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The weak-field asymptotic theory of tunneling ionization in an external static uniform electric field [Tolstikhin
et al., Phys. Rev. A 84, 053423 (2011)] is extended to many-electron atomic and molecular systems treated in
the frozen-nuclei approximation. The leading-order term in the asymptotic expansion of the ionization rate � in
the value of the field F for F → 0 is obtained. The resulting formulas express � in terms of properties of the
unperturbed system. The most essential difference from the one-electron case, through which the many-electron
character of the present theory reveals itself, is that the structure factor for a given ionization channel, defining
the dependence of the ionization rate into this channel on the orientation of the system with respect to the field, is
determined by the corresponding Dyson orbital. The theory is illustrated by calculations for several few-electron
systems. The asymptotic results are compared with accurate fully correlated calculations of tunneling ionization
rates available in the literature.
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I. INTRODUCTION

The theoretical description of ionization of atomic and
molecular systems by an external static uniform electric field
is one of the fundamental problems in quantum mechanics. In
sufficiently weak fields, the ionization occurs by tunneling of
an electron through a potential barrier separating the region of
its localization in an initial bound state from the asymptotic
region where it can fly away from the system driven by the
field. In this case the problem can be treated analytically. All
the previous achievements in the theory of tunneling ionization
can be summarized by stating that the ionization rate � as a
function of the field F for F → 0 is given by an asymptotic
expansion of the form (atomic units � = me = |e| = 1 are used
throughout)

� = cF be−a/F (1 + AF ln F + BF + . . . ), (1)

where the coefficients a, b, c,... do not depend on F

and the dots indicate the existence of higher-order terms.
This expansion applies in the interval F � Fc, where Fc

is a boundary between the tunneling and over-the-barrier
ionization regimes. Since the asymptotic expansion is unique
and its structure is already established, the development of the
theory reduces to finding the coefficients in Eq. (1), that is,
to expressing them in terms of properties of the unperturbed
system. This task turned out to be nontrivial, as seen from the
history of its solution outlined below.

The theory was pioneered by Oppenheimer who considered
tunneling ionization of a hydrogen atom in the ground state [1].
He showed that the exponent in Eq. (1) is twice the action
accumulated by an electron under the barrier and obtained
the coefficient a = 2κ

3/3, where κ = √
2Ip and Ip is the

ionization potential. The argumentation of Ref. [1], and hence
the result, has a classical origin and is believed to hold
universally for all systems. However, the exponential factor
is not sufficient for Eq. (1) to be quantitatively predictive. For
applications, one needs to know the complete leading-order

term, including the power b of F and the coefficient c in the
preexponential factor.

It took three decades to derive these coefficients for the
simplest system of atomic hydrogen in the ground state [2].
This result was soon generalized to tunneling ionization from
a bound state in an arbitrary spherically symmetric potential
V (r) [3] (a misprint in this paper was corrected in Ref. [4]).
Such a potential can be used to model many-electron atoms
in the single-active-electron approximation (SAEA). It was
shown that b = 1 + |m| − 2Z/κ, where Z is the Coulomb
charge in the asymptotic tail of V (r) at r → ∞ and m is the
projection of the electron’s angular momentum on the direction
of the field, and c is determined by a coefficient appearing in
the asymptotic tail of the unperturbed wave function. Thus b

is insensitive to the details of the system, while c incorporates
the effect of the structure of the initial bound state. Because of
the Coulomb degeneracy, excited states of hydrogen require
a special treatment. The correct zeroth-order eigenfunctions,
which diagonalize the interaction with the field within the
degenerate manifolds, coincide with parabolic states [2]. The
leading-order term in Eq. (1) for these states was obtained
in Refs. [5,6]. The analysis of the Coulomb potential was
extended to the higher-order terms in Eq. (1) following the
unity in the brackets. In this case the expansion contains
only integer powers of F , thus A = 0. The value of B for
any parabolic state of hydrogen was derived in Ref. [7]. The
coefficients of a number of higher-order terms for the four
lowest states were obtained in Ref. [8].

It took several more decades before the leading-order term
in Eq. (1) was obtained for tunneling ionization from a bound
state in a general potential V (r) without any symmetry [9].
Such a potential can model many-electron molecules in
the SAEA and the frozen-nuclei approximation (FNA). The
weak-field asymptotic theory (WFAT) of tunneling ionization
developed in Ref. [9] reproduces the results of Refs. [2,3,5,6]
in appropriate particular cases. A qualitatively different feature
of a general potential compared with the spherically symmetric
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case [3] is that the unperturbed bound state may have a
permanent dipole moment, and then the coefficient c involves
an additional factor depending on the dipole. The dipole factor
is also contained in the value of c obtained in Refs. [5,6],
as it should be since the hydrogen atom generally has a
nonzero dipole in excited parabolic states. Another difference
in the general case is that c depends on the orientation of
the potential V (r) (that is, of a molecule modeled by this
potential) with respect to the field. Since a and b do not depend
on the orientation, the dependence on the orientation in the
leading-order term in Eq. (1) factorizes from the dependence
on the field. Thus each potential and state are characterized
by a structure factor incorporating the orientation dependence
and defining c. The techniques to calculate molecular structure
factors in the SAEA and FNA were developed in Refs. [10,11].
The WFAT yields not only the leading-order term in Eq. (1),
but also a regular procedure to derive the following terms. The
approach of Ref. [9] enabled us to obtain the coefficients A and
B of the first-order correction terms for a general potential [12],
with the result for hydrogen [7] again emerging as a particular
case. In the general case A �= 0 and the expression for B

contains the dipole polarizability in the initial state and a
coefficient characterizing its distortion by the field, thus more
structure information is involved. This completes a survey of
the results available in the theory for one-electron systems.
In addition, we mention studies of the one-center [13] and
two-center [14,15] zero-range-potential models for which the
problem of finding the ionization rate reduces to solving
a transcendental equation and the asymptotic expansion (1)
follows straightforwardly from this equation.

Although tunneling ionization of many-electron systems
was discussed before [16,17], we are not aware of any
theoretical results obtained from the unique perspective of the
asymptotic expansion (1). In this paper, we extend the WFAT to
many-electron systems. Namely, we derive the leading-order
term in Eq. (1) for many-electron atoms and molecules treated
in the FNA. The ionization rate is expressed in terms of
properties of the unperturbed system in as general a form as the
perturbation-theory result for the Stark shift of the energy of a
state [2]. To avoid confusion with the terminology, we reserve
the term WFAT for the general theoretical approach based on
the expansion (1), the one-electron theory of Refs. [9–12] will
be referred to as OE-WFAT, and the present many-electron
theory will be called ME-WFAT. The FNA remains the only
approximation regarding the system in the ME-WFAT. The
effect of nuclear motion can be taken into account within the
Born-Oppenheimer approximation [18–20]. However, it was
recently realized that this approximation in the theory of tun-
neling ionization breaks down at sufficiently weak fields and,
on the other hand, the WFAT expansion for the ionization rate
of systems with active nuclei must be restructured to account
for the appearance of an additional small parameter given by
the electron-to-nuclear mass ratio [21]. The incorporation of
nuclear motion into the WFAT is postponed to future studies.

The extension of the WFAT to many-electron systems is not
only of fundamental interest, but is also timely and required for
applications in strong-field physics and attoscience [22–24].
The initial step for a variety of processes in this research area
is tunneling ionization in the field of an intense femtosecond
laser pulse whose peak amplitude is still weak in the static-

field sense. At sufficiently low frequencies the adiabatic
approximation applies [25], and then this step can be described
by the ionization rate in a static field. The applications in
laser-induced rescattering photoelectron spectroscopy [23,26]
and high-order harmonic spectroscopy [24] require accurate
ionization rates. Recently, the OE-WFAT was successfully
applied in an analysis of experimental photoelectron spectra of
C2H4 [27,28] and OCS [29], and other interesting applications
are in progress [30]. The ME-WFAT accounting for many-
electron effects in the tunneling step is highly relevant for
strong-field physics.

