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In continuation of our earlier works, we present results concerning the computation of matrix elements of
the multipolar Hamiltonian (MPH) between extended wave functions that are obtained numerically. The choice
of the MPH is discussed in connection with the broader issue of the form of radiation-atom (or -molecule)
interaction that is appropriate for the systematic solution of various problems of matter-radiation interaction. We
derive analytic formulas, in terms of the sine-integral function and spherical Bessel functions of various orders,
for the cumulative radial integrals that were obtained and calculated by Komninos, Mercouris, and Nicolaides
[Phys. Rev. A 71, 023410 (2005)]. This development allows the much faster and more accurate computation of
such matrix elements, a fact that enhances the efficiency with which the time-dependent Schrödinger equation is
solved nonperturbatively, in the framework of the state-specific expansion approach. The formulas are applicable
to the general case where a pair of orbitals with angular parts |�1, m1〉 and |�2, m2〉 are coupled radiatively.
As a test case, we calculate the matrix elements of the electric field and of the paramagnetic operators for on-
and off-resonance transitions, between hydrogenic circular states of high angular momentum, whose quantum
numbers are chosen so as to satisfy electric dipole and electric quadrupole selection rules. Because of the nature
of their wave function (they are nodeless and the large centrifugal barrier keeps their overwhelming part at large
distances from the nucleus), the validity of the electric dipole approximation in various applications where the
off-resonance couplings must be considered becomes precarious. For example, for the transition from the circular
state with n = 20 to that with n = 21, for which 〈r〉 ≈ 400 a.u., the dipole approximation starts to fail already at
XUV wavelengths (λ < 125 nm).
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I. INTRODUCTION

Rydberg states, whose outer orbital resembles hydrogen
eigenfunctions with a quantum defect in their energies,
dominate the discrete spectrum of atoms (molecules) and their
positive ions. Therefore, it is reasonable to expect that, under
suitable circumstances of atomic (molecular) energy spectra
and the parameters of a radiation pulse that interacts with
an atom (molecule) (i.e., wavelength, temporal duration and
shape, and intensity), they may play a distinct role in the
processes of excitation and ionization by absorption of one or
more photons. The formal and computational examination of
such a possibility can be carried out within time-independent
or time-dependent frameworks, depending on the problem.

In previous publications [1–3], we presented formal and
numerical results from the implementation of the full electric
interaction of the multipolar Hamiltonian (MPH) [4–7] to the
calculation of radiative coupling matrix elements involving
atomic Rydberg wave functions. The interaction energy
present in the MPH involves the coupling of the atom to
the electric and magnetic fields, which are gauge-independent
physical quantities. In the electric dipole approximation
(EDA), it is reduced directly to −e �E(t) · �r , where �E(t)
is the field without dependence on coordinates. Hence the
corresponding coupling matrix elements involve the length
form of the EDA 〈n|�r|m〉.
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The calculated matrix elements of the full electric in-
teraction and of the EDA were used for the quantitative
treatment of the time-dependent excitation by a weak pulse
of Rydberg wave functions (wave packets) [2]. This was
done by computing nonperturbatively the solution �(t) of
the time-dependent Schrödinger equation (TDSE) via the
state-specific expansion approach (SSEA). For a review of the
SSEA, with a selection of prototypical applications to atomic
and diatomic systems, see [8].

In the present paper, we continue the exploration of the use
of the MPH for the calculation of Rydberg-Rydberg matrix
elements. We have already derived and implemented analytic
formulas for the cumulative radial integrals in terms of which
matrix elements of the MPH have been calculated [1–3].
As we show in Appendix A, these integrals are expressed
as combinations of the sine-integral function and spherical
Bessel functions of various orders. This has the advantage
of both speed and accuracy in their calculation since excellent
algorithms and implementation routines are available for these
functions in the literature [9]. The formulas can be applied for
the treatment of the general case where a pair of orbitals with
angular parts |�1, m1〉 and |�2, m2〉 are coupled radiatively.
The radial part of these orbitals can be either a hydrogenic
function (used in analytic or numerical form) or a numerical
one obtained using a fixed term-dependent potential. [We
have been using Hartree-Fock (HF) or multiconfigurational
HF potentials.] We recall that for sufficiently high angular
momenta (� � 5) the outer atomic orbitals are practically
hydrogenic.

