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Coherent dynamics of Rydberg atoms in cosmic-microwave-background radiation

Timur V. Tscherbul and Paul Brumer
Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control,

University of Toronto, Toronto, Ontario M5S 3H6, Canada
(Received 21 May 2013; revised manuscript received 20 December 2013; published 30 January 2014)

Rydberg atoms excited by cold blackbody radiation are shown to display long-lived quantum coherences on
time scales of tens of picoseconds. By solving non-Markovian equations of motion with no free parameters we
obtain the time evolution of the density matrix and demonstrate that the blackbody-induced temporal coherences
manifest as slowly decaying (100 ps) quantum beats in time-resolved fluorescence. An analytic model shows
the dependence of the coherent dynamics on the energy splitting between atomic eigenstates, transition dipole
moments, and coherence time of the radiation. Experimental detection of the fluorescence signal from a trapped
ensemble of 108 Rydberg atoms is discussed, but shown to be technically challenging at present, requiring
cosmic-microwave-background amplification somewhat beyond current practice.
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I. INTRODUCTION

The interactions of atoms and molecules with incoherent
light (such as blackbody radiation, BBR) play a central role
in research fields as diverse as photosynthesis [1–4], photo-
voltaics [5], precision spectroscopy and measurement [6], and
atomic and molecular cooling and trapping [7,8]. Thermal
BBR is a ubiquitous perturber that shifts atomic energy
levels [10], limiting the accuracy of modern atomic clocks [6,9]
and reducing the lifetime of Rydberg atoms [7,11–13] and
trapped polar molecules [8]. Recent theoretical developments
suggest, however, that quantum-noise-induced coherence ef-
fects induced by BBR can be used to cool quantum sys-
tems [14] and enhance the efficiency of solar cells [5].

The dynamical response of a material system to incoherent
light is determined, among other factors, by the coherence
time, a time scale over which the phase relationship between
the different frequency components of the light source is
maintained [15]. A natural light source such as the Sun
is well characterized as a BBR emitter with a temperature
of T = 5.6 × 103 K and a extremely short coherence time
of τc = �/kT ∼ 1.3 fs [16–20], where k is the Boltzmann
constant. As a consequence, incoherent excitation of atomic
systems on time scales relatively long compared to τc produces
stationary mixtures of atomic eigenstates that do not evolve
in time [4,18,19,21]. However, the coherence time of BBR
increases with decreasing temperature and can reach values
in excess of 2 ps at 2.7 K, the temperature of the cosmic-
microwave-background radiation (CMB) [22]. This motivates
interest in examining the temporal dynamics of atomic systems
interacting with the CMB. However, since the CMB intensity is
(300/2.7)4 = 1.5 × 108 weaker than that of BBR at 300 K, the
absorption signal in most ground-state atoms and molecules
even with suitably amplified CMB radiation [23], is very
small. As an initial step toward resolution of this difficulty,
we propose to use highly excited Rydberg atoms, whose large
transition dipole moments make them extremely sensitive to
external field perturbations [7]. Previous experimental work
has explored the absorption of BBR by Rydberg atoms,
leading to population redistribution, photoionization, and
lifetime shortening [7,11,13]. However, these experiments
were focused on measuring population dynamics with no

attention to coherence effects. Similarly, no attention has been
paid to coherence properties of the CMB and the role it
might play in enhancing cosmological information (see, e.g.,
Refs. [24–27]).

In this article we examine long-lived quantum coherence
effects that occur in one-photon absorption of cold blackbody
radiation (CBBR—a term that we henceforth use to denote
BBR at 2.7 K) by highly excited Rydberg atoms [7]. Using
a non-Markovian approach [21,28] to explore the dynamics
of one-photon CBBR absorption, we show that the time-
dependent fluorescence intensities of Rydberg atoms exhibit
the quantum beats due to the coherences induced by a suddenly
turned-on interaction with CBBR. This suggests an experiment
to explore the coherence properties of a cold trapped ensemble
of Rb atoms in the presence of CBBR. Our results demonstrate
that non-Markovian and quantum coherence effects play a
major role in the short-time population dynamics induced by
CBBR.

