASES

Motivated by the results presented in Sec. II A, we now
focus on a transport setup involving bosonic reservoirs.
Contrary to the fermionic setup, here, we expect that the critical
behavior of the reservoirs leads to characteristic signatures in
the transport properties. Therefore, we analyze the transport
characteristics of a bosonic transport system as shown in Fig. 8.
The bosonic transport system is described by the Hamiltonian

Ĥbose
S = U

2
â†â(â†â − 1) + �â†â. (41)

Each particle that is added to or removed from the system
changes the system energy at least by a constant amount
�. If more than one particle is present in the system, these
particles interact with a two-body interaction strength U and,
thus, increase the total energy of the system. This system
Hamiltonian is diagonal in the Fock basis, i.e., Ĥbose

S |n〉 =
ωn|n〉, with energy eigenvalues ωn = U/2n(n − 1) + �n. Due
to the interaction this energy spectrum is nonlinear and the
system generates many nonequivalent transport channels.

The system-bath interaction Hamiltonian reads as

ĤSB =
∑
α,k

(tα,k b̂
†
α,k â + H. c.), (42)

where the tunneling amplitude of an atom hopping from the
reservoir (α) into the system or vice versa is proportional to
t∗α,k and tα,k , respectively.

A. Steady-state current

In the thermodynamic limit, the steady-state currents
through this system measured at reservoir α are given by a
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sum over all possible system occupations

J
(α)
N = −

∞∑
n=0

(n + 1)I (α)
n , (43)

J
(α)
E =

∞∑
n=0

(n + 1)(ωn − ωn+1)I (α)
n , (44)

where we defined the abbreviation

I (α)
n = �α(ωn+1 − ωn)[n̄α(ωn+1 − ωn) + 1]ρ̄n+1

−�α(ωn − ωn+1)n̄α(ωn − ωn+1)ρ̄n. (45)

Because of the infinite summation, the above expression
can not be solved in general. Therefore, we truncate the
bosonic Hilbert space at low particle numbers (see Appendix
C). Taking the limit limU→∞ Ĥbose

S restricts the Hilbert space
to at most one bosonic particle in the system. Thus, the system
can be either empty or singly occupied which gives rise to
a single-transition frequency �. In this case, the steady-state
currents in the wide-band limit �α(ω) = �α can be evaluated
to

lim
U→∞

JN = �L�R[n̄L(�) − n̄R(�)]

�L[1 + 2n̄L(�)] + �R[1 + 2n̄R(�)]
, (46)

which coincides with the result found in Ref. [55]. Analogous
to the fermionic case, we find that the current through
a transport channel with energy � is proportional to the
difference in the corresponding mean occupations in the left
and right reservoirs.

As an example we plotted the steady-state particle current
for different transition energies in Fig. 9. First, we observe
that the current is strongest if the interaction strength is weak.
Increasing the interaction strength shifts the corresponding
transport channel to higher energies which are less occupied
in the reservoirs. Therefore, the contribution of these transport
channels to the current is diminished. Additionally, we see
two lines where the steady-state particle current vanishes. The
diagonal line reflects the thermodynamic equilibrium, i.e., if
�T = �n = 0. The reason for the emergence of the second line

FIG. 9. (Color online) Steady-state particle current of the
bosonic system versus the dimensionless temperatures of the reser-
voirs. The interaction strength is set to U = 0.01� (left) and U =
10� (right). In both plots, we set � = Tc and �L = �R = �. The
dashed lines indicate a vanishing of the corresponding energy current
JE . The solid lines signal the phase transition to a Bose-Einstein
condensate in the left and right reservoirs. The circles correspond to
the set of temperatures marked in Fig. 2.

lies in the temperature dependence of the mean occupations as
discussed for the fermionic setup in Sec. III A.