The paper is organized as follows. In Sec. II the ME-WFAT
is developed. In Sec. II A, the ionization rate is related to
the imaginary part of the complex energy eigenvalue of
a Siegert state (SS), which is a solution of the stationary
Schrödinger equation satisfying outgoing-wave boundary con-
ditions. After a brief discussion of the permutation symmetry
issues (Sec. II B), the problem of constructing the SS is
reformulated using the method of adiabatic expansion in
parabolic coordinates [9,31,32] as a multichannel eigenvalue
problem in one variable (Sec. II C). An important concept
of ionization channels [9] is thus generalized to the many-
electron case. The following derivation and argumentation
in Secs. II D–II F are similar to that in Ref. [9]. The main
difference is that the ionization rate into a given channel is now
expressed in terms of the corresponding Dyson orbital. Dyson
orbitals (or Dyson amplitudes) naturally arise in many-body
theories [33,34]; more recent applications can be found, e.g.,
in Ref. [35]. The genealogical spin basis is introduced in
Appendix A and used in Appendix B to clarify the space-spin
structure of a Dyson orbital. In Sec. II G, some aspects of
the implementation of the present theory and its relation to
previous approaches are discussed. Illustrative calculations for
H−, He, H2, and Li are presented in Sec. III. The asymptotic
results are compared with accurate fully correlated calculations
of tunneling ionization rates available in the literature [18,36–
39]. Section IV concludes the paper.

II. THEORY

A. Formulation of the problem

We consider a molecule (or an atom, as a particular case)
treated in the FNA interacting with an external electric field.
More specifically, we consider a system of N nonrelativistic
electrons described by the coordinates ri , i = 1, . . . ,N ,
interacting with each other, A nuclei with charges Za fixed in
space at the positions Na , a = 1, . . . ,A, and a static uniform
electric field directed along the z axis of the laboratory frame,
F = F ez, F ≥ 0. The Hamiltonian of the system is

HN=
N∑

i=1

⎡
⎣−1

2
�i −

A∑
a=1

Za

|ri − Na|+
i−1∑
j=1

1

|ri − rj | + Fzi

⎤
⎦ .

(2)

If one starts by considering a system with active nuclei, then
to eliminate the motion of the system as a whole, which is
irrelevant for the tunneling problem, the electronic coordinates
ri must be measured from the center of mass [9]. The present
assumption that the nuclei do not move should be viewed
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as a consequence of the Born-Oppenheimer approximation
applied in the center-of-mass frame. In this approximation, the
center of mass of the system coincides with that of the nuclei,
therefore nuclear masses implicitly appear in the formulation.
The shape of the molecule and its orientation with respect
to the field are determined by the vectors Na . The stationary
Schrödinger equation describing the electrons reads

(HN − E)�(QN ) = 0, (3)

where QN = (q1, . . . ,qN ), qi = (ri ,σi), and σi = ±1/2 is
the spin coordinate of the ith electron. We are interested
in the solutions to Eq. (3) which are regular everywhere in
3N -dimensional configuration space spanned by the variables
ri and have only outgoing waves in the asymptotic region.
Equation (3) supplemented by these boundary conditions
constitutes an eigenvalue problem, its solutions exist only
for a discrete set of generally complex energies E and are
called SSs in an electric field [9,12,31,32]. Among the SSs,
we consider only tunneling states which turn into bound states
for F = 0. It should be mentioned that there exists another
type of SSs, static-field-induced states [40,41], which do not
have counterparts in the absence of the field. The complex SS
eigenvalue presented in the form

E = E − i

2
� (4)

defines the energy E and ionization rate � of the system in the
state �(QN ) as functions of the field F . One can expect that
at weak fields E can be expressed in terms of properties of the
unperturbed system. Indeed, the energy E can be obtained
using the standard perturbation theory as an expansion in
powers of F [2]. However, perturbation theory does not enable
one to find the ionization rate � which is exponentially small in
F . The goal of this work is to extend the approach of Ref. [9]
to many-electron systems and obtain the asymptotics of �

for F → 0 without making any approximations regarding the
structure of the unperturbed system, apart from the FNA.

B. Permutation symmetry

The total wave function �(QN ) must be antisymmetric with
respect to permutations of any two electrons,

�(q1, . . . ,qi, . . . ,qj , . . . ,qN )

= −�(q1, . . . ,qj , . . . ,qi, . . . ,qN ). (5)

It is well known that the necessity to satisfy this condition in the
general case prevents one from separating the space and spin
coordinates in Eq. (3). Since the permutation symmetry plays
an important role in the derivation, it is helpful to recall some
facts from the theory of many-electron systems [2,42,43]. For
the following, we need to know how the solutions to Eq. (3)
satisfying Eq. (5) depend on their space and spin arguments.
Throughout the paper, we consider a solution characterized by
given values of the total spin S and its projection MS . Such a
solution can be presented in the form

�(QN ) = 1√
τNS

τNS∑
τ=1

ψτS(RN )χτSMS
(	N ), (6)

where RN = (r1, . . . ,rN ) and 	N = (σ1, . . . ,σN ). The spin
functions χτSMS

(	N ) in Eq. (6) are a basis of the corresponding
irreducible representation of the symmetric group, the space
functions ψτS(RN ) transform according to the conjugate
representation, and τNS is the dimension of the representation,

τNS = (2S + 1)N !

(N/2 + S + 1)!(N/2 − S)!
. (7)

The spin functions satisfy

[
S2

N − S(S + 1)
]
χτSMS

(	N ) = 0, (8a)

[SNz − MS]χτSMS
(	N ) = 0, (8b)

where

SN =
N∑

i=1

si (9)

and si is the spin operator of the ith electron. We assume them
to be real and orthonormal,

χT
τSMS

χτ ′S ′M ′
S

= δττ ′δSS ′δMSM ′
S
. (10)

Here and in the following, we treat functions of spin coor-
dinates taken at the different values of these coordinates as
components of a vector. For any two such functions A and B

we use the notation

AT B ≡
∑

σ1,σ2,...

A(σ1,σ2, . . . )B(σ1,σ2, . . . ), (11)

where T stands for transpose. A method to construct
spin functions with the specified properties is described in
Appendix A. The space functions are the degenerate (unless
τNS = 1) solutions to

(HN − E)ψτS(RN ) = 0. (12)

For F = 0, they are assumed to be real (this is always possible
to achieve for a bound state) and normalized by∫

ψ2
τS(RN ) dVN = 1, dVN = dr1 . . . drN . (13)

Equations (10) and (13) lead to the normalization condition
for the total wave function (6),∫

�T � dVN = 1. (14)

The tunneling SSs are the analytic continuation in F of
bound states of the unperturbed system, so the normalization
condition for F > 0 remains the same. Note that there is
no complex conjugation in Eqs. (13) and (14); this general
property of the theory of SSs [9,12,31,32] can be simply
explained by the fact that complex conjugation is not an
analytic operation. We do not discuss here rotational symmetry
of the space functions which is an important issue for atoms
but does not apply in the general case of molecules.

C. Ionization channels

Our calculation of the ionization rate (see Sec. II E) is based
on the consideration of the flux of outgoing electrons in the
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asymptotic region of configuration space. In the weak-field
limit, this flux is sharply localized in the directions where
one of the zi tends to −∞ while all the other 3N − 1
space coordinates remain finite. Each of these N directions
corresponds to tunneling ionization of one of the electrons. We
will see shortly that the part of the outgoing flux representing
simultaneous tunneling ionization of more than one electrons
is exponentially suppressed. In other words, in the weak-field
limit tunneling ionization is a one-electron process. Taking into
account Eq. (5), it is sufficient to consider tunneling of any one
of the electrons. We choose the N th electron and simplify the
notation for its coordinates,

r ≡ rN, σ ≡ σN, q ≡ qN . (15)

Let HN−1 be the Hamiltonian of the remaining (N − 1)-
electron subsystem. From Eq. (2) we obtain

HN = HN−1 − 1
2 � + V (r) + Fz, (16)

where

V (r) = −
A∑

a=1

Za

|r − Na| +
N−1∑
i=1

1

|r − ri | . (17)

In the asymptotic region we have

V (r)|r→∞ = −Z

r
+ O(r−2), (18)

where Z is the total charge of the parent ion,

Z =
A∑

a=1

Za − N + 1. (19)

The term O(r−2) in Eq. (18) is immaterial for the derivation in
the leading-order approximation for F → 0. Equations (16)
and (18) show that the ionized electron asymptotically
moves under the influence of the external electric field and
the Coulomb potential of the parent ion. The one-electron
Schrödinger equation in this combined potential allows sepa-
ration of variables in parabolic coordinates [2],

ξ = r + z, 0 ≤ ξ < ∞, (20a)

η = r − z, 0 ≤ η < ∞, (20b)

ϕ = arctan
y

x
, 0 ≤ ϕ < 2π. (20c)

To exploit this advantage of parabolic coordinates in the
many-electron problem, following the approach of Ref. [9]
we present Eq. (3) in the form[

∂

∂η
η

∂

∂η
+ B(η) + (E − HN−1)