We have used as test case hydrogenic circular states of
high angular momentum [10,11], with quantum numbers
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appropriate for transitions satisfying electric dipole and elec-
tric quadrupole selection rules. The circular states are nodeless.
They are those for which, at a given energy level n,|m| and �

have their maximum value, i.e., |m| = � = n − 1. We note that
the dipole-allowed transition for circular states of the transition
n = 29 → n = 30 at 256 GHz was used in the experimental
study of Lutwak et al. [11].

For the calculation of the 3j symbols with very large
arguments � � 30, which appear in the angular factors, a
method was implemented that circumvents the problem of
the numerical overflows that arise with the commonly used
computational routines. Specifically, Tuzun et al. [12] have
rewritten the definition formula of the 3j symbols with
m1 = m2 = m3 = 0 in a clever way that avoids numerical
overflows.1 For the most general case, we implemented a
recursion formula [13].

We stress that, although the test cases are chosen for
hydrogen, the wave functions are obtained and used nu-
merically. The use of numerical orbitals presents additional
difficulties for the mathematics and computation of radiation-
atom-coupling matrix elements with extended Rydberg and
scattering wave functions, mainly because of the appearance
of highly oscillatory integrands and on-shell singularities
[1–3,8,14,15]. However, they are necessary for the eco-
nomic and transparent treatment of processes in arbitrary
many-electron atoms, for which state-specific orbitals in
the discrete and the continuous spectra must be computed
numerically (assisted, when necessary, by Wentzel-Kramers-
Brillouin techniques), in a symmetry-adapted (N–1)-electron
core potential. Obviously, in the case of hydrogen, no electron
core is present.

A. Radiation-atom-coupling matrix elements in connection
with the characteristics of the unperturbed spectrum

The MPH is related to the minimal coupling Hamiltonian
(MCH) [which involves the vector potential �A(�r,t) and is the
one usually invoked in studies of spectroscopy and quantum
optics] via a unitary (canonical) transformation [4–7]. As
shown in [7], this relation entails the general result that “ . . . the
matrix elements for energy-conserving processes (i.e., on the
energy shell) calculated using the multipolar and minimal
coupling Hamiltonians are equal.” As a tangible example of
the utility of the formalism that will be presented in Sec. II, in
Appendix B we demonstrate this equality analytically for the
case of the 1s → 2p1 one-photon transition in hydrogen.

The arguments for carrying out the development of for-
malism and its numerical implementation for the computation
of Rydberg-Rydberg matrix elements of the MPH and the
corresponding EDA length operator were presented in [1–3].
One of the main objectives was to explore aspects of the
degree of validity of the EDA since, as we stated, “ . . . results
on field-induced processes that involve such extended states
and are based on the electric dipole approximation cannot be
justified a priori” [1]. The same concern had been expressed
earlier in [14] in connection with free-free transition matrix

1We point out that in their Eq. (13), the first term in the numerator
of the second product should contain C instead of A.

elements, a topic that we also investigated recently from a
different perspective [15]. In connection with the solution of
the TDSE for excitation of hydrogen Rydberg states, where
off-resonance coupling matrix elements play a significant role
[1,2], our conclusion was phrased as follows: “Already for
n = 25 the differences [between the EDA and the full electric
operator] are very significant, and force us to suggest that it
is doubtful whether the theory and understanding of Rydberg
wavepacket [sic] formation and dynamics is reliable within the
framework of the EDA” [1].