For the energy current (not shown), we find qualitatively the
same behavior as for the particle current. However, depending
on the system parameters the energy current can be finite even
for vanishing particle current. We indicated the temperatures
where the energy current vanishes by dashed lines in both
plots of Fig. 9. We observe that the nonequilibrium lines where
the energy current vanishes are shifted to higher temperatures
compared to the vanishing particle current. Contrary to the
fermionic steady-state current plotted in Fig. 5 we do not
observe a qualitative change in the bosonic particle current
in dependence of the transition energies. This behavior stems
from the fact that there is no equivalent of the Fermi energy
and no Pauli exclusion principle in bosonic systems. Hence,
the bosonic mean occupations look qualitatively the same for
all energy levels (see Fig. 2). Within the condensate phase, we
observe a finite-particle current which results from the thermal
fraction of the Bose gas. This thermal fraction decreases
with temperature like T 3/2 and, therefore, the current exactly
vanishes at T = 0.

In our Born-Markov-Secular master-equation approach, the
coherences decouple from the occupations and, thus, can
be neglected. However, if one enters the condensate phase
the coherences between the particles become stronger with
decreasing temperature. Therefore, the decoupling between
coherences and occupations is not expected to hold and the
coherences can not be neglected anymore. Hence, we do not
expect that our results remain valid deep in the condensate
phase.

B. Transport coefficients

In the limit of a single-transition frequency in the system,
i.e., U = 0 or U → ∞, the energy current is proportional to the
particle current. As shown in Sec. II D in this situation not all
transport coefficients can be calculated. Therefore, we consider
the case of two transport channels with different energies. This
situation is established by truncating the Hilbert space at two
particles leading to two transitions in the system from zero
to one particle, i.e., ω1 = � and from one to two particles,
i.e., ω2 = U + �. In the following sections, we present the
resulting bosonic transport coefficients in the wide-band limit.
Some results for the bosonic transport coefficients are plotted
in Figs. 10 and 11.

1. Matter conductance

The bosonic matter conductance for the considered trans-
port setup reads as

σ̃ = �̄ n̄(ω1)[1 + n̄(ω2)][1 + n̄(ω1) + 2n̄(ω2)]

T {1 + n̄(ω2) + n̄(ω1)[2 + 3n̄(ω2)]} . (47)

In the left panel of Fig. 10, we plot this transport coefficient
for different transition energies versus the normalized temper-
ature. Depending mostly on the lowest transition frequency
�, the matter conductance has a maximum value at a
finite temperature above the critical value Tc. Decreasing the
lower transition frequency shifts the maximum closer to the
critical temperature whereas increasing the transition fre-
quency shifts the maximum away from the critical temperature.
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FIG. 10. (Color online) Left: Matter conductance for the ideal

Bose gas reservoirs plotted for different onsite interaction strength
U = 0.5� (dashed line), U = � (solid line), and U = ∞ (dotted-
dashed line) versus the inverse normalized temperature. The transition
energy is fixed to � = Tc. For a constant chemical potential μ =
−0.5Tc (thin, dotted line) where we use U = � = Tc, the matter
conductance becomes constant for high temperatures. Right: Thermal
conductance for the ideal Bose gas reservoirs plotted for different
onsite interaction strengths U = 0.5� (dashed line), U = � (solid
line), and U = 3� (dotted-dashed line) versus the inverse normalized
density. The single-particle energy is � = T and the rates are fixed
to �L = �R = �.

The maximum can never lie below the critical temperature
since there the chemical potential vanishes and the number of
thermal particles which can contribute to the particle current
decreases. Increasing the temperature leads to a decrease of
the matter conductance since the occupation of the transition-
energy level in the reservoirs is reduced. The influence of the
second transport channel is mainly reflected in the maximum
value of the transport coefficient. This value is increased if
the transport channels are close together, i.e., if the interaction
strength U is small. If the interaction strength is increased, the
respective transport channel is shifted to higher energies and
contributes less to the current because of the lower occupations
in the reservoir. Thus, the maximum conductance decreases to
a minimum value resulting from the lower transport channel
(dotted-dashed line).

