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Virial expansion of a harmonically trapped Fermi gas across a narrow Feshbach resonance
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We theoretically investigate the high-temperature thermodynamics of a harmonically trapped Fermi gas across
a narrow Feshbach resonance by using the second-order quantum virial expansion, and point out some new
features compared to the broad resonance. The interatomic interaction is modeled by the pseudopotential with an
additional parameter, i.e., the effective range, to characterize the narrow-resonance width. Deep inside the width
of a narrow Feshbach resonance, we find the second virial coefficient evolves with the effective range from the
well-known universal value 1/4 in the broad-resonance limit to one another value 1/2 in the narrow-resonance
limit. This means the Fermi gas interacts more strongly at the narrow resonance. In addition, far beyond the
resonance width, we find the harmonically trapped Fermi gas still manifests an appreciable interaction effect
across a narrow Feshbach resonance, which is contrary to our knowledge of the broad Feshbach resonance. All
our results can be directly tested in current narrow Feshbach resonance experiments, which are generally carried
out in a harmonic trap.
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I. INTRODUCTION

Recently, the accurate measurements of 6Li atoms across
the narrow Feshbach resonance at B0 = 534.3G with the width
� = 0.1G [1] has raised a great deal of interest on narrow
resonances. Ho et al. have shown that for narrow resonances,
the system interacts more strongly, and the interaction energy is
highly asymmetric [2]. Cui finds very different thermodynamic
properties between broad and narrow resonances in quasi-
one-dimensional geometry [3]. In addition, Nishida points
out that a three-component Fermi gas near a narrow Feshbach
resonance should have a universal ground state, which is
absent for a broad resonance due to the Thomas collapse [4].
Therefore, the accurate manipulation of ultracold atoms across
a narrow Feshbach resonance provides another experimental
platform for studying fundamental problems in condensed
matter and the strongly correlated many-body physics.

The quantum virial expansion method is a natural bridge
between few-body and many-body physics [5–8], and the latter
is always a challenge [9,10]. The biggest advantage of the
virial expansion is that the thermodynamics of a profound
many-body system may be evaluated perturbatively from the
simple few-body solutions. For broad resonances, the second
virial coefficient for a homogeneous two-component Fermi
gas has been calculated [11], while the second and third virial
coefficients of a strongly interacting Fermi gas in a harmonic
trap were also obtained [6,7]. Recently, these theoretical results
were confirmed experimentally [12].

However, for narrow Feshbach resonances, one additional
parameter, namely the effective range, should be required to
characterize the energy-dependent interaction between atoms,
besides the scattering length [13–15]. This energy-dependent
interaction may apparently affect the thermodynamic univer-
sality of the system, which should be quite different from
that of the broad-resonance system [2]. All the previous
works only considered the homogeneous systems across
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the narrow resonance [2,3], while the real experiments are
generally carried out in a harmonic trap. In this paper, we
aim to investigate how the resonance width, or the effective
range, changes the high-temperature thermodynamics of a
harmonically trapped Fermi gas, by using the second-order
virial expansion. The second virial coefficient is obtained from
the two-body solution, in which the interatomic interaction
is modeled by the pseudopotential with an energy-dependent
scattering length [16], or including an additional effective
range [8,17]. We find, deep inside the resonance width,
the second virial coefficient continuously evolves from the
well-known universal value 1/4 in the broad-resonance limit
to one another value 1/2 in the narrow-resonance limit. This
means the Fermi gas is more strongly interacting at the narrow
resonance, compared to the situation of the broad resonance.
Interestingly, far beyond the resonance width, the harmonically
trapped Fermi gas still manifests appreciable interaction effect
across a narrow Feshbach resonance, which is contrary to our
knowledge of the broad Feshbach resonance. All our results
can be directly tested in the current experimental platform of
narrow Feshbach resonances.