Furthermore, we develop an analytical model for the
coherences in the long-time limit that is valid for an arbitrary
noise source, here applied to CBBR. The model reproduces
the coherent oscillations observed in numerical simulations
of the density matrix and provides insight into the role of
the energy level splittings, the transition dipole moments,
and the coherence time of the radiation in determining the
time evolution of the coherences. Significantly, we show that
the ratio of coherences to populations declines with time
as 1/|ωij t |, where ωij is the energy splitting between the
eigenstates i and j . Thus, the physical origin of the long-lived
coherences is due to the small energy splittings between the
eigenstates populated by one-photon absorption of CBBR.

The paper is organized as follows. Section II discusses the
theory and Sec. III provides results and a discussion of the
nature of the development and depletion of the coherences.

II. THEORY

Theoretically, the interaction of BBR with atoms is usually
considered within the framework of Markovian quantum opti-
cal master equations [29], leading to Pauli-type rate equations
for state populations parametrized by the Einstein coefficients.
These treatments generally assume that the coherences induced
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by BBR are negligibly small. The non-Markovian approach
adopted here [18,21,28] allows us to examine these noise-
induced coherences and memory effects arising from a finite
correlation time of BBR.

The time evolution of atomic populations and coherences
under the influence of incoherent radiation (such as BBR),
suddenly turned on at t = 0, is given by [20,21,28]

ρij (t) = 〈μi0μ
∗
j0〉p

�2
e−iωij t

∫ t

0
dτ ′

∫ t

0
dτ ′′C(τ ′,τ ′′)eiωi0τ

′
e−iωj0τ

′′
.

(1)

Here ρij (t) are the elements of the atom density matrix in
the energy representation, μi0 = 〈0|μ̂|i〉 are the transition
dipole moment matrix elements connecting the initial atomic
eigenstate |0〉 = |n0l0m0〉 and the final states |i〉 = |nlm〉 with
energies ε0 and εi , 〈· · · 〉p denotes the polarization-propagation
average [30], and ωij = (εi − εj )/�. For the sake of clarity,
we further assume that the atom resides in a single state
|0〉 = |n0l0m0〉 before the BBR is turned on at t = 0. Since
ρ00 � 1 at all times, the density matrix [Eq. (1)] describes
the populations and coherences among the states populated by
BBR excluding the initial state [21].

The dynamics of the atom’s response to incoherent radiation
is determined by the two-time electric field correlation function
C(τ ′,τ ′′) = 〈E(τ ′)E∗(τ ′′)〉 in Eq. (1). For a stationary BBR
source, the correlation function depends only on τ = τ ′ − τ ′′
and is given by [16,17]

C(τ ) = E2
0 (90/π4)ζ (4,1 + iλτ ), (2)

where ζ (4,x) is the generalized Riemann ζ function [16,17],
λ = kT /�, T is the temperature of the BBR, and E2

0 =
[2π3/(45�

3c3)](kT )4 is the mean intensity of the BBR electric
field [16,17,31]. Note that Eq. (2) applies when ωi0 > 0
(absorption); C∗(τ ) should be used for stimulated emission
(ωi0 < 0). Because 〈E(τ ′)E(τ ′′)〉 = 0 for CBBR [15,29], there
is no coherence between those levels populated in absorption
and those levels populated in stimulated emission from a
given initial state [28]. Combining Eq. (2) with Eq. (1), and
evaluating the time integrals, gives (see the Appendix for
details)

ρii(t) = 〈|μi0|2〉p
�2

{t[K(+)
0 (ωi0,t) + K(−)

0 (ωi0,t)]

−K(+)
1 (ωi0,t) − K(−)