For comparison, we also included a plot for the conductance
with constant chemical potential μ = −0.5Tc (dotted line).
Here, the conductance takes on a constant finite value in the
limit of high temperature. This is caused by the fact that for a

Σ
,Σ

FIG. 11. (Color online) Left: Plot of the thermopower for differ-
ent interaction strengths U = � (solid line) and U = ∞ (dashed line).
Right: Plot of the figure of merit versus the normalized temperature for
different interaction strengths U = 0.5Tc (dashed line), U = Tc (solid
line), and U = 5Tc (dotted-dashed line). For U = Tc and a constant
chemical potential μ = −0.5Tc (thin, dotted line), the thermopower
vanishes for high temperatures and the figure of merit becomes
constant. The transition energy is fixed to � = Tc in all plots.

constant chemical potential, the occupations of energy levels
in the reservoirs increase linearly with the temperature in the
high-temperature limit. If the temperature approaches zero, the
conductance vanishes due to the depletion of the transition-
energy levels in the reservoirs.

2. Heat conductance

The bosonic heat conductance for the considered transport
setup reads as

κ̃ = 2[1 + n̄(ω1)]n̄(ω2)(ω1 − ω2)2

T [1 + n̄(ω1) + 2n̄(ω2)]2
σ̃ . (48)

In the right panel of Fig. 10, we plot the thermal conductance
for different transition energies versus the normalized density.
We observe that this transport coefficient increases with
increasing density and reaches a maximum value at the critical
density when Bose-Einstein condensation sets in. The value of
the maximum depends on the transition energies of the system.
In general, there is a finite interaction strength that maximizes
the heat conductance. For a low-interaction strength, the heat
conductance is strongly decreased since it is proportional to
U 2. For a high-interaction strength, the heat conductance is
also diminished because the occupation of the upper transition
energy is decreased.

For densities above the critical value, the thermal con-
ductance remains constant since the thermal gas fraction in
this phase is independent of the density and depends on the
temperature only. All additional particles occupy the reservoir
ground state and, thus, do not contribute to the currents.

3. Thermopower

The analog to the thermopower for the considered bosonic
transport setup in the wide-band limit looks formally the same
as for the fermionic case

�̃ = 〈φb(ω1,ω2)〉
T

. (49)

However, here appears the bosonic average energy which we
define as

〈φb(ω1,ω2)〉 = [1 + n̄(ω1)]φ(ω1) + 2n̄(ω2)φ(ω2)

1 + n̄(ω1) + 2n̄(ω2)
, (50)

where we used the expression defined in Eq. (39). In the
left panel of Fig. 11, we plot the temperature dependence of
this transport coefficient for different values of the interaction
strength. Analogously to the fermionic case, we find that the
modified Seebeck coefficient takes on a finite positive value
in the high-temperature limit where the average transported
energy becomes 3/2kBT .

When the temperature is lowered, the modified ther-
mopower decreases. At a temperature where the chemical
potential contribution starts to dominate over the transport
channel energies, the modified thermopower changes its sign.
When the temperature is decreased further, the modified
thermopower crosses the critical temperature of the phase
transition continuously. However, at the critical temperature,
the modified thermopower is not analytic. Thus, the derivative
with respect to temperature shows a jump when the condensate
phase is entered. This behavior is also well known for the heat
capacity of the ideal Bose gas [28]. In the condensate phase,
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the modified thermopower decreases further and diverges
like −1/T when the temperature is close to absolute zero.
In general, the particle current is mainly influenced by the
lower transport channel. Hence, the modified thermopower just
weakly depends on the interaction strength U . For high and low
values of the interaction strength, the modified thermopower
approaches the single-frequency limit result (dashed line). In-
between, there is a finite-interaction strength that maximizes
the modified thermopower at the critical temperature (solid
line). However, the relative increase in the thermopower
output is still small. On the contrary, the approach with a
constant chemical potential predicts a vanishing thermopower
for high temperatures (dotted). There is no change of sign of
the thermopower in dependence of the reservoir temperature.
Additionally, the conventional thermopower is continuous and
differentiable at the critical temperature and, thus, it is not
sensitive to the quantum phase transition of the ideal Bose gas.