This paper is arranged as follows. We first summarize the
crucial calculation methods of the virial expansion used in
this paper in Sec. II. Subsequently, in Sec. III, the second
virial coefficient for a harmonically trapped Fermi gas is
calculated deep inside the narrow-resonance width. Based on
this, the thermodynamics of the system is also discussed in
detail. In Sec. IV, we investigate the thermodynamics of a
harmonically trapped Fermi gas far beyond the width of a
narrow Feshbach resonance. Then we present a simple toy
model in Sec. V, which is helpful for understanding the origin
of the energy-dependent interaction. Finally, our main results
are summarized in Sec. VI.

II. VIRIAL EXPANSION METHOD

Virial expansion is a perturbation method to explore
the high-temperature thermodynamics of strongly interacting
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Fermi gases based on the knowledge of few-body solutions. In
this section, we will summarize the crucial calculation methods
of virial expansion used in this paper, although virial expansion
has been studied in depth [6,7].

The basic idea of virial expansion is that at high temperature
all the thermodynamic quantities can be expanded in series of
the fugacity z ≡ eμ/(kBT ), which is small since the chemical
potential μ is large and negative at high temperature. Here, kB

is the Boltzmann constant. For example, the thermodynamic
potential may be written as

� = −kBT Q1(z + b2z
2 + · · · + bnz

n + · · · ), (1)

where Qn ≡ Tr[e−Hn/(kBT )] is the n-particle partition function,
and Hn is the total Hamiltonian of these n particles. The
expansion coefficients bn are the so-called virial coefficients.
The nth virial coefficient bn is related to the solutions of up
to n-body problems. In this way, the complicated strongly
correlated many-body problem is converted to a set of
relatively simple few-body problems. For example, if we solve
a two-body problem, we can obtain the second virial coefficient
b2 = (Q2 − Q2

1/2)/Q1, and then we have the information
about this many-body problem up to the second order of
the fugacity. The more we can solve the few-body problems,
the more accurate description of the many-body problem
we will acquire. All the other thermodynamic quantities can
then be derived from � via the standard thermodynamic
relations, i.e., the particle number N = −∂�/∂μ, the entropy
S = −∂�/∂T , and the energy E = � + T S + μN [18].

Throughout this paper, we investigate the high-temperature
thermodynamics of a two-component (two hyperfine states,
or, two spin states) harmonically trapped Fermi gas only up
to the second order of the fugacity. Generally, we are mostly
interested in the contribution arising from the interactions.
Thus to this end, let us consider the difference

�b2 = b2 − b
(1)
2 = Q2 − Q

(1)
2

Q1
, (2)

where the superscript 1 denotes the quantities of an ideal gas.
For a two-component Fermi gas, we easily find

�b2 = 1

2

∑
α

[
e−Erel

α /(kBT ) − e−E(1),rel
α /(kBT )

]
, (3)

where the summation runs over all possible states of the relative
motion of two fermions with different spin states. Therefore,
the spectrum of the relative motion determines the second
virial coefficient. The average energy per atom in unit of the
Fermi energy EF = (3N )1/3

�ω (ω is the trap frequency, and
N is the total atom number) may be written as

E

NEF

= 3

(
T

TF

)4 [
3
∫ ∞

0
t2 ln(1 + ze−t )dt

+ 6�b2z
2 + 2z2 T

∂�b2

∂T

]
, (4)

where TF = EF /kB is the Fermi temperature. The fugacity z

(or the chemical potential μ) is determined by the total particle
number N , and at a given temperature, can be solved from(

T

TF

)3 [
z

∫ ∞

0

t2e−t

1 + ze−t
dt + 4�b2z

2

]
= 1

3
. (5)

Subsequently, with the second virial coefficient �b2 and the
fugacity z in hand, the average energy per atom can easily be
obtained from Eq. (4). In addition, the other thermodynamic
quantities can also be acquired in the same way.

III. THERMODYNAMICS DEEP INSIDE THE
RESONANCE WIDTH

As we know, strongly interacting degenerate Fermi gases
manifest universality in the vicinity of the resonances [9,10].
However, for narrow Feshbach resonances, the appreciable
effective range becomes essential in this strongly interacting
region. In this section, we are going to study how the
universality of a strongly interacting Fermi gas is affected
by the large effective range deep inside the resonance width.