η

2
+ Fη2

4

]
�(QN ) = 0,

(21)

where B(η) is the adiabatic Hamiltonian,

B(η) = ∂

∂ξ
ξ

∂

∂ξ
+ ξ + η

4ξη

∂2

∂ϕ2
− rV (r)

+ (E − HN−1)
ξ

2
− Fξ 2

4
, (22)

which depends on η as a parameter. Driven by the field, the
ionized electron moves toward z → −∞, which corresponds
to η → ∞. Let us introduce the asymptotic Hamiltonian,

B ≡ B(η)|η→∞ = ∂

∂ξ
ξ

∂

∂ξ
+ 1

4ξ

∂2

∂ϕ2

+Z + (E − HN−1)
ξ

2
− Fξ 2

4
. (23)

The eigenfunctions of this operator defined by

(B − βν)�νM ′
S
(QN−1,ξ,ϕ,σ ) = 0 (24)

are called the ionization channels. By separating variables in
Eq. (24) we find

�νM ′
S
(QN−1,ξ,ϕ,σ ) = �nM ′

S
(QN−1)φν(ξ )

eimϕ

√
2π

χMS−M ′
S
(σ ),

(25)

where ν is a multiindex,

ν = (n,nξ ,m). (26)

Here �nM ′
S
(QN−1) is a SS of the (N − 1)-electron subsystem

defined similarly to �(QN ) by

(HN−1 − En)�nM ′
S
(QN−1) = 0 (27)

supplemented by outgoing-wave boundary conditions and n

is a complete set of quantum numbers identifying the SSs,
including the total spin S ′ but excluding its projection M ′

S ; it
is convenient to treat M ′

S separately. The different solutions to
Eq. (27) satisfy∫

�T
nMS

�n′M ′
S
dVN−1 = δnn′δMSM ′

S
. (28)

The function φν(ξ ) and the eigenvalue βν in Eq. (24) are
defined by

[
d

dξ
ξ

d

dξ
− m2

4ξ
+ Z + (E − En)

ξ

2
− Fξ 2

4
− βν

]
φν(ξ )=0,

(29a)

φν(ξ )|ξ→0 ∝ ξ |m|/2, φν(ξ )|ξ→∞ = 0, (29b)

∫ ∞

0
φnnξ m(ξ )φnn′

ξ m
(ξ ) dξ = δnξ n

′
ξ
, (29c)

where m = 0, ± 1, ± 2, . . . is the azimuthal quantum number
of the outgoing electron and nξ = 0,1,2, . . . enumerates the
different solutions to Eq. (29a) for given n and m. Finally,
χms

(σ ) is a one-electron spin function [see Eq. (A3) in
Appendix A], and Eq. (25) explicitly takes into account that
for given MS and M ′

S the projection of the spin of the outgoing
electron is ms = MS − M ′

S . The solution to Eq. (21) is sought
in the form

�(QN ) = η−1/2
∑
νM ′

S

fνM ′
S
(η)�νM ′

S
(QN−1,ξ,ϕ,σ ). (30)

Substituting this expansion into Eq. (21) and using Eqs. (28)
and (29c), one can obtain a set of coupled equations for the
unknown functions fνM ′

S
(η). For developing the weak-field
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asymptotics, it is sufficient to consider these equations in the
region η = O(F−1) [9], where they take the form[

d2

dη2
+ Fη

4
+ 1

2
(E − En) + βν

η
+ O(η−2)

]
fνM ′

S
(η) = 0.

(31)

Here, again, the term O(η−2) is immaterial in the leading-order
approximation for F → 0. Equations (31) for the different
channels νM ′

S are decoupled; the coupling terms appear in the
higher orders in η−1 and are contained in O(η−2). The SSs
are represented by the solutions to Eqs. (31) satisfying the
outgoing-wave boundary condition [9],

fνM ′
S
(η)|η→∞ = 21/2fνM ′

S

(Fη)1/4

× exp

[
iF 1/2η3/2

3
+ i (E − En) η1/2

F 1/2

]
. (32)

The coefficient fνM ′
S

appearing here defines the amplitude of
the outgoing wave in the ionization channel νM ′

S . We have thus
decomposed the outgoing flux into orthogonal (noninterfering)
ionization channels, which is a key step in the derivation. As
detailed in Sec. II E, the problem of calculating the ionization
rate now reduces to finding the coefficients fνM ′

S
.

D. Connection formula

In the weak-field limit, fνM ′
S

can be expressed in terms of
a coefficient appearing in the asymptotics of the unperturbed
bound-state wave function at η → ∞. This relation is called
the connection formula. It can be derived by constructing the
asymptotic solution of Eq. (31) for F → 0. To this end, all the
quantities introduced in the previous section must be expanded
in F . It should be noted that the expansions consist of power
series parts and exponentially small terms. Since fνM ′

S
is itself

exponentially small in F , we need to retain only the power
series parts which can be found by means of perturbation
theory [2]. Thus, e.g., the difference between E and E can be
neglected. Let E(N)

0 and �
(N)
0 (QN ) be the solution to Eq. (3) for

F = 0 representing the initial bound state of the N -electron
system. For F > 0, the corresponding SS is given by

E = E
(N)
0 − μ

(N)
0z F + O(F 2), (33a)

�(QN ) = �
(N)
0 (QN ) + O(F ), (33b)

where μ
(N)
0 is the dipole moment of the unperturbed system,

μ
(N)
0 = −

N∑
i=1

∫
�

(N)T
0 ri�

(N)
0 dVN. (34)

For the (N − 1)-electron subsystem we similarly have

En = E(N−1)
n − μ(N−1)

nz F + O(F 2), (35a)

�nM ′
S
(QN−1) = �

(N−1)
nM ′

S
(QN−1) + O(F ), (35b)

where

μ(N−1)
n = −

N−1∑
i=1

∫
�

(N−1)T
nM ′

S
ri�

(N−1)
nM ′

S
dVN−1. (36)

Equation (35b) requires a comment. The SSs �nM ′
S
(QN−1)

with different n form a purely discrete set. Meanwhile, in the
field-free case, it is more conventional to work with bound
and continuum states. The bound states of the parent ion are
recovered from the tunneling SSs �nM ′

S
(QN−1) in the limit

F → 0 and hence belong to the set of �
(N−1)
nM ′

S
(QN−1). The

continuum states are not given by any single one of these
functions, but can be expanded in terms of them. We note
that the static-field-induced states mentioned above [40,41],
which do not have counterparts for F = 0, are also included
in the set of �

(N−1)
nM ′

S
(QN−1), but for them Eq. (35b) implies

certain regularization. These mathematical subtleties concern
the issue of completeness of the set of SSs. We do not discuss
them in more detail here because the dominant contribution to
the outgoing flux for F → 0 comes from channels for which
n corresponds to low-lying bound states of the ion. In the
following, we assume that all the quantities on the right-hand
sides of Eqs. (33) and (35) characterizing the unperturbed
system are known. The solution to Eqs. (29) is given by

βν = β(0)
ν + O(F ), (37a)

φν(ξ ) = φ(0)
ν (ξ ) + O(F ), (37b)

where [9]

β(0)
ν = Z − κn

(
nξ + |m| + 1

2

)
, (38a)

φ(0)
ν (ξ ) = κ

1/2
n (κnξ )|m|/2e−κnξ/2

√
nξ !

(nξ + |m|)! L(|m|)
nξ

(κnξ ).

(38b)

Here L(α)
n (x) are the generalized Laguerre polynomials [44]

and

κn =
√

2In, In = E(N−1)
n − E

(N)
0 , (39)

where In is the field-free ionization potential in channel νM ′
S .