1 (ωi0,t)}, (3)

where

K(±)
n (ω,t) =

∫ t

0
τnC(±τ )e±iωτ dτ (4)

are half-Fourier transforms of τ -scaled time correlation func-
tions. In the long-time limit (t → ∞), the right-hand side
of Eq. (3) grows linearly with t . Note that since we neglect
spontaneous emission, the long-time limit is restricted to time
scales that are short compared to the (very long) radiative
lifetime, 200 μs, of the 65s state [32]. Using an integral
representation for the generalized Riemann ζ function, we

obtain the limit (see the Appendix for details)

ρii(t) = 2π

�2
〈|μi0|2〉pI (ωi0)t (t → ∞), (5)

where I (ω) = 2�
3

πc3
ω3

e�ω/kT −1 is proportional to Planck’s spectral
density of BBR [15]. Hence, in the long-time (Markovian)
limit, this approach reduces to Fermi’s golden rule [30] com-
monly used to calculate the rates of BBR-induced population
transfer [7,32].

The off-diagonal elements of the density matrix are ob-
tained in the Appendix as

ρij (t) = 〈μi0μ
∗
j0〉p

�2

1

iωij

{[K(+)
0 (ωj0,t) + K(−)

0 (ωi0,t)]

− e−iωij t [K(+)
0 (ωi0,t) + K(−)

0 (ωj0,t)]} (6)

Note that due to the double half-Fourier transforms in Eq. (1),
Eq. (6) is sensitive to frequency cross correlations in the
CBBR.

III. RESULTS AND DISCUSSION

A. Quantum dynamics of Rydberg atoms in CBBR:
Populations and Coherences

We now apply the approach developed in Sec. II to examine
the effects of quantum coherence in CBBR excitation of
high-n Rydberg atoms. In order to parametrize the equations
of motion (1), the Rydberg energies and transition dipole
moments for 85Rb are calculated by solving the radial
Schrödinger equation for the Rydberg electron using the
Numerov method [7,28,33]. To verify the accuracy of our
results, we calculated the spontaneous emission rates from the
30s Rydberg state to various final np states. These results agree
with those reported in Ref. [32] to within <5%.

Figure 1(a) shows the proposed setup for examining CBBR-
induced coherences. A highly excited Rydberg state of an
alkali-metal atom (here we focus on the 65p state of 85Rb)
is created at t = 0 by, e.g., excitation from the ground 5s

state [34]. The newly prepared Rydberg state immediately
starts to interact with the 2.7 K CBBR background, establish-
ing a coherent superposition of the neighboring ns and nd

Rydberg states [11]. In order to map out the time evolution of
Rydberg populations and coherences, Eq. (1) is parametrized
by the accurate transition dipole moments of 85Rb and by the
CBBR correlation function given by Eq. (2).

The rapid turn-on of CBBR acts as a coherent perturbation,
creating a Rydberg wave packet that evolves with time and then
slowly decoheres. Figure 1(b) shows the Rydberg energy levels
of 85Rb superimposed on the CBBR spectrum at 2.7 K. While
the spectral width of the radiation is broad enough to excite the
Rydberg levels with principal quantum numbers n = 35–115,
the transition dipole moments [Fig. 1(c)] decrease dramatically
with increasing 	n = n − n0, so most of the population
transfer from the 65p state occurs to the neighboring Rydberg
states with the largest transition dipole moments [see Fig. 1(c)]
via one-photon absorption (66s, 64d) and stimulated emission
(65s, 63d). For this reason, CBBR-induced photoionization
occurs at a slow rate and can be neglected for n0 = 65.
Spontaneous emission from the 65p state is also neglected
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FIG. 1. (Color online) (a) Proposed experimental setup for ob-
serving long-lived quantum coherences with Rydberg atoms. At time
t = 0, the atom in the 65p Rydberg state (red circle) begins to interact
with CBBR (wavy lines), leading to a decohering Rydberg wave
packet composed of the ns and nd states. The wave packet evolves
and decays to the 5p state, with the quantum coherences leaving
their signatures in the fluorescence signal I (t) (see text). (b) Binding
energies of highly excited ns Rydberg states of 85Rb together with
the 2.7 K Planck spectrum of CBBR radiation. The zero of energy
corresponds to the ionization threshold. (c) n dependence of the
calculated transition dipole moments squared from the initial 65p

state to the ns states (triangles) and the nd states (circles).

since it occurs on a much longer time scale (200 μs [32]) than
considered in this work.