At this point, having mentioned the MPH and the length
form of the EDA, it is worth recalling that there are alternative
expressions that are formally equivalent in the framework of
theoretical spectroscopy. At the level of the full-interaction
Hamiltonian, the alternative to the MPH is the MCH, while
at the level of the EDA there are (at least) two more
operators, the velocity and the acceleration, that are considered
in various nonrelativistic formulations and calculations. The
word “equivalent” here means that for a given measurable
quantity the use of the alternative forms will produce the
same results provided the necessary theoretical requirements
are fulfilled, such as the use of complete sets of exact wave
functions or the phase change of �(t) by an appropriate gauge
transformation, if this is necessary.

However, in actual EDA calculations on N -electron sys-
tems, the wave functions are not exact and when needed in
time-independent perturbative expressions or in the direct
solution of the TDSE, the sets of function spaces are not
complete. Actually, the issue of the lack of completeness
becomes more acute as the intensity of the radiation increases.
Therefore, the results from the use of the three EDA operators
are in general different.

Although the above requirements of exactness of wave
functions and completeness of corresponding expansions are
normal constraints of quantum mechanics, the discrepancies
among the computed results using the different operators
have provided reasons, over several decades, for a plethora of
discussions and analyses, including the theme of determining
and/or of favoring one of the expressions for radiation-atom
coupling as the formally more appropriate interaction operator.
The recent review article [8] contains a number of publications
in which various aspects of this issue are discussed, often as
a result of disagreement as to its proper understanding and
resolution of possible dilemmas.

Our position on this matter, which led to the choice of the
MPH and the corresponding EDA length form in our approach
to the problem of Rydberg state excitation [1,2], is as follows.

(i) At the fundamental level of theory, the choice of the MPH
and the corresponding EDA length form −e �E(t) · �r ensures
that the TDSE is gauge independent since the interaction
terms in the Hamiltonian contain only the fields and not the
vector potential. Therefore, the state-specific time-dependent
expansion coefficients in the SSEA are computed directly
as occupation probability amplitudes for the state to which
they correspond and there is no need to worry about a gauge
transformation of the first kind on �(t) [16,17]. [On the other
hand, even if the interaction were hypothetically taken to
involve the full �A(�r,t) or more realistically the EDA form
of the MCH, i.e., e

mc
�p · �A(t), it is possible in practice to avoid
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the phase transformation of �(t) by choosing the solutions of
the TDSE at the points of time over a field cycle where �A(t)
vanishes, including the beginning and the end of the pulse.]

(ii) The root cause of the disagreement in results obtained
with different EDA operators for the same problem, either
in time-independent or in time-dependent frameworks, is the
inevitable recourse to the use of approximate and incomplete
function spaces, except, occasionally, in simple cases involv-
ing the hydrogen atom. In order for actual calculations to
have a good convergence and a reasonable degree of accuracy
with respect to the (computationally elusive) exact answer, the
choice of the interaction operator must take into account the
interconnection of the characteristics of the operator and the
space of wave functions on which it acts.

Of course, for complex systems and complex problems
that engage many states, the above may not be easy to secure
consistently, at least a priori. Some trial and error may be
needed. In contrast, for the case of one-photon transition prob-
abilities, where only two wave functions are involved and the
matrix element is on resonance, things are simplified and the
matrix element may be scrutinized to a good approximation.
This case was discussed four decades ago and the arguments
and conclusions were based on many-electron calculations of
one-photon electric dipole transition rates (oscillator strengths)
in systems where, in fact, electron correlation, i.e., beyond
the nonlocal Hartree-Fock approximation, is important. The
results were tested for the length, velocity, and acceleration
operators [18].