Substituting Eqs. (35b) and (37b) into Eq. (25), we obtain

�νM ′
S
(QN−1,ξ,ϕ,σ ) = �

(0)
νM ′

S
(QN−1,ξ,ϕ,σ ) + O(F ). (40)

The unperturbed bound-state wave function can be expanded
in terms of the unperturbed channels similarly to Eq. (30). By
solving Eq. (31) for F = 0, we find that in the asymptotic
region this expansion takes the form

�
(N)
0 (QN )

∣∣∣
η→∞

= N−1/2
∑
νM ′

S

gνM ′
S
ηβ(0)

ν /κn−1/2e−κnη/2

×�
(0)
νM ′

S
(QN−1,ξ,ϕ,σ )[1 + O(η−1)]. (41)

The coefficients gνM ′
S

here are given by

gνM ′
S

= P̂ν

[
χT

MS−M ′
S
ϒnM ′

S

]
, (42)
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where P̂ν is a projection operator whose action on a function
ψ(r) is defined by

P̂ν[ψ(r)] = η1/2−β(0)
ν /κneκnη/2

∫ ∞

0

∫ 2π

0
φ(0)

ν (ξ )

× e−imϕ

√
2π

ψ(r)dξdϕ

∣∣∣∣
η→∞

, (43)

and ϒnM ′
S
(q) is the Dyson orbital [33,34],

ϒnM ′
S
(q) = N1/2

∫
�

(N−1)T
nM ′

S
�

(N)
0 dVN−1. (44)

To find fνM ′
S
, one should substitute the solutions to Eqs. (31)

satisfying Eq. (32) into Eq. (30) and match the resulting
function in the region 1 � η � ηt with Eq. (41), where
ηt = 2In/F + O(F 0) is the turning point for Eq. (31). The
derivation coincides with that given in Ref. [9], so we simply
invoke the result obtained there. The connection formula reads

fνM ′
S

= κ
1/2
n gνM ′

S

(2N )1/2

(
4κ

2
n

F

)β(0)
ν /κn

× exp

[
iπ

4
+ iπβ(0)

ν

κn

− κnμn − κ
3
n

3F

]
× [1 + O(F ln F )], (45)

where

μn = μ
(N)
0z − μ(N−1)

nz . (46)

This formula expresses the ionization amplitude fνM ′
S

in terms
of the coefficient gνM ′

S
appearing in Eq. (41) and given by

Eq. (42). Let us emphasize that in the present derivation we
have retained in Eqs. (18), (31), (33), (35), and (37) only the
terms needed to obtain the leading-order term in Eq. (45). For
deriving the first-order correction terms O(F ln F ) and O(F )
in Eq. (45) one would have to take into account the next-order
term in the expansions [12].

It is worthwhile to indicate how the present formulation
allows one to account for the possibility of multiple ionization.
Simultaneous tunneling ionization of more than one electron
is represented by the outgoing flux in the directions where two
or more zi simultaneously tend to −∞. This does not happen
in channels for which �

(N−1)
nM ′

S
(QN−1) is a bound state of the

parent ion. On the other hand, for continuum states, the value of
fνM ′

S
is suppressed in comparison with ionization amplitudes

into bound-state channels by the last term in the exponent in
Eq. (45), because of a larger ionization potential In. There is
also a possibility of sequential multiple ionization represented
by the imaginary part of E(N−1)

n which is not accounted for by
the expansion (35a). However, its effect on the value of fνM ′

S

is also exponentially small.

E. Ionization rate

We now turn to the calculation of the ionization rate. From
Eqs. (3) and (4) we have

��†� =
N∑

i=1

∇iji(RN ), (47)

where �†(QN ) = �∗T (QN ) and

ji(RN ) = −i

2
[�†(∇i�) − (∇i�

†)�]. (48)

In the weak-field limit, the imaginary part of �(QN ) is
exponentially small in F and can be neglected on the left-hand
side of Eq. (47), but not on its right-hand side. Substituting
into Eq. (47) �†� ≈ �T �, integrating both sides over all ri ,
and using the normalization condition (13), we obtain

� =
N∑

i=1

∫
Si

eiji(ri) dSi

∣∣∣∣∣
ri→∞

, (49)

where ji(ri) is the flux of the ith electron,

ji(ri) =
∫

ji(RN ) dr1 . . . dri−1dri+1 . . . drN, (50)

ri ∈ Si , Si is an expanding surface all points of which move
away from the origin, ei is the outward-pointing unit normal
vector to Si , and dSi is the area element of Si . Equation (49)
shows that in the weak-field limit the ionization rate coincides
with the total flux of outgoing electrons, as one would expect
on physical grounds. Let us introduce the one-electron density
matrix,

ρ(r,r′) =
∫

�†(QN−1,r,σ )�(QN−1,r′,σ ) dVN−1. (51)

Taking into account Eq. (5), we obtain

ji(r) = −i

2
(∇r′ − ∇r) ρ(r,r′)|r′=r. (52)

Hence the one-electron flux does not depend on the subscript
i,

ji(r) = jN (r) ≡ j(r), (53)

and Eq. (49) can be presented in the form

� = N

∫
S

ej(r) dS, (54)

where S ≡ SN and e ≡ eN . We choose S to be a surface of
constant η at η → ∞. The rest of the derivation is the same as
in Ref. [9], the details can be found in Ref. [12]. By calculating
the flux j(r) using Eq. (32), we find

� =
∑
νM ′

S

�νM ′
S
+ O(�2), �νM ′

S
= N |fνM ′

S
|2. (55)

Here �νM ′
S

is the partial rate for ionization into channel νM ′
S

and the error term O(�2) arises from the exponentially small
contributions neglected in the derivation. Since fνM ′

S
is given

by Eq. (45), and hence is assumed to be known, Eq. (55) is the
result we sought.

This equation can be further simplified. In the expression
for �νM ′

S
obtained by substituting Eq. (45), only the coefficient

gνM ′
S

depends on M ′
S , which enables one to perform the

summation over M ′
S in Eq. (55). To this end, we present the

Dyson orbital (44) in the factorized form (see Appendix B)

ϒnM ′
S
(q) = υn(r)χS ′M ′

S ,SMS
(σ ). (56)

The space function υn(r) here is expressed in terms of the
space functions defining �

(N)
0 (QN ) and �

(N−1)
nM ′

S
(QN−1) in the
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form (6) by Eq. (B5) and the spin function is given by Eq. (B3).
Substituting Eq. (56) into Eq. (42) and using Eq. (B6), we
obtain

� =
∑

ν

(δS ′,S−1/2 + δS ′,S+1/2)�ν + O(�2), (57)

where

�ν = |Gν |2Wν(F ) [1 + O(F ln F )] (58)

is the total ionization rate into all spin-projection components
of channel ν. Here Gν is the structure factor,

Gν = e−κnμngν, (59)

where gν is the asymptotic coefficient of the Dyson orbital
given by

gν = P̂ν[υn(r)], (60)

and Wν(F ) is the field factor,

Wν(F ) = κn

2

(
4κ

2
n

F

)2Z/κn−2nξ −|m|−1

exp

(
−2κ

3
n

3F

)
. (61)

This completes the derivation. Equations (57)–(61) expressing
the asymptotics of � for F → 0 in terms of the properties
of the unperturbed system and its ion represented by Z, κn,
μn, and gν are the main result of this work. We note that
Eq. (58) has the form of Eq. (1). The leading-order term
in this expansion looks similar to the corresponding partial
rate for ionization into channel (nξ ,m) in the one-electron
problem [compare Eqs. (58)–(61) with Eq. (60) in Ref. [9]].
The many-electron character of the present theory reveals itself
only in the different definitions of the quantities Z, κn, μn, and
gν [whose counterparts in Ref. [9] are denoted by Z, κ, μz,
and gnξ m, respectively], and the most essential difference is that
the spatial part υn(r) of the Dyson orbital replaces in Eq. (60)
the initial bound-state wave function in the one-electron case
(denoted by ψ0(r) in Ref. [9]). We also note that the two
factors in Eq. (59) separately depend on the origin of the
electronic coordinates ri , but their product, and hence the
partial ionization rate (58), is invariant with respect to a shift
of the origin [9].

F. Dominant channel

To arrive at the final working formula for calculating the
ionization rate within the ME-WFAT an additional consid-
eration is needed. It should be understood that Eqs. (57)
and (58) are asymptotic expansions in F . One cannot retain
in these expansions terms which become smaller as F → 0
than the error terms indicated. The error term in Eq. (57)
is exponentially small in F and can always be neglected. But
Eq. (58) is an expansion in powers of F and ln F ; the error term
in this expansion for one channel can exceed the leading-order
term for another channel. To determine which terms may be
retained and which should be neglected, we note that the
field factor (61) for channels with different sets of quantum
numbers n defining the final state of the parent ion has different
exponential factors, while for channels with the same n and
different parabolic quantum numbers nξ and m it has different
powers of F . For any positive a and b, e−a/F = o(Fb) as
F → 0. This means that in the present approximation, where

only the leading-order term in Eq. (58) is obtained, only the
contribution from the dominant channel in the expansion for a
given observable may be retained.