In order to identify the effective range near the Feshbach
resonance, we may use the effective-range expansion of the
scattering phase shift φ0 in the low-energy limit [1,2]. We find
the scattering length a0 is expressed as

a0 = abg

(
1 − �

B − B0

)
, (6)

and the effective range has a general form

r0 = −2�
2

m

�

abgγ (B − B0 − �)2
, (7)

where abg is the background scattering length, B0 is the
magnetic field strength at the resonance, � is the width of the
resonance, and γ is the magnetic moment difference between
two atoms in the open channel and the molecule in the closed
channel. Deep inside the resonance width, i.e., B − B0 � �,
the B dependence of the effective range is absent. The effective
range becomes a constant, i.e., r0 ≈ −2�

2/(mabgγ�), and is
determined only by the intrinsic properties of the resonance.

In this case, it is quite convenient to use the modified
pseudopotential introduced in Refs. [8,17] to describe the
two-body interaction,

V0(r) = −4π�
2

m

(
− 1

a0
+ 1

2
r0k

2

)−1

δ(r)
∂

∂r
r, (8)

in which the constant effective range is included besides the
scattering length. Here, r is the relative coordinate of two
atoms. After some straightforward and conventional algebra,
the relative-motion Schrödinger equation of two atoms is
reduced to the following equation [8],

2�
(− E

2�ω
+ 3

4

)
�

(− E
2�ω

+ 1
4

) = d

a0
− r0

d

E

�ω
, (9)

where �(·) is the � function. We may easily obtain the
two-body spectrum of the relative motion from Eq. (9) as
presented in Fig. 1. The effective range of the narrow Feshbach
resonance for 6Li at B0 = 543.3G in the experiment [1] is r0 =
−7 × 104aB (aB is the Bohr’s radius), and the trap frequency is
around ω = 2π × 1.3 ∼ 3.6 kHz, which determines the ratio
of the effective range r0 to the trap characteristic length d =√

2�/(mω), i.e., r0/d ≈ −2 ∼ −4. In our calculations, we
choose r0/d = −3 without loss of generality. As a comparison,
we also plot the relative-motion spectrum of two atoms across a
broad resonance, where the effective range is set to be r0/d = 0
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FIG. 1. (Color online) The relative-motion spectrums of two
atoms in a harmonic trap for broad (left) and narrow (right)
resonances, respectively. The red dashed lines are the eye guidance
for the evolution between two adjacent energy levels.

in the broad-resonance limit. Obviously, the properties of the
narrow-resonance spectrum are quite different from those of
the broad resonances. For the narrow Feshbach resonance, the
energy-level transitions occur on the BCS side. The higher the
energy is, the more deeply in the BCS side the transitions are
located. However, all the energy-level transitions are located
in the vicinity of the broad resonance, and then such systems
present the universality at the unitarity limit.

With the relative-motion spectrum of two atoms in hand,
we can easily obtain the second virial coefficient according
to Eq. (3). In order to demonstrate how the universality of
a strongly interacting Fermi gas is affected by the effective
range, we plot in Fig. 2 the evolution of the second virial

FIG. 2. (Color online) The second virial coefficients �b2 as func-
tions of the inverse effective range −d/r0 at different temperatures.
Here, we have chosen the total atom number N = 1 × 105. The two
horizontal dashed lines indicate the narrow- and broad-resonance
limits, respectively.

FIG. 3. (Color online) The temperature dependence of the inter-
action energy of a strongly interacting harmonically trapped Fermi
gas for a broad resonance (r0/d = 0) and a narrow resonance
(r0/d = −3). The insert is the evolution of the interaction energy
with the effective range from the broad-resonance limit to the
narrow-resonance limit at the temperature T = 2TF . Here, we have
chosen the atom number N = 1 × 105 in our calculation.

coefficient from the broad-resonance limit to the narrow-
resonance limit at different temperatures, as the effective
range increases. In the broad-resonance limit, it is well known
that the second virial coefficient has a universal value 1/4
for a strongly interacting harmonically trapped Fermi gas
[6]. Interestingly, we find that this second virial coefficient
will continuously evolve to a larger universal value 1/2 in
the narrow-resonance limit, which means the large effective
range will result in a stronger interaction between atoms
at the resonance. Consequently, for a homogeneous Fermi
gas at the resonance, we find the second virial coefficient
�bhom

2 = 2
√

2�b2 = √
2 [6]. This result is consistent with

that of Ref. [2] (note that there is a
√

2 factor difference in the
definition of the second virial coefficient).