4. Figure of merit

Finally, we analyze the efficiency of the bosonic thermo-
dynamic device characterized by the figure of merit which for
the bosonic system reads as

Z̃T = [1 + n̄(ω1) + 2n̄(ω2)]2〈φb(ω1,ω2)〉2

2[1 + n̄(ω1)]n̄(ω2)(ω1 − ω2)2
. (51)

In the right panel of Fig. 11, we plot the temperature
dependence of the figure of merit for different values of
the interaction strength. We observe that the figure of merit
vanishes for vanishing linear response particle current. At the
critical temperature of the phase transition, the figure of merit
is nondifferentiable but continuous. In the limit of high and
low temperatures, the figure of merit increases exponentially.
However, if we compare it with the linear response particle
current (not shown), we find that the figure of merit at
maximum negative current around T/Tc ∼ 2.3 takes on the
values Z̃T ∼ 34 (dashed line), Z̃T ∼ 8 (solid line), and Z̃T ∼
1 (dotted-dashed line) in the thermal phase. Additionally, the
linear response current shows a positive maximum around
T/Tc ∼ 0.6 in the condensate phase, where we find that the
figure of merit takes on the values Z̃T ∼ 34 (dashed line),
Z̃T ∼ 15 (solid line), and Z̃T ∼ 152 (dotted-dashed line).
For comparison, we also plot the figure of merit for a constant
chemical potential (thin, dotted line). Again, we find that in this
case the high-temperature behavior is modified as the figure
of merit becomes constant.

V. SUMMARY

We calculated the steady-state fluxes and affinities from a
master equation in Born-Markov-Secular approximation for
a general two-terminal transport setup. There, we took into
account that in transport experiments with ultracold atoms the
chemical potential in general depends on the temperature and
the particle density of the reservoirs.

We found that the nonlinearity introduced by the
temperature- and density-dependent chemical potential
strongly influences the steady-state particle and energy cur-
rents through the system. Depending on the energy spectrum
of the system, we could observe multiple regimes where the

steady-state currents flow with or against an externally applied
thermal bias. This counterintuitive result stems from the
temperature and density dependencies of the mean occupations
in the reservoirs induced by the chemical potential.

Subsequently, we derived the corresponding Onsager
system of equations from which we calculated the linear
response transport coefficients. Comparing the results for
fermionic and bosonic transport, we found clear signatures of
criticality in the bosonic transport coefficients. Thus, transport
measurements provide new tools to study critical phenomena
in nonequilibrium setups.

Finally, we investigated the figure of merit for the bosonic
and fermionic setups. In correspondence with experimental
results [23], we found that high figures of merit at maximum
power can be obtained in both systems. This suggests to further
investigate transport setups using ultracold atomic gases in
view of efficient thermopower devices.
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APPENDIX A: ONSAGER MATRICES
TRANSFORMATION

Depending on the experimental setup, different intensive
state parameters can be held constant. Thus, the experimentally
controllable affinities change accordingly. For the setups
compared within this paper, we focus on situations with
constant chemical potential where the affinities are given by
�μ and �T . On the other hand, we analyze a setup with
constant particle density where the affinities are given by �n

and �T . These constraints yield different affinities which in
linear response theory can be related to each other according
to the linear transformation(

�β

β�μ

)
= AT ·

(
�β

β
∂μ

∂n
�n

)
, AT =

(
1 0

β
∂μ

∂β
1

)
. (A1)

Here, we used the linear expansion of the potential bias �μ

with respect to the new affinities �n and �β which reads as

�μ = ∂μ

∂n
�n + ∂μ

∂β
�β. (A2)

Analogously, we find that the generalized linear fluxes can be
transformed according to(−J̃Q

JN

)
= A ·

(−JQ

JN

)
. (A3)

Due to the linearity of the system of equations, we can also
find a transformation for the Onsager matrices themselves.
Inserting the Onsager system (21) together with (A1) we find

M̃ = A · M · AT, (A4)

which yields the relation stated in Eq. (25). With this, results
obtained for a setup with constant chemical potential can be
transformed to the corresponding result for the case of constant
particle density.
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APPENDIX B: FERMIONIC LIOUVILLIAN