In the case of processes of higher order, such an analysis
becomes more complicated. Now one must pay attention to the
interplay between characteristics of the interaction operator
and a small or a large set of wave functions in the spectrum
of the unperturbed Hamiltonian H0. For example, as already
mentioned, the results of [1–3] showed that, when Rydberg-
Rydberg or Rydberg-scattering couplings are involved, terms
from the full electric operator, which are additional to the EDA
operator and subject to the same selection rules, contribute
significantly in off-resonance couplings (with respect to the
radiation wavelength). This conclusion was reached in steps,
based on the consideration of the nature of the problem. In the
first step we concluded that the physics of the time-dependent
excitation of the Rydberg states is best revealed using the
−e �E(t) · �r interaction of the EDA, which corresponds to the
MPH, rather than using the − e

mc
�p · �A(t) interaction (velocity

form), which corresponds to the MCH.
Specifically, the problem had to do with the quantitative

determination of the time-dependent excitation of hydrogen
Rydberg states [1,2]. For this type of excitation process,
off-resonance coupling matrix elements among high-lying
orbitals play a significant role. In this context, by first analyzing
the problem in terms of the EDA, it is seen that convergence
of the calculation is considerably better if the EDA has the
length form 〈n|�r|m〉. This conclusion is reachable before any
computation by considering the fact that the most important
mixing to the directly excited state (on resonance with the
center of the pulse) has to come from neighboring states. Of
these off-resonance matrix elements, the most important ones
in hydrogen are the intrashell ones (same n, coupled subject to
�� = ±1), which are given by− 3

2n
√

n2 − �2 (regardless of the

coordinate system, spherical or parabolic). On the contrary, in
the EDA velocity form 〈n|�p|m〉, they are zero. Therefore, in the
latter case the convergence towards the accurate solution must
be effected by including in the expansion a huge number of
higher-lying states of the Rydberg and the continuous spectra.

II. REDUCTION OF THE MULTIPOLAR HAMILTONIAN
TO WORKABLE EXPRESSIONS FOR ATOMIC

MATRIX ELEMENTS

A. Electric-field operator

The electric part of the MPH can be written elegantly
as [6,7]

Hel = e
∑

j

∫ 1

0
�rj

�E(λ�κ · �rj )dλ, (1)

where �κ is the wave vector. With �ε as the polarization vector,
the electric field is written as

�E = 1
2E0(t) �εei�κ�r−iωt + c.c. (2)

The simplest case arises when the z axis is chosen in the
direction of the wave vector �κ . Then, by convention, the
polarization �ε of the electric field is along the x axis.

Using (2), the general formula (1) can be reduced, in the
case of atoms, to an expression in terms of integrals of spherical
Bessel functions multiplied by an angular part containing
spherical harmonics [1]. In that paper we showed that the
electric-field operator can be written in the form

Hel = 1

2
E0(t)e−iωt

∞∑
�=1

i�+1(2�+1)F�(κr)	�(θ,φ) + c.c.

≡ 1

2
E0(t)e−iωtOE(κ,�r) + c.c., (3)

where E0(t) is the amplitude of the electric field with wave
vector κ ,

F�(κr)= 1

κ

∫ r

0

1

r ′ j�(κr ′)dr ′, (4)

with j�(κr ′) the spherical Bessel function, and

	�(θ,φ) =
√

π�(�+1)

2�+1

(
Y−1

� − Y 1
�

)
, (5)

with Y 1
� the spherical harmonic. The angular part causes

transitions with �m= ± 1.
We are interested in the computation of matrix elements

between atomic states of definite angular momentum. Hence
we perform the angular integration first. The resulting radial
operator is given by

O�1m1;�2m2 (r) = 〈
Y

m1
�1

∣∣OE(κ,�r)
∣∣Ym2

�2

〉

=
∞∑

�=1

i�+1(2�+1)F�(κr)
〈
Y

m1
�1

∣∣	�(θ,φ)
∣∣Ym2

�2

〉
.