One can distinguish two possibilities. If only the total
ionization rate � is observable, then the dominant channel
corresponds to the smallest values of κn [that is, of the
ionization potential In; see Eq. (39)] and parabolic quantum
numbers nξ and |m| present in the sum (57). However, we
believe it is more sensible to assume that the partial rate for
ionization into a given final state n of the parent ion defined
by

�n =
∞∑

nξ =0

∞∑
m=−∞

�ν (62)

can be measured, provided that in this state S ′ = S − 1/2 or
S + 1/2. Then the situation becomes quite similar to that in
the one-electron problem [9]. The exponent in Eq. (61) is
fixed now and the different terms in Eq. (62) in respect of their
behavior for F → 0 differ only by powers of F . The dominant
channel in this case corresponds to the smallest nξ and |m|
present in Eq. (62). In the general (no symmetry) case, this is
the channel with nξ = m = 0. The leading-order term in the
asymptotics of �n is then given by [see Eq. (26)]

�n ≈ |Gn00|2Wn00(F ). (63)

This is the working formula for molecules arbitrarily oriented
with respect to the field. The dependence of �n on the
orientation, which is of main interest for applications [10,11],
is contained in the structure factor Gn00. In the presence of
a symmetry that may result in the vanishing of gn00 (this is
the case for atoms and linear molecules aligned along the
field in a state with nonzero projection of the orbital angular
momentum) the dominant channel may have a nonzero value
of the azimuthal quantum number m; for more details see
Refs. [9–11].

G. One-electron and single-active-electron approximations

The above equations express the ionization rate in terms
of quantities determined by the exact wave functions of
the unperturbed initial �

(N)
0 (QN ) and final �

(N−1)
nM ′

S
(QN−1)

states. However, accurate wave functions are available only
for simplest few-electron systems. The approaches capable of
calculating the electronic structure of many-electron atoms
and molecules are usually based on some kind of one-
electron approximation (OEA). For simplicity, we discuss
only approaches in which many-electron wave functions are
represented by a single Slater determinant. Below we indicate
some difficulties in implementing the ME-WFAT in this
approximation.

Let the initial state be represented by a Slater de-
terminant composed of one-electron orbitals �nimsi

(q) =
ψni

(r)χmsi
(σ ), i = 1, . . . ,N . Let εi be the corresponding

one-electron energies defining the behavior of ψni
(r) ∝

exp[−(−2εi)1/2r] at r → ∞. Let � ′
nimsi

(q) = ψ ′
ni

(r)χmsi
(σ )

and ε′
i , i = 1, . . . ,N − 1, have the same meaning for the final

state. First, we note that in the general case single-determinant
wave functions are not eigenfunctions of the total spin [45].
And, on the other hand, not all states can be represented
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by a single determinant; for example, the 1s2s 1S state of
He cannot be represented in this way. Thus not all initial
and final states can be considered within the OEA. Second,
single-determinant wave functions do not generally have the
correct asymptotic behavior given by Eq. (41). As a result,
the Dyson orbital (44) constructed from such functions does
not have the correct asymptotic behavior either. Indeed, it can
be seen that in the general case, when the initial �nimsi

(q)
and final � ′

nimsi
(q) one-electron orbitals are different, the

Dyson orbital ϒnM ′
S
(q) is given by a linear combination of

all �nimsi
(q) occupied in the initial state. Then, independently

of the final state, the exponent in the asymptotics of ϒnM ′
S
(q)

at r → ∞ is determined by the smallest εi which in general
differs from the ionization potential for a given ionization
channel. This inconsistency causes a problem in extracting
the asymptotic coefficient (60). The situation is even worse in
the Hartree-Fock (HF) approximation, since in this version of
the OEA all one-electron orbitals �nimsi

(q) generally have the
same exponent in the asymptotic tail determined by the first
ionization potential [46,47]. This peculiarity of the HF method
has led some authors to the conclusion that, independently of
the orbital from which ionization occurs, the exponent in the
field factor (61) must be determined by the first ionization
potential, which results in a profound increase of ionization
rates from inner orbitals by many orders of magnitude [48].
This conclusion is not supported by the present theory: the
exponent in Eq. (61) is determined by the true ionization
potential In for a given ionization channel, and ionization from
inner orbitals is suppressed compared with that from outer
orbitals, as can be expected on physical grounds. All this shows
that the implementation of the ME-WFAT within the OEA is
not straightforward. The development of the corresponding
techniques on the basis of available codes for calculating
atomic and molecular electronic structure is a direction for
future studies.

The situation greatly simplifies if the initial �nimsi
(q)

and final � ′
nimsi

(q) one-electron orbitals belong to the same
orthonormal set. Physically, this corresponds to neglecting the
relaxation of the final-state orbitals. In this approximation, the
Dyson orbital (44) differs from zero only if the final state is
obtained from the initial one by eliminating one electron, and
then it coincides with the orbital ψn(r)χms

(σ ) of the eliminated
electron. It can be seen that the space part in Eq. (56) in this
case is υn(r) = √

pnψn(r), where pn = 1 or 2 is the number
of electrons in the initial state having the same ψn(r) but
different ms . Thus, for pn = 1, Eqs. (58)–(61) coincide with
formulas defining the partial ionization rate for one electron
initially bound in a state with the wave function ψn(r) [9]. This
corresponds to the SAEA. For pn = 2, when both orbitals with
ms = ±1/2 for the same ψn(r) are occupied in the initial state,
the SAEA result for the ionization rate must be multiplied by
2, due to the summation over M ′

S .
Another issue which is elucidated further by the present

theory is the question of which dipole moment should appear
in the structure factor (59) for a many-electron system. As
shown in Ref. [9] and mentioned above, the very fact that
the exponent with the dipole term originating from the linear
Stark shift should appear in Eq. (59) follows immediately from
the requirement that the ionization rate must be invariant with

respect to a shift of the origin of the electronic coordinates ri .
The question about the dipole is critical, since the ionization
rate depends exponentially on its value. Together with the
orbital shape represented by the coefficient gν in Eq. (59),
the value of the dipole determines, e.g., from which end the
molecule ionizes most readily. For these reasons having an
unambiguous theoretical prescription for estimating the dipole
is important, also to resolve current disagreements between
theory and experiment for CO [49–52]. In the literature, the
study of tunneling ionization has typically so far been in
some version of an OEA, possibly with some features of
the many-electron system included. The initial state of the
ionizing electron has, accordingly, been identified with an
orbital, typically the least bound highest occupied molecular
orbital (HOMO) but also, in the presence of nodal surfaces,
with the next lower-lying orbitals denoted by HOMO-1 and
HOMO-2 [53]. Three different ways to estimate the dipole
of the initial state of the active electron (assumed to be the
HOMO in the following) have been used. (i) One method
uses the charge distribution of the HOMO to calculate the
dipole [10,11,54–56]. This procedure is well justified in the
strict SAEA, where all orbitals except the HOMO are fixed. In
this approximation, the Dyson orbital reduces to the HOMO
and the dipole of the ME-WFAT in Eq. (46) reduces to that
defined by the charge distribution of the HOMO. (ii) Another
method which has been used to estimate the dipole entering
OEA models is to fit the energy of the HOMO for weak fields
to the perturbation theory expansion similar to Eqs. (33a)
and (35a) [57–60]. This approach yields the dipole of the
HOMO with some multielectron effects included, since all
electrons relax and re-adjust for each calculation performed
at a given field F . (iii) Finally, in a series of papers the
dipole of interest was obtained as the difference between the
total dipole of the molecule and the dipole of the parent ion
in the unrelaxed geometry [50,61–64]. This procedure was
justified in Refs. [61–63] following an approach introduced
in Ref. [17]. Equation (46) gives an answer to the question
within the ME-WFAT: the dipole is given by the difference of
the dipoles of the N - and (N − 1)-electron systems. Within the
present FNA, the latter should be calculated for the unrelaxed
geometry of the nuclei.

III. ILLUSTRATIVE CALCULATIONS FOR
FEW-ELECTRON SYSTEMS

We illustrate the theory by considering several few-electron
systems. To confirm the validity of the theory, it is essential
to compare the present asymptotic results with accurate
calculations of the ionization rates of atoms and molecules
in a static electric field. We are aware of only few such fully
correlated calculations for systems containing more than one
electron [18,36–39]. All these systems are discussed below.

In the following, we consider the total rate �n of tunneling
ionization from a given initial state �

(N)
0 (QN ) into all M ′

S

components of a given final state �
(N−1)
nM ′

S
(QN−1). In all the

cases, the dominant ionization channel corresponds to nξ =
m = 0, so �n is given by Eq. (63), and μ

(N)
0z = μ(N−1)

nz = 0, so
Gn00 = gn00; see Eqs. (46) and (59). To implement Eq. (63),
one needs to know the total charge of the parent ion Z, Eq. (19),
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the parameter κn defined by the energies of the initial E(N)
0 and

final E(N−1)
n states, Eq. (39), and the asymptotic coefficient gn00

in the Dyson orbital defined by Eq. (60). The energies for the
systems considered can be found in the literature, so the main
goal of the present calculations is to obtain the coefficient gn00.
In each case, the initial and final states are explicitly defined;
so, for brevity, we omit the subscripts in the notation gn00 and
Wn00(F ).