Figure 2(a) shows the time evolution of several represen-
tative density matrix elements given by Eqs. (3) and (6).
At t � 50 ps, the off-diagonal elements of the density
matrix are of the same order of magnitude as the diagonal
elements, suggesting the presence of coherences that play a
role in the dynamical evolution of a Rydberg atom during
the first 50 ps of its exposure to CBBR. At short times,
state populations exhibit substantial deviations from the linear
behavior predicted based on the standard Markovian quantum
optical master equation [29]. The latter is shown in Fig. 2(a)
as the linear solution ρii(t) = W0→i t , where W0→i is the
standard BBR-induced transition rate related to the Einstein B

coefficient [7]. The exact non-Markovian population dynamics
is different in character and magnitude [28] but becomes linear
in the larger t limit.

As shown in Fig. 2(a), the diagonal elements of the
density matrix grow linearly with time while off-diagonal
elements oscillate. As a result, the populations begin to
significantly dominate over the coherences. Thus, BBR ex-
citation produces a stationary mixture of atomic eigenstates,
with coherences playing a negligible role in the long-time
limit (nanoseconds) [18,20]. This gradual reduction of the
coherences to population ratio is the mechanism of BBR-
induced decoherence for the particular initial state. It differs
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FIG. 2. (Color online) (a) The population of the representative
65s state of Rb as a function of time. (b) The time dependence of
the purities for the absorption and stimulated emission blocks of the
density matrix (7). The dashed line in the upper panel shows the
expected Markovian behavior of the populations.

from other cases [35,36] where the initial state is a coherent
superposition of energy eigenstates.

To see the decoherence times more clearly, Fig. 2(b) shows
a useful measure of decoherence—the purity of the density
matrix [37]

ς = Tr
(
ρ2

±
) = [N±(t)]−1

∑
i,j=1

|〈i|ρ±(t)|j 〉|2, (7)

where ρ± are the subblocks of the full density matrix
composed of the states populated in absorption and stimulated
emission from the initial state and the normalization factors
N±(t) = ∑

i〈i|ρ±(t)|i〉2 ensure trace conservation [38]. The
purity decays over a time scale of >100 ps, which signals
the formation of an incoherent statistical mixture of atomic
eigenstates in the process of CBBR excitation.

As is typical of direct CBBR measurements, the populations
in Fig. 2(a) are quite small. As such, we note standard CMB
amplification practices [23], which at present can give power
gains in excess of 65 dB. Below we report results for a gain
of 90 dB, which is technically possible, but experimentally
challenging.

B. Observables: Time-resolved fluorescence

While clearly suggesting the existence of long-lived coher-
ences on time scales of up to ∼100 ps, neither the density
matrix elements nor the purity values plotted in Fig. 2
are experimental observables. To explore the possibility of
experimentally measuring the long-lived Rydberg coherences,
we evaluate the time-resolved fluorescence signal from the ns

and nd states of 85Rb populated by the interaction with CBBR
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FIG. 3. (Color online) (a) Time-dependent fluorescence intensity
for Na = 108 Rydberg atoms initially in the n0 = 65p state interact-
ing with CBBR amplified by a factor of 90 dB. (b) Average number of
emitted photons Nph(t) (see text). The final state to which fluorescence
occurs is |if 〉 = |5p〉. Also shown are the incoherent and coherent
contributions to the total fluorescence intensity and to Nph(t).