(6)

Here 	�, as given by Eq. (5), contains Y±1
� . Therefore, the

result of the angular integration over the spherical harmonics
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of the initial and the final state can be expressed in terms of 3j

symbols. To this purpose, we use the formula [19]

〈
Y

m1
�1

∣∣Y±1
�

∣∣Ym2
�2

〉 =
[

1

4π
(2�1 + 1)(2�2 + 1)(2� + 1)

]1/2

×
(

�1 �2 �

0 0 0

) (
�1 �2 �

−m1 m2 ±1

)
.

(7)

Hence the angular matrix element in Eq. (6) is given by〈
Y

m1
�1

∣∣	�(θ,φ)
∣∣Ym2

�2

〉

= 1

2
[(2�1 + 1)(2�2 + 1)�(� + 1)]1/2

(
�1 �2 �

0 0 0

)

×
[(

�1 �2 �

−m1 m2 −1

)
−

(
�1 �2 �

−m1 m2 1

)]
. (8)

According to the selection rules for the 3j symbols,
m2 = m1 ± 1. Therefore, only one of the symbols in the set
of large square brackets in Eq. (8) is nonzero. Furthermore,
|�1 − �2| � � � �1 + �2, while the first symbol in Eq. (7)
requires that �1 + �2 + � is even. In every other case the 3j

symbols are zero. Consequently, the infinite summation over
� is reduced to a finite one. For transitions with |�1 − �2| = 1
(electric dipole selection rule), � acquires odd values. For
transitions with |�1 − �2| = 2 (electric quadrupole selection
rule), � acquires even values.

Equation (8) is the analytic expression of the coefficients
of the F�(κr) integrals, which are the components of the radial
operator (6). The spherical Bessel functions of the integrand
can be expressed as infinite polynomials. For small values of
the argument κr , we may keep, to a good approximation, the
first few powers only. This is the long-wavelength approxima-
tion (LWA) whose use in quantum mechanics is extensive and
pervades many fields, especially in the form of the EDA and
the electric quadrupole approximation (EQA), where only the
smallest power of κr in the expansion is kept.

Setting j�(x) ≈ x�

(2�+1)!! , one obtains (2� + 1)F�(κr) ≈
κ�−1 r�

�(2�−1)!! . For the EDA, the first term � = 1 of the expansion
with odd values of � gives 3F1 ≈ r . For the EQA, the first term
� = 2 of the expansion with even values of � gives 5F2 ≈ 1

6κr2.
Higher-order multipoles get contributions from more than

one term. For example, the octupole results from the second
term in the expansion of j1(x) and the first term of j3(x).

As has been widely written since the beginning of the
quantum mechanical theory of atom-radiation interaction, the
EDA and the EQA (different selection rules) are considered
valid based on the heuristic inequality κr � 1, where r

represents the dimensions of the atom. In fact, since we are
dealing with transition matrix elements between two states,
this argument is more properly expressed by stating that at
least one of the wave functions entering the matrix element is
compact, i.e., the ground or low-lying excited states.

In contrast, it is also possible to have problems, es-
pecially those corresponding to high-order processes with
off-resonance matrix elements, where the two states of the
transition matrix element have bound yet very extended wave
functions. This is always the case with Rydberg states. The

question then arises as to what degree the operators of the
EDA and the EQA are valid in such cases. To answer this
question we compare, in Sec. III, the matrix elements of both
the MPH and the EDA and EQA operators between two highly
excited circular states as a function of κ .

B. Paramagnetic-field operator

The paramagnetic part of the MPH is written as [6,7]

Hpar = e

2c

∑
j

∫ 1

0
[�rj × �p �B(λ�κ · �rj ) + �B(λ�κ · �rj )�rj × �p]λ dλ

≡ e

2c

∑
j

∫ 1

0
[�l �B(λ�κ · �rj ) + �B(λ�κ · �rj )�l]λ dλ. (9)

As in the case of the electric field, the z axis is chosen in the
direction of the wave vector �κ , while the polarization of the
magnetic field is along the y axis.