According to Eq. (4), we can easily calculate the energy of
a strongly interacting harmonically trapped Fermi gas as well
as that of an ideal gas at a given temperature, and the difference
gives the interaction effect as shown in Fig. 3. At the resonance,
the interaction energy of a narrow resonance with appreciable
effective range is larger than that of the broad resonance. As
the temperature increases, the Fermi gas may approach to a
classical ideal gas, and the interaction effect vanishes. The
evolution of the interaction energy with the effective range
from the broad-resonance limit to the narrow-resonance limit
is also illustrated in the insert of Fig. 3 at a specific temperature
T = 2TF . We find the Fermi gas becomes more strongly
interacting as the effective range increases at the resonance.

IV. THERMODYNAMICS FAR BEYOND THE
RESONANCE WIDTH

Unlike the broad Feshbach resonance, it is relatively
difficult to experimentally explore the properties of a strongly
interacting Fermi gas quite deep inside a narrow Feshbach
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resonance, due to the small resonance width. In the narrow-
resonance experiment, it requires the controllability of the
magnetic field with high stability and accuracy [1]. However,
even outside the resonance width, the narrow-resonance
system should also manifest unique properties, which are
different from those of the broad resonance. In this section,
we are going to study the thermodynamics of a harmonically
trapped two-component Fermi gas across a narrow Feshbach
resonance beyond the resonance width.

As we already find in Eqs. (6) and (7), both the scattering
length and effective range are dependent on the magnetic field
strength B across a narrow Feshbach resonance. In this case,
it is convenient to use the pseudopotential with an energy-
dependent scattering length a0(k) [16],

V0(r) = 4π�
2a0(k)

m
δ(r)

∂

∂r
r, (10)

to describe the two-body interaction, where the energy-
dependent scattering length a0(k) is defined from the scattering
phase shift φ0(k) as [1,2]

a0(k) ≡ − tan φ0(k)

k

= abg

�
2k2/m − γ (B − B0 − �)

�2k2/m − γ (B − B0)
. (11)

Then the relative-motion spectrum of two atoms is determined
by the following equation,

B − B0 =
(
E + γ�

)
f (E) − E d

abg[
f (E) − d

abg

]
γ

, (12)

where

f (E) = 2�
(− E

2�ω
+ 3

4

)
�

(− E
2�ω

+ 1
4

) , (13)

and we have taken the approximation k2 = mE/�
2 [8,19,20].

At a given magnetic field strength, we can easily solve
the relative-motion spectrum of two atoms, and subsequently
evaluate the second virial coefficient according to Eq. (3).
In Fig. 4, we plot the second virial coefficient in a real
system of atoms 6Li across a narrow Feshbach resonance at
B0 = 543.25G with the width �B = 0.1G. At the resonance,
i.e., B = B0, we find the second virial coefficients at different
temperatures almost cross in one point quite near the universal
value 1/2, which is consistent with the result of the last section.
In addition, we interestingly find the second virial coefficient
with nonzero value extends far beyond the resonance width to
the deep BCS side, which means the Fermi gas is still strongly
interacting even far away from the resonance.

The interaction energy of a harmonically trapped Fermi gas
across a narrow Feshbach resonance at different temperatures
is presented in Fig. 5. As we anticipate, there is indeed an
appreciable interaction effect outside the resonance width.
This is quite different from the broad-resonance case, in which
we usually take the region within the resonance width as
the strongly interacting area. For narrow resonances, due to
large Fermi energy compared to the resonance width, there
may be still scattering resonance even above the zero-energy-

FIG. 4. (Color online) The second virial coefficient �b2 across
a narrow Feshbach resonance at different temperatures. Here, we
consider the narrow Feshbach resonance of a Fermi gas 6Li at
B0 = 543.25G with the width � = 0.1G, background scattering
length abg = 62aB , and the magnetic moment difference γ = 2μB

(μB is the Bohr’s magneton). We have chosen the trap frequency
ω = 2π × 2 kHz, and the atom number N = 1 × 105. The pink area
is the conventional strongly interacting region within the resonance
width.

resonance point, i.e., B = B0 [2,14]. That is why the Fermi
gas is still strongly interacting even deep in the BCS side.