(see Fig. 1). These states decay to the 5p state of Rb (|if 〉) by
emitting a photon at a transition frequency of 620 nm, which
can be detected with high quantum efficiency. The total power
emitted on these transitions by Na atoms is given by [21,39]

I (t) = I0Tr{|μ̂if 〉〈if μ̂|ρ(t)} = I0

∑
i,j=1

μiif μif jρji(t), (8)

where I0 = Na
4
3ω4/(4πε0c

3), ε0 is the vacuum permittivity, c

is the speed of light, and ω is the transition frequency, assumed
the same for all i andj states (since |ωij | 
 |ωiif |).

Figure 3(a) shows the calculated time dependence of the
fluorescence intensity for Na = 108 Rb atoms interacting with
amplified CBBR. The time-resolved emission signal displays
pronounced oscillations over the timescales of 100 ps. The
oscillations can be separated into coherent and incoherent
parts, I (t) = Iincoh(t) + Icoh(t), with [21]

Iincoh(t) = I0

∑
i=1

μiif μif iρii(t),

Icoh(t) = I0

∑
i �=j

μiif μif jρji(t). (9)

The incoherent contribution Iincoh(t) depends on the diagonal
elements of the density matrix (populations) while the coherent
contribution Icoh(t) specifically highlights the role of quantum
coherences. As shown in Fig. 3(a), the coherent contribution
to I (t) remains significant up until t < 100 ps, suggesting
the possibility of experimental observation of CBBR-induced
Rydberg coherences and their subsequent decoherence.

Figure 3(b) displays the time dependence of the integrated
fluorescence signal F (t) = ∫ t

0 I (τ )dτ , with I (τ ) given by
Eq. (8), which represents the experimentally measurable
average number of photons emitted within the time window
[0,t]: Nph(t) = F (t)/�ω. The calculated photon flux is ∼0.2
photons in the first 10 ps, ∼2.3 photons in the first 40 ps, and
∼26.6 photons in the first 100 ps of observation, assuming
100% photodetection quantum efficiency. While not showing
any coherent oscillations, the integrated signal including the
coherence contributions [solid line in Fig. 3(b)] is smaller
than its incoherent counterpart [dashed line in Fig. 3(b)] by
a factor of 4 at t = 40 ps and by 40% at t = 100 ps. This
difference represents a clear signature of time evolution of the
CBBR-induced coherences.

C. Analytics of noise-induced coherences and time scale for
eigenstate formation

As shown in Figs. 2 and 3, the CBBR-induced coherent
oscillations survive on a time scale much longer (∼100 ps)
than the coherence time of CBBR at 2.7 K (�/kT = 2.8 ps).
To explain this surprising longevity, we develop an analytical
model for the time evolution of the coherences, based on
Eq. (6). The model provides physical insight into the role of
atomic energy levels, the transition dipole moments, and the
coherence time of the radiation, as they determine the coherent
evolution of the Rydberg atom. In particular, the results show
coherences that oscillate with the frequency determined by the
energy level splitting and coherence properties of the radiation
that enter through the “phase shifts” and various prefactors that
can be assumed to be constant in the long-time limit (t � τc).

We emphasize that the results obtained here apply to the
temporal dynamics of any atomic and/or molecular system
coupled to incoherent radiation that is described by an arbitrary
stationary correlation function, including CBBR.

Introducing the complex coefficients

Sij (t) = K(+)
0 (ωi0,t) + K(−)

0 (ωj0,t) (10)

and using the property S∗
ij = Sji which follows from the

definition (4), we can rewrite the off-diagonal density matrix
elements [ Eq. (6)] as

ρij (t) = 〈μi0μ
∗
j0〉p

�2

1

iωij

[S∗
ij − e−iωij tSij ]. (11)