A. Benchmark results for two-electron atoms H− and He

We begin with two-electron atoms for which accurate
bound-state wave functions can be constructed and thus
the theory can be implemented as prescribed, without any
approximations. For N = 2, the total spin S can take two
values, 0 and 1. The corresponding irreducible representations
of the symmetric group are one dimensional, τ2S = 1, and their
spin basis functions are χ00(	2) and χ1MS

(	2), respectively
[see Eqs. (A5) in Appendix A]. The initial state of a two-
electron system has the form

�
(2)
0 (Q2) = ψS(R2)χSMS

(	2), (64)

where the space function satisfies ψS(r1,r2) =
(−1)SψS(r2,r1). The final state of the one-electron subsystem
is �

(1)
nM ′

S
(q1) = ψn(r1)χM ′

S
(σ1). The space part of the Dyson

orbital (56) is thus given by [see notation in Eq. (15)]

υn(r) =
√

2
∫

ψn(r1)ψS(R2)dr1. (65)

We consider tunneling ionization from the only bound state of
H− and three lowest states of He, all states having the total or-
bital angular momentum L = 0. In all the cases, the final state
is the ground 1s state; see Table I. Because of the rotational
invariance of the initial and final states, the Dyson orbital (65)
is a spherically symmetric function, υ1s(r) = υ1s(r). The
two-electron wave functions were constructed in the form of an
expansion in hyperspherical adiabatic basis [65] implemented
in hyperspherical elliptic coordinates [66,67] by means of
the slow variable discretization method [68]. This approach
yields not only highly accurate energies of the bound states,
see Table I, but also accurate wave functions with correct
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FIG. 1. (Color online) Dyson orbitals for H− and three lowest
states of He, see Table I, calculated with the present accurate two-
electron wave functions. Thin solid lines: 1s HF orbital of He(1s21S)
multiplied by

√
2 (cyan) and 2s HF orbital of He(1s2s 3S) (light green)

calculated using the program of Ref. [70].

asymptotic behavior. The wave functions and energies of the
final one-electron states are known analytically. The Dyson
orbitals calculated using these functions are shown in Fig. 1.
The asymptotic coefficients g extracted from these orbitals by
means of Eq. (60) are given in Table I. The error of these
results should not exceed a unit in the last digit quoted.

Taking into account that accurate wave functions for
many-electron systems are not available, and in future im-
plementations of the theory one will have to resort to a
OEA, it is instructive to compare the present benchmark
results for two-electron atoms with the results obtained by
the single-determinant HF method. For simplicity, we adopt an
approximation in which the relaxation of the final-state orbitals
is neglected. Then the Dyson orbital for He(1s21S) coincides
with the 1s HF orbital for this state multiplied by

√
2 (the

origin of this factor is explained in Sec. II G), and the Dyson
orbital for He(1s2s 3S) coincides with the 2s HF orbital for
this state. The HF orbitals were calculated using the program
of Ref. [70], the results are shown by thin solid lines in Fig. 1.
The orbital energies defining the ionization potentials within
the HF method are −0.917 956 and −0.174 256, respectively.

TABLE I. Quantities needed to implement the ME-WFAT for the few-electron systems considered. E
(N)
0 and E(N−1)

n are energies of the
initial and final states, respectively, obtained in the present calculations for H−, He, and H2

+, analytically known for H and He+, adopted
frombRef. [69] for H2, and calculated by the HF method using the program of dRef. [70] for Li and Li+. E(N)

0,exact and E
(N−1)
n,exact are the corresponding

energies from accurate variational calculations of aRef. [71], cRef. [72], and eRef. [73]. g is the asymptotic coefficient in Eq. (63) obtained
from the present accurate wave functions. gHF is the coefficient obtained in the single-determinant unrelaxed HF approximation. The results
for H2 and H2

+ are for the internuclear distance R = 1.4009, except for the energy from cRef. [72] which is for R = 1.4011. All values are
given in atomic units.

Initial state Final state

System E
(N)
0 E

(N)
0,exact System E(N−1)

n E
(N−1)
n,exact g gHF

H−(1s21S) −0.527 751 016 −0.527 751 017a H(1s) −0.5 3.256
He(1s21S) −2.903 724 376 −2.903 724 377a He+(1s) −2 2.932 2.99
He(1s2s 1S) −2.145 974 015 −2.145 974 046a He+(1s) −2 −0.2602
He(1s2s 3S) −2.175 229 363 −2.175 229 378a He+(1s) −2 −0.3847 −0.380
H2(1sσ 21	g

+) −1.888 275b −1.888 200 862c H+
2 (1sσ ) −1.283 941 230 2.73 2.71

Li(1s22s 2S) −7.432 727d −7.478 060 323e Li+(1s21S) −7.236 415d −7.279 913 413e 0.474
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FIG. 2. (Color online) Ionization rate of He in the ground state
divided by the field factor (61) for the dominant ionization chan-
nel He(1s21S) → He+(1s) with nξ = m = 0. Solid symbols: fully
correlated calculations from Refs. [36–38]. Solid (black) line with
an open circle at F = 0: present leading-order ME-WFAT results
for ionization into the final state He+(1s), Eq. (63), given by a
constant g2 = 8.595; see Table I. Dashed (blue) line: SAEA results
for ionization of one electron from the 1s state in the potential (66)
calculated by the method of Ref. [31] and multiplied by 2.

The asymptotic coefficients gHF extracted from the HF orbitals
are given in Table I. The relative error of gHF is less than 2%
and similar in magnitude to the relative error of the ionization
potentials. Thus for these two states of He the approximation
considered works very well. This is encouraging for future
applications of the theory on the basis of the HF method.
However, as mentioned above, the state He(1s2s 1S) cannot be
represented by a single Slater determinant. Moreover, the 2s

HF orbital for this state obtained with the program of Ref. [70]
does not have the correct asymptotic behavior implied in
Eq. (60), so we failed to extract the asymptotic coefficient
from this orbital. The HF method also fails to describe the
bound state of H−.

The ionization rate of He in the ground state in a static
electric field was calculated by the complex rotation method
in the stationary framework [36,37] and by solving the
time-dependent Schrödinger equation [38]. These references
provide the total ionization rate � since the final state of the
system is not resolved. The results are shown in Fig. 2. To
eliminate a rapid variation of � by many orders of magnitude
in the interval of F considered, and thus to facilitate the
comparison of the different results, we show the rates divided
by the field factor (61) for ionization into the final state
He+(1s) in the dominant ionization channel with nξ = m = 0.
The different calculations closely agree with each other at
F > 0.1. At weaker fields, however, the results behave quite
differently. We believe that they all are wrong at F < 0.1
because of the very small values of �. Indeed, � ≈ 2.9 × 10−6

at F = 0.1 and rapidly decreases with F . It is difficult to
treat such small values of � by any method; this problem
was discussed in Refs. [9,12]. The ME-WFAT result for the
ratio shown in Fig. 2 obtained from Eq. (63) is a constant
g2; see Table I. This constant is shown by the solid line in
Fig. 2. We recall that Eq. (63) gives only the leading-order
term in the asymptotic expansion of � for F → 0. Including

the first-order correction terms, the ratio shown in Fig. 2
behaves as g2(1 + AF + BF ln F ); see Eq. (1) and Ref. [12].
Thus the ratio should almost linearly approach its limiting
value g2 as F → 0. This is likely to be the case, as can
be seen by extrapolating the results of Refs. [36–38] from
the interval F > 0.1, where they are trustworthy, to F = 0.
This establishes a consistency between the structure of the
asymptotic expansion for �, the present value of g, and
the results of Refs. [36–38], which eventually confirms the
predictions of the ME-WFAT. To obtain a more convincing
confirmation, one has to calculate the coefficients A and B of
the first-order correction terms.

Within the SAEA, the ground state of He can be described
by the potential seen by the active electron [74],

VHe(r) = −1 + exp(−αr)

r
. (66)

For α = 2.132 405, the energy of the 1s state in this potential is
E1s = −0.903 724, so the ionization potential coincides with
that of He; see Table I. We have calculated the ionization rate
from the 1s state in this potential by the method developed in
Ref. [31]. This rate multiplied by 2 (this factor is explained in
Sec. II G) and divided by the field factor is shown by the dashed
line in Fig. 2. The method of Ref. [31] also cannot treat too
small values of �, so this line stops at F = 0.05. The SAEA
results lie slightly higher than the results of fully correlated
calculations [36–38]. However, being extrapolated to F = 0,
they are consistent with the present value of g, which favorably
characterizes the one-electron potential (66).