V. ABOUT THE ENERGY-DEPENDENT INTERACTION

In our previous calculations, we just phenomenologically
introduce an energy-dependent interaction in the pseudopoten-
tial model to characterize the narrow resonance. It is also very
interesting to understand the origin of such energy-dependent
interaction. We will see that if a metastable quasibound state
with a positive energy [21] is supported by the interatomic

FIG. 5. (Color online) The interaction energy of a harmonically
trapped Fermi gas across a narrow Feshbach resonance at different
temperatures. We also consider the narrow Feshbach resonance of a
Fermi gas 6Li at B0 = 543.25G with all parameters in Fig. 4.
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FIG. 6. (Color online) The square-well-barrier potential. Here,
QBS is short for the quasibound state.

potential, it may result in a narrow scattering resonance with
a large effective range.

To this end, let us consider a square-barrier-well potential,
in which the interaction potential between atoms takes the
form,

V (r) =

⎧⎪⎨
⎪⎩

−V1, r < α,

V2, α < r < β

0, r > β.

, (14)

as illustrated in Fig. 6. Although the real Feshbach resonance
is usually characterized by a two-channel model theory, the
freedom of the choice of the interaction potential between
ultracold atoms enables us to extract the key information from
this simple single-channel model. This toy model is effectively
equivalent to the two-channel model, and is already sufficient
to realistically mimic the narrow Feshbach resonance [22].

We may easily solve the scattering problem within this
interatomic potential, in presence and absence of the barrier,
respectively. The scattering length a0 and effective range r0

can be evaluated from the scattering phase shift φ0,

k cot φ0 = − 1

a0
+ 1

2
r0k

2. (15)

From Fig. 7, we find the presence of the barrier raises a much
larger effective range near the resonance compared to the
case without the barrier, which means this square-well-barrier
model indeed causes an energy-dependent interaction. This is
because, in presence of the barrier, a quasibound state with
a positive energy may have a finite lifetime, and results in
a relatively small energy broadening due to the uncertainty
principle, compared to the case without the barrier. In this case,
when the incident atoms energetically approach this bound
state, a narrow scattering resonance occurs. Similarly, in the
real two-channel Feshbach resonance, the lifetime of the bound
state in the closed channel is prolonged due to the large Fermi
energy of atoms in the open channel [14,23], and thus induces
a relatively narrow Feshbach resonance.

FIG. 7. (Color online) The scattering length a0/β and the ef-
fective range r0/β as functions of the square-well depth V1/V0 in
absence (left panel) and in presence (right panel) of a barrier, where
V0 = √

�2/mβ2 and m is the atomic mass. Here, we have chosen
α/β = 0.5.

VI. CONCLUSIONS

In summary, we have presented the virial expansion in
studying the high-temperature thermodynamics of a harmoni-
cally trapped Fermi gas across a narrow Feshbach resonance.
Deep inside the width of a narrow resonance, the second virial
coefficient is obtained based on the two-body spectrum in a
harmonic trap. We find the second virial coefficient undergoes
a continuous evolution from 1/4 in the broad-resonance limit
to 1/2 in the narrow-resonance limit, as the effective range
increases. This results in a larger interaction energy for a
narrow resonance compared to that of a broad resonance.
Besides, contrary to our knowledge of a broad resonance, there
is still a considerable interaction effect far beyond the width
of a narrow resonance. Finally, we present a simple toy model
for helping us understand the origin of the energy-dependent
interaction in narrow Feshbach resonances. All our results
can be directly tested in current narrow Feshbach resonance
experiments, which are generally carried out in a harmonic
trap.
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