The coefficientsSij are plotted in Fig. 4 as a function of time
for a sample pair of eigenstates |1〉 = |66s〉 and |2〉 = |67s〉
populated by interaction with CMB starting from the |65p〉
initial Rydberg state (see Fig. 1). The states are separated
by an energy gap of �ω21 = 0.86 cm−1 (1/ω21 = 6.2 ps).
The correlation function C(τ ) of the BBR decays on the
times cale tc ∼ 3τc ≈ 10 ps (see the Appendix). Accordingly,
both the magnitudes and the phases of the coefficients Sij =
|Sij |eiφij display time-dependent behavior during times t < tc
(here ∼10–15 ps), after which (t > tc) they can be well
approximated by a constant (the constant Sij approximation,
see Fig. 4). Note that the diagonal matrix elements Sii are real.
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FIG. 4. (Color online) Time dependence of the coefficients Sij .
The inset shows the cosine of the phase angle φ12 as a function of time.
Note that the Sij tend to constant values in the limit t � τc = 2.8 ps
as appropriate for the CMB.

For the absolute value of the off-diagonal density matrix
elements in Eq. (11), we find

|ρij (t)| = |〈μi0μ
∗
j0〉p|

�2

|Sij |
|ωij |2| sin(φij − ωij t/2)|, (12)

whereas the real and imaginary parts of the coherences are
given by

Reρij (t) = −〈μi0μ
∗
j0〉p

�2

|Sij |
ωij

[sin(φij − ωij t) + sin φij ],

Imρij (t) = 〈μi0μ
∗
j0〉p

�2

|Sij |
ωij

[cos(φij − ωij t) − cos φij ]. (13)

These expressions show that the absolute magnitude of the
coherence oscillates with the frequency ωij /2 determined by
the energy splitting between the two eigenstates. The real
and imaginary parts of the coherences oscillate at twice this
frequency. A related result was obtained in Ref. [20] for
the case of white noise. Equation (12) is, however, more
general, as it applies to any kind of colored noise described
by an arbitrary correlation function C(τ ) (the only essential
requirement being that the noise is stationary so that Eq. (6)
applies). Each particular correlation function determines the
dynamics through different Sij coefficients in Eq. (11), which
contains the characteristics of the radiation.

Equations (13) provide convenient analytic expressions for
noise-induced coherences in the limit t � τc and are straight-
forward to parametrize via the coefficients Sij . We note that
these expressions could significantly reduce computational
challenges in, e.g., calculating the density matrix dynamics
of molecular systems. Figure 5(a) shows the real part of the
coherence ρ12(t) calculated using Eq. (13) parametrized by
the constant, asymptotic values for |S12| and φ12 from Fig. 4.
The analytic result is in excellent agreement with the exact
calculation, thereby validating the constant Sij approximation.
The disagreement at short times is expected, since the Sij vary
strongly in this region, and hence cannot be approximated
by constants. In particular, Eqs. (13) parametrized by the
asymptotic values of Sij disagree with the correct zero-time
result ρij (0) = 0. This drawback can be remedied, if desired,
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FIG. 5. (Color online) (a) The real part of the coherence between
levels |1〉 = |66s〉 and |2〉 = |67s〉 as a function of time. Solid line,
exact result [Eq. (5), Fig. 2]; dashed line, constant Sij approximation
(Eq. 13). (b) The ratio C12 = |ρ12(t)|/[ρ11(t) + ρ22(t)] as a function of
time. Solid line, exact result; dashed line, constant S12 approximation
[Eq. (15)] .

by using a different parametrization such that Sij (t) → 0 as
t → 0.

A useful measure of the relative importance of coherences
and populations is the ratio [20]

Cij (t) = |ρij (t)|
ρii(t) + ρjj (t)

. (14)

A small value of Cij indicates that the magnitude of the
coherence ρij is small compared to that of the populations,
which is characteristic of a nearly pure statistical mixture.
Hence, the time scale for the decay of C can be used to
quantify the evolution from a purely coherent state at t = 0
to a statistical mixture of stationary eigenstates.