B. Two-electron molecule H2

We next consider a two-electron molecule H2. The molecule
is assumed to be aligned along the field, and we consider
tunneling ionization from the ground state of H2 to the ground
1sσ state of H2

+; see Table I. The space-spin structure of
the initial and final states is the same as for two-electron
atoms. For the initial two-electron state, we adopt the 50-term
variational wave function defined in Table VI of Ref. [69]. This
wave function is for the internuclear distance R = 1.4009,
which dictates the value of R used in the present calculations.
The energy obtained in the same group with a similar in
quality 54-term wave function for the equilibrium internuclear
distance R = 1.4011 is −1.888 195 [75], which is close to the
best available variational result from Ref. [72]; see Table I.
The final one-electron state was calculated using the program
of Ref. [76]. This program returns virtually exact energies
and wave functions for one-electron diatomic molecules. The
Dyson orbital υ1sσ (r) was calculated with these functions using
Eq. (65). It has the same symmetry as the 1sσ orbital of H2

+. It
is shown in Fig. 3 as a function of the distance r measured from
the center of the molecule along the internuclear axis. Although
the present two-electron wave function from Ref. [69] is good
enough to yield rather accurate energy, it has incorrect behavior
in the asymptotic region. This is understandable, because the
exponents in the basis functions were chosen to minimize the
energy which is insensitive to the asymptotic tail of the wave
function. As a result, the tail of υ1sσ (r) has the correct behavior
with the exponent determined by the ionization potential in
the region r � 6, but decays more rapidly at larger r . The
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FIG. 3. (Color online) Dyson orbital for H2, see Table I, as a
function of the distance r from the center of the molecule along the
internuclear axis for the internuclear distance R = 1.4009. Dashed
(black) line: results obtained with an accurate two-electron wave
function from Ref. [69]. Thin solid (red) line: 1sσ HF orbital of
H2(1sσ 21	g

+) multiplied by
√

2 calculated using the program of
Ref. [76]. Vertical dotted line at r = R/2 indicates the position of
one of the nuclei.

coefficient g extracted from this orbital by means of Eq. (60)
and a fitting procedure described in Ref. [11] applied in the
interval 1 ≤ r ≤ 5 is given in Table I. The error of this result
should not exceed a unit in the last digit quoted.

In the single-determinant unrelaxed HF approximation,
the Dyson orbital for H2(1sσ 21	g

+) coincides with the 1sσ

HF orbital for this state multiplied by
√

2. The HF results
calculated using the program of Ref. [76] are also shown
in Fig. 3. The asymptotic coefficient gHF obtained in this
approximation is given in Table I. The agreement between the
accurate and HF results in the present case is as good as for He.

The ionization rate of H2 in the ground state for the same
orientation with respect to the field and a slightly different
internuclear distance R = 1.4 was calculated by the complex
rotation method in Ref. [18]. These results are compared in
Fig. 4 with the prediction of the ME-WFAT. For the present
value of g (see Table I), the ME-WFAT result for the ratio
shown in the figure is consistent with what can be obtained by
extrapolating the results of Ref. [18] to F = 0, which again
confirms the present theory. The orientation dependence of the
ionization rate of H2 within the OE-WFAT calculated in the
HF approximation was discussed in Ref. [10].

C. Three-electron atom Li

We finally discuss a three-electron atom Li. The total spin
S of a three-electron system also can take only two values,
1/2 and 3/2. The irreducible representation corresponding to
doublet states (S = 1/2) is two dimensional and its genealog-
ical spin basis consists of χ0 1

2 MS
(	3) and χ1 1

2 MS
(	3); that

for quartet states (S = 3/2) is one dimensional with a single
basis function χ1 3

2 MS
(	3) [see Eqs. (A6) in Appendix A]. The

doublet three-electron states have the form

�
(3)
0 (Q3) = 1√

2

1∑
S2=0

ψS2 (R3)χS2
1
2 MS

(	3). (67)
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FIG. 4. Ionization rate of H2 aligned along the field in the ground
electronic state divided by the field factor (61) for the dominant
ionization channel H2(1sσ 21	g

+) → H2
+(1sσ ) with nξ = m = 0.

Solid circles: fully correlated calculations from Ref. [18] for the
internuclear distance R = 1.4. Solid line with an open circle at F = 0:
present leading-order ME-WFAT results for ionization into the final
state H2

+(1sσ ), Eq. (63), given by a constant g2 = 7.45 calculated
for R = 1.4009; see Table I.

The final state of the two-electron subsystem is �
(2)
nM ′

S
(Q2) =

ψn(R2)χS ′M ′
S
(	2), so the space part of the Dyson orbital (56)

is given by

υn(r) =
√

3

2

∫
ψn(R2)ψS ′ (R3)dV2. (68)

We consider tunneling ionization from the ground state of Li
to the ground state of Li+; see Table I. In principle, accurate
variational wave functions of Li are available in the literature;
see Ref. [73] and references therein. However, as we have
seen on the example of H2, such functions do not necessarily
have the correct behavior in the asymptotic region required
for extracting the coefficient g. We postpone the analysis of
Li with more precise wave functions to future studies and
restrict our treatment here to the single-determinant unrelaxed
HF approximation which turned out to be rather accurate in
the previous cases. In this approximation, the Dyson orbital for
Li(1s22s 2S) coincides with the 2s HF orbital for this state. This
orbital is again calculated using the program of Ref. [70]. The
corresponding asymptotic coefficient gHF is given in Table I.

The ionization rate of Li in the ground state was calculated
by the complex rotation method in Ref. [39]; the results are
shown in Fig. 5. A linear extrapolation of these results to
F = 0 seems to disagree with the prediction of the ME-WFAT
obtained in the HF approximation. This disagreement can
result from a more complicated nonmonotonic way of how
the ratio shown in the figure approaches its limiting value as
F → 0; examples of such a behavior were met before [9,32].
But it can also reflect a deficiency of the HF approximation in
the present case, or an inaccuracy of the results of Ref. [39].
To clarify this situation, the asymptotic coefficient g must be
calculated with the use of more accurate wave functions.

An additional insight into the situation is provided by the
SAEA. In this approximation, the ground state of Li can be
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FIG. 5. (Color online) Ionization rate of Li in the ground state
divided by the field factor (61) for the dominant ionization channel
Li(1s22s 2S) → Li+(1s21S) with nξ = m = 0. Solid symbols: fully
correlated calculations from Ref. [39]. Solid (black) line with an
open circle at F = 0: present leading-order ME-WFAT results for
ionization into the final state Li+(1s21S), Eq. (63), obtained in the
single-determinant unrelaxed HF approximation and given by a
constant g2

HF = 0.225; see Table I. Dashed (blue) line: SAEA results
for ionization of one electron from the 2s state in the potential (69)
calculated by the method of Ref. [31].

described by the potential [77–79]

VLi(r) = −1 + 2(1 + βr) exp(−2βr)

r
(69)

with β = 1.6559. The 2s state in this potential has the energy
E2s = −0.198 141, so the ionization potential within five
digits coincides with that of Li; see Table I. We have calculated
the ionization rate from the 2s state by the method of Ref. [31];
the results are shown by the dashed line in Fig. 5. There
exist earlier calculations for this potential by the complex
absorbing potential method [78] and B-spline approach [79].
The ionization rates obtained in these calculations are in close
agreement with each other at F = 0.015, but rapidly diverge at
weaker fields. Our calculations confirm the results of Ref. [79].
For example, for the weakest field F = 0.0055 considered
there, the complex energy eigenvalues obtained in the dif-
ferent calculations are −0.200 619 70 − i0.745 × 10−8 [78]
and −0.200 522 99 − i0.38 × 10−9 [79] and the present result
is −0.200 619 759 − i0.378 44 × 10−9. We believe that our
result is correct in all digits. Thus the method of Ref. [78]
works well for the real part of the energy, but fails at weak
fields for the the imaginary part, while the approach of Ref. [79]
is not so accurate for the energy, but works much better for
the ionization rate. As seen from Fig. 5, the SAEA results
are consistent with the ME-WFAT result obtained in the HF
approximation at F → 0, and, on the other hand, agree with
the results of Ref. [39] at stronger fields, but disagree with
Ref. [39] at weaker fields. This, however, is not sufficient to
judge which of the results reproduces the correct behavior of
the ionization rate of Li at F → 0.