The reduced density matrix of an electronic double quantum dot in the Coulomb blockade regime has the diagonal matrix
elements ρ0 = |0〉〈0|, ρ− = |−〉〈−| and ρ+ = |+〉〈+|. Using the wide-band limit �α(ω) = �α , the conditioned Liouvillian (9)
in the energy eigenbasis which obeys

d

dt

⎛
⎝ρ0

ρ−
ρ+

⎞
⎠ = L(χ ,η)

⎛
⎝ρ0

ρ−
ρ+

⎞
⎠ (B1)

is given by

L(χ ,η) = 1

2

∑
α∈{L,R}

�α

⎛
⎝ n̄α(ω−) + n̄α(ω+) −ei(χα−ηαω−)[1 − n̄α(ω−)] −ei(χα−ηαω+)[1 − n̄α(ω+)]

−e−i(χα−ηαω−)n̄α(ω−) 1 − n̄α(ω−) 0
−e−i(χα−ηαω+)n̄α(ω+) 0 1 − n̄α(ω+)

⎞
⎠ . (B2)

The steady-state vector ρ̄ = (ρ̄0,ρ̄−,ρ̄+)T of this Liouvillian is defined by L(0,0)ρ̄ = 0 and reads as

ρ̄ = 1

θ

∑
α,β∈{L,R}

�α�β

⎛
⎜⎝

[1 − n̄α(ω−)][1 − n̄β(ω+)]

n̄α(ω−)[1 − n̄β(ω+)]

[1 − n̄α(ω−)]n̄β(ω+)

⎞
⎟⎠, (B3)

where the normalization factor θ is given by

θ = (�L + �R)2 −
∑

α,β∈{L,R}
�α�βn̄α(ω−)n̄β(ω+). (B4)

With this result, we can calculate the fermionic energy and particle currents according to Eqs. (10) and (11).

APPENDIX C: BOSONIC LIOUVILLIAN

In order to solve the master equation for the bosonic system, we have to truncate the respective Hilbert space at low particle
numbers. For a bosonic system with two transition frequencies only, we truncate the bosonic Hilbert space described by the
Hamiltonian (41) such that at most two particles at a time can be present in the system. Then, the eigenstates are given by the
bosonic Fock states |0〉, |1〉, and |2〉 with the corresponding eigenvalues E0 = 0, E1 = �, and E2 = 2� + U and the resulting
two transition frequencies ω1 = � and ω2 = � + U .

Using the wide-band limit �α(ω) = �α , the conditioned bosonic Liouvillian (9) in the energy eigenbasis which obeys

d

dt

⎛
⎝ρ0

ρ1

ρ2

⎞
⎠ = L(χ ,η)

⎛
⎝ρ0

ρ1

ρ2

⎞
⎠ (C1)

is given by

L(χ ,η) =
∑

α∈{L,R}
�α

⎛
⎝ −n̄α(ω1) ei(χα−ηαω1)[1 + n̄α(ω1)] 0

e−i(χα−ηαω1)n̄α(ω1) −2n̄α(ω2) − [1 + n̄α(ω1)] 2ei(χα−ηαω2)[1 + n̄α(ω2)]
0 2e−i(χα−ηαω2)n̄α(ω2) −2[1 + n̄α(ω2)]

⎞
⎠ . (C2)

The steady-state vector ρ̄ = (ρ̄0,ρ̄1,ρ̄2)T of this Liouvillian is defined by L(0,0)ρ̄ = 0 and reads as

ρ̄ = 1

θ

∑
α,β∈{L,R}

�α�β

⎛
⎜⎝

[1 + n̄α(ω1)][1 + n̄β(ω2)]

n̄α(ω1)[1 + n̄β(ω2)]

n̄α(ω1)n̄β(ω2)

⎞
⎟⎠, (C3)

where the normalization factor θ is given by

θ =
∑
α,β

�α�β{1 + n̄β(ω2) + n̄α(ω1)[2 + 3n̄β(ω2)]}. (C4)

With this result, we can calculate the bosonic energy and particle currents according to Eqs. (10) and (11).
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