To obtain an analytic expression for the C ratio, we use an
approximate result for state populations obtained from Eq. (3)
by omitting the K(±)

1 terms, which are negligible compared to
the other two terms in the limit t � τc [28]. Combining the
resulting expression with Eq. (12), we find

Cij (t) = 1

|ωij |t
|〈μi0μj0〉p|

〈|μi0|2〉pSii + 〈|μj0|2〉pSjj

|Sij |

×2| sin(φij − ωij t/2)|. (15)

Figure 5(b) plots the time variation of the C ratio for the
Rydberg states |1〉 and |2〉 defined above. It is seen to decay
in time as 1/(|ωij |t) and oscillates with the frequency ωij /2,
due to the oscillating behavior of the absolute magnitude of
the coherence (12). This shows that the coherences between
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the Rydberg levels, evident in Figs. 2 and 3, survive for long
times because of the small energy splittings between the levels
populated by one-photon absorption and stimulated emission
of CBBR. Longevity of coherences in association with small
energy level splittings has been noted before, albeit in different
contexts and with different functional dependences on the
splittings [35,36,40] Indeed, in this case, the dependence on
ωij t is reminiscent of the energy-time uncertainty principle,
as the system strives, in time, to perceive individual energy
levels.

IV. SUMMARY AND FUTURE PROSPECTS

In summary, the long-lived temporal coherence, and asso-
ciated decoherence, in Rydberg atoms induced by the sudden
turn-on of CBBR at 2.7 K has been examined. The physical
mechanism behind the coherences and their slow decay is
the long coherence time of CBBR and the small energy level
splittings of the Rydberg levels excited by the CMB. The
large transition dipole moments of the Rydberg atoms make
these coherences manifest in various physical observables.
Directly measuring CMB coherence properties via fluores-
cence detection would require 90-dB amplification of the
incident CMB signal, beyond the current practice of 67 dB. At
present, achieving such a high gain experimentally over a broad
frequency interval (10–20 GHz) is a formidable challenge.
However, recent developments in amplification technology
allow for higher gains over much wider frequency intervals
than possible with high electron mobility transistor (HEMT)
amplifiers [41], and these may resolve experimental challenges
associated with carrying out the proposed experiment.

Finally, we note that the long-lived coherences shown in
Fig. 2 can also be observed with any experimental technique
that is sensitive to coherent superpositions of the atom’s
excited states. Examples include selective field ionization [7],
photoionization [7], and half-cycle pulse ionization [42]. The
former technique also provides a direct route to measuring
non-Markovian deviations from the linear behavior of state
populations at short times (Fig. 2 a), which also relates to the
coherence properties of CBBR [28].

One extension of this work is readily motivated. The study
in this paper has examined the sudden turn-on associated with
a single state prepared in an excited Rydberg state. However,
slower preparation of Rydberg states, e.g., using a 15-ps laser
pulse is expected to produce [34] additional interesting results.
That is, such a pulse prepares a coherent superposition of five
eigenstates centered around n = 65, rather than a single state,
as assumed above. This superposition will then couple, via the
CMB, to adjacent s and p Rydberg states. Fluorescence from
this collection of levels is then expected to display a more
complicated pattern of quantum beats than described above,
which then decoheres in time. In addition, since the initial state
is then a prepared superposition of energy eigenstates, decay of
decoherence on assorted time scales is also anticipated [35,36].
Further, one can consider modifying the laser pulse shape in
order to enhance the quantum beat signal. Such studies are
under way.
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APPENDIX

This appendix outlines the derivation of the equations of
motion for the density matrix [Eqs. (3) and (5)] that describe
the interaction of a Rydberg atom with BBR.

The time evolution of the density matrix for a Rydberg atom
interacting with CBBR is given by Eq. (1). For a stationary
CBBR source, the correlation function C(τ ′,τ ′′) is a function
of τ = τ ′ − τ ′′ only. The absolute value and the phase of the
CBBR correlation function given by Eq. (2) are plotted in
Fig. 6 as a function of τ for TCMB = 2.718 K [17].