IV. CONCLUSION

In this paper, we have extended the WFAT, originally
developed for one-electron systems [9], to many-electron

atoms and molecules treated in the FNA. The total ionization
flux is decomposed into ionization channels ν = (n,nξ ,m)
corresponding to a given state n of the parent ion and a
given set of parabolic quantum numbers (nξ ,m) of the ionized
electron. The asymptotic expansion (58) of the partial rate �ν

for ionization into channel ν has the general form of Eq. (1).
The leading-order term in this expansion is obtained and
given by Eqs. (59)–(61). The results are expressed in terms of
properties of the unperturbed system and its ion. In particular,
the asymptotic coefficient (60) in the structure factor (59) is
determined by the corresponding Dyson orbital. The theory
is illustrated by calculations for several few-electron systems
for which accurate wave functions can be constructed. The
asymptotic results for the tunneling ionization rates of He
and H2 are consistent with the results of fully correlated
calculations [18,36–38], but for Li there is an indication of
disagreement with the results of Ref. [39]. The implementation
of the theory on the basis of available quantum chemistry
codes for electronic structure calculations with the help of the
experience gained in Refs. [10,11] is a goal for future studies.

Since main applications of the ME-WFAT belong to strong-
field physics, it is worthwhile to mention some unresolved
problems. There is a class of small molecules where one-
electron tunneling theories and strong-field ionization experi-
ments disagree qualitatively. These molecules are therefore of
immediate interest for application of the ME-WFAT. For CO2

previous theories, including the OE-WFAT, fail to explain the
measured [80,81] maximum in the ionization signal at the
angle between the molecular axis and external field ≈45◦, but
systematically predict an angle 5◦–10◦ smaller (see Ref. [11]
for a detailed discussion). For CO the OE-WFAT predicts that
ionization occurs most likely when the field points from the
O to the C end [11], which is opposite to what is observed
experimentally [49–51]. For OCS the OE-WFAT tunneling
rate peaks when the dipole of the HOMO (pointing from the
S to the O end) has a component antiparallel with the field,
i.e., when the electron leaves from the O end [11]. This is
consistent with previous work on OCS in circularly polarized
fields [61,63], but is in contrast with experiments in linearly
polarized fields, where the ionization signal peaks when the
molecular axis is perpendicular to the direction of the field [82].
In these three cases (CO2, CO, and OCS), one possible reason
of the difference between experimental and theoretical results
is many-electron effects, and then the ME-WFAT may resolve
the discrepancies. Other possible sources of the disagreement
within the adiabatic approximation [25] are the strong-field
effects represented by the correction terms in Eq. (1), which
can be accounted for by extending the ME-WFAT along the
lines of Ref. [12], and the effects of nuclear motion [20,21].
Any remaining disagreement should then be associated with
nonadiabatic effects caused by the temporal dependence of the
field.
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APPENDIX A: GENEALOGICAL SPIN BASIS

The spin functions χτSMS
(	N ), τ = 1, . . . ,τNS , should

form a real orthonormal basis of the irreducible representation
corresponding to a given value of the total spin S of the
N -electron system. Any such basis can be used in Eq. (6). A
particular set of the spin functions can be constructed by adding
the spins of individual electrons, one by one, in the order as
the electrons are numbered [42]. We denote such functions
by χS2...SN−1SMS

(	N ), where Sn is the total spin of the first n

electrons and S1 = 1/2 is omitted from the notation because
its value is fixed. In addition to Eqs. (8), these functions satisfy[

S2
n − Sn(Sn + 1)

]
χS2...SN−1SMS

(	N ) = 0, n = 1,. . .,N − 1.

(A1)

For this genealogical spin basis, the subscript τ in Eq. (6) enu-
merates all possible sets of the intermediate spins S2 . . . SN−1

and the orthonormalization condition (10) takes the form

χT
S2...SN−1SMS

χS ′
2...S

′
N−1S

′M ′
S

= δS2S
′
2
. . . δSN−1S

′
N−1

δSS ′δMSM ′
S
.

(A2)

Let us introduce the one-electron spin functions χms
(σ ), ms =

±1/2, defined by

χms
(σ ) = δmsσ , χT

ms
χm′

s
= δmsm′

s
. (A3)

Then the complete set of functions χS2...SN−1;S,MS
(	N ) for an

N -electron system can be obtained from the complete set of
similar functions χS2...SN−2;S,MS

(	N−1) for its (N − 1)-electron
subsystem by means of the equations

χS2...SN−2S,S+1/2,MS
(	N )

=
√

S − MS + 1
2

2S + 1
χS2...SN−2S,MS+1/2(	N−1)χ− 1

2
(σN )

+
√

S + MS + 1
2

2S + 1
χS2...SN−2S,MS−1/2(	N−1)χ+ 1

2
(σN ),

(A4a)

χS2...SN−2S,S−1/2,MS
(	N )

=
√

S + MS + 1
2

2S + 1
χS2...SN−2S,MS+1/2(	N−1)χ− 1

2
(σN )

−
√

S − MS + 1
2

2S + 1
χS2...SN−2S,MS−1/2(	N−1)χ+ 1

2
(σN ).

(A4b)

Applying these equations recursively in N , starting with
N = 2, one can obtain all the spin functions for any
N . For example, the two-electron functions χSMS

(	2) are

given by

χ00(	2) = 1√
2

[χ+ 1
2
(σ1)χ− 1

2
(σ2) − χ− 1

2
(σ1)χ+ 1

2
(σ2)],

(A5a)

χ1,±1(	2) = χ± 1
2
(σ1)χ± 1

2
(σ2), (A5b)

χ10(	2) = 1√
2

[χ+ 1
2
(σ1)χ− 1

2
(σ2) + χ− 1

2
(σ1)χ+ 1

2
(σ2)].

(A5c)

For the three-electron functions χS2SMS
(	3) we obtain

χ0 1
2 ,± 1

2
(	3) = χ00(	2)χ± 1

2
(σ3), (A6a)

χ1 1
2 ,± 1

2
(	3) = ±

√
2

3
χ1,±1(	2)χ∓ 1

2
(σ3)

∓ 1√
3
χ10(	2)χ± 1

2
(σ3), (A6b)

χ1 3
2 ,± 3

2
(	3) = χ1,±1(	2)χ± 1

2
(σ3), (A6c)

χ1 3
2 ,± 1

2
(	3) = 1√

3
χ1,±1(	2)χ∓ 1

2
(σ3)

+
√

2

3
χ10(	2)χ± 1

2
(σ3). (A6d)

APPENDIX B: SPACE-SPIN STRUCTURE OF
A DYSON ORBITAL

The use of the genealogical spin basis in Eq. (6) enables
one to clarify the space-spin structure of a Dyson orbital.
Let �SMS

(QN ) be given by the right-hand side of Eq. (6),
where τ = S2 . . . SN−1. Let �S ′M ′

S
(QN−1) has a similar form,

where N , S, and MS are substituted by N − 1, S ′, and
M ′

S , respectively, and the summation runs over all possible
τ ′ = S ′

2 . . . S ′
N−2. The Dyson orbital is defined by [we use the

simplified notation of Eq. (15)]

ϒ(q) = N1/2
∫

�T
S ′M ′

S
�SMS

dVN−1. (B1)

The advantage of the genealogical basis stems from the relation

χT
τ ′S ′M ′

S
χτSMS

= δτ ′S ′,τ χS ′M ′
S ,SMS

(σ ), (B2)

where

χS ′M ′
S ,SMS

(σ ) = δS ′,S−1/2

[√
S − MS

2S
δM ′

S ,MS+1/2χ− 1
2
(σ )

+
√

S + MS

2S
δM ′

S ,MS−1/2χ+ 1
2
(σ )

]

+ δS ′,S+1/2

[√
S + MS + 1

2S + 2
δM ′

S ,MS+1/2χ− 1
2
(σ )

−
√

S − MS + 1

2S + 2
δM ′

S ,MS−1/2χ+ 1
2
(σ )

]
. (B3)
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Using Eq. (B2), we obtain ϒ(q) in the factorized form

ϒ(q) = υ(r)χS ′M ′
S ,SMS

(σ ), (B4)

where

υ(r) =
√

N

τN−1,S ′τNS

τNS∑
τ=1

δS ′SN−1

∫
ψτ (RN−1)ψτS(RN ) dVN−1.

(B5)

The spin function (B3) has the property

∑
M ′

S

(
χT

MS−M ′
S
χS ′M ′

S ,SMS

)2 = δS ′,S−1/2 + δS ′,S+1/2, (B6)

which facilitates the summation over M ′
S in Eq. (55).
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