By changing the integration variables τ± = τ ′ ± τ ′′, Eq. (1)
can be recast in the form

ρij (t) = 〈μi0μ
∗
j0〉p

�2
e−iωij t

1

2

[∫ 0

−t

dτ−
∫ τ−+2t

−τ−
dτ+f (τ+,τ−)

+
∫ t

0
dτ−

∫ 2t−τ−

τ−
dτ+f (τ+,τ−)

]
, (A1)

where f (τ+,τ−) = C(τ−)eiωi0(τ++τ−)/2e−iωj0(τ+−τ−)/2. For
i = j , the integrand simplifies to

f (τ−) = C(τ−)eiωi0τ− , (A2)

allowing the integration over τ+ in Eq. (A1) to be performed
analytically to yield the population dynamics

ρii(t) = 〈|μi0|2〉p
�2

[tI0(t) + I1(t)] , (A3)

with

I0(t) =
∫ t

−t

f (τ−)dτ−; (A4)

I1(t) =
∫ 0

−t

τ−[f (τ−) + f (−τ−)]dτ−. (A5)
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Splitting the range of integration in the first term on the right-
hand side into positive and negative τ− regions, relabeling the
integration variable τ− → τ , and using Eq. (A2), we find

I0(t) =
∫ t

0
[C(τ )eiωi0τ + C(−τ )e−iωi0τ ]dτ (A6)

and

I1(t) = −
∫ t

0
τ [C(τ )eiωi0τ + C(−τ )e−iωi0τ ]dτ. (A7)

Introducing the half-Fourier transforms

K(±)
0 (ω,t) =

∫ t

0
C(±τ )e±iωτ dτ, (A8)

K(±)
1 (ω,t) =

∫ t

0
τC(±τ )e±iωτ dτ, (A9)

we obtain Eq. (3) in the text.
In the case of i �= j (off-diagonal elements of the density

matrix), the integrand depends on both τ+ and τ− via

f (τ+,τ−) = C(τ−)eiτ+(ωi0−ωj0)/2eiτ−(ωi0+ωj0)/2. (A10)

Substituting Eq. (A10) in Eq. (A1) and evaluating the integral
over τ+ analytically (which is straightforward since C(τ−) is a
function of τ− only), we arrive at the result

ρij (t) = 〈μi0μ
∗
j0〉p

�2(iωij )

{∫ t

0
[C(τ )eiωj0τ + C(−τ )e−iωi0τ ]dτ

−e−iωij t

∫ t

0
[C(τ )eiωi0τ + C(−τ )e−iωj0τ ]dτ

}
.

(A11)

With the help of the definition (A8), we obtain Eq. (5) in the
above text.

Using Eqs. (A3) and (A4) together with an integral
representation for the generalized Riemann ζ function

ζ (4,a) = 1

�(4)

∫ ∞

0

x3e−ax

1 − e−x
dx, (A12)

where �(x) is a � function, we get

ρii(t → ∞) = 〈|μi0|2〉p
�2

∫ ∞

−∞
C(τ )eiωi0τ dτ

= E2
0

90

π4�(4)

∫ ∞

0
dω

ω3e−(1+iλτ )ω

1 − e−ω

×
∫ ∞

−∞
dτe−iλτωeiωi0τ . (A13)

The integral over τ is readily evaluated in terms of the
Dirac δ function [

∫ ∞
−∞ e−i(λω−ωi0)τ dτ = 2πδ(λω − ωi0)], and

Eq. (A13) reduces to the Fermi golden rule result given by
Eq. (4) in the text (λ = kT /�):

ρii(t → ∞) = E2
0 〈|μi0|2〉p 90

π4

2π

�(4)

1

λ4

ω3
i0

eωi0/λ − 1
t

= 4〈|μi0|2〉p
3�c3

ω3
i0

e�ωi0/kT − 1
t. (A14)

Note that the proportionality coefficient in the second line of
Eq. (A14) is the BBR-induced transition rate W0→i .
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