As it was shown in [1], using for the magnetic field an
expansion similar to the one for the electric field (2), the
paramagnetic field operator has a form resembling that of
Eq. (3):

Hpar = 1

2c
B0(t)e−iωt

∞∑
�=0

i�(2�+1)F�(κr)	�(θ,φ) + c.c.

≡ 1

2c
B0(t)e−iωtOB(κ,�r) + c.c., (10)

where B0(t) is the amplitude of the magnetic field with wave
number κ and

F�(κr)= 1

(κr)2

∫ κr

0
xj�(x)dx, (11)

where j�(x) is the spherical Bessel function. The ana-
lytic expression for the integrals of Eq. (10) is given in
Appendix A. Equation (9) is the analog of Eq. (3). However,
the series (9) starts at � = 0. The function 	�(θ,φ) has the
form2

	�(θ,φ) = 1

2i

√
π

2�+1

[−√
�(�+1)

(
Y−1

� − Y 1
�

)

+ 2Y 0
� (l̂+ − l̂−)

]
, (12a)

where

l̂±Ym
� =

√
(� ∓ m)(� ± m + 1)Ym±1

� . (12b)

As in the case of the electric field, the angular part allows
transitions with �m= ± 1. The resulting radial operator is
nearly identical in form to that of the electric field, i.e.,

O�1m1;�2m2 (r) = 〈
Y

m1
�1

∣∣OB(κ,�r)
∣∣Ym2

�2

〉

=
∞∑

�=0

i�(2�+1)F�(κr)
〈
Y

m1
�1

∣∣	�(θ,φ)
∣∣Ym2

�2

〉
. (13)

However, the function 	�(θ,φ) is now given by Eq. (12a).
The first term of the angular function in Eq. (12a), call it

	
(1)
� , is similar to that of the electric operator (5). The second

term, call it 	
(2)
� , which contains the raising and lowering

2The present Eq. (12a) corrects Eq. (14) of Ref. [1] by a factor of 2.
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operators, gives rise to slightly different 3j symbols, i.e.,

〈
Y

m1
�1

∣∣	(2)
� (θ,φ)

∣∣Ym2
�2

〉 = 1

i
[(2�1 + 1)(2�2 + 1)]1/2

(
�1 �2 �

0 0 0

) [√
(�2 − m2)(�2 + m2 + 1)

(
�1 �2 �

−m1 m2 + 1 0

)

−
√

(�2 + m2)(�2 − m2 + 1)

(
�1 �2 �

−m1 m2 − 1 0

)]
. (14)

The two terms 	
(1)
� and 	

(2)
� are put on the same footing by expressing the 3j symbols of Eq. (8) in terms of the recursion formula

−
√

�(� + 1)

(
�1 �2 �

−m1 m2 ±1

)

=
√

(�1 ± m1)(�1 ∓ m1 + 1)

(
�1 �2 �

−m1 ± 1 m2 0

)
+

√
(�2 ∓ m2)(�2 ± m2 + 1)

(
�1 �2 �

−m1 m2 ± 1 0

)
. (15)

Only one of the 3j symbols in Eq. (14) is nonzero, while both
of them are generally nonzero in Eq. (15), due to the selection
rules stated above.

Considering the small-r expression of Eq. (11), the same
treatment that we applied in the case of the electric field gives

(2� + 1)F�(κr) ≈ (κr)�

(� + 2)(2� − 1)!!
. (16)

Comparing this result with Eq. (8) obtained in the case of the
electric field, κ appears in the same power as r . Consequently,
the term for � = 1, called the magnetic quadrupole, is much
smaller than the corresponding one of the electric field for the
part of the energy spectrum below the hard x rays (κ = ω/c

with c ≈ 137 a.u.) since an additional c−1 term is present in
Eq. (9).

III. TRANSITIONS BETWEEN CIRCULAR STATES
CAUSED BY THE MULTIPOLAR HAMILTONIAN

We shall proceed to calculate off-resonance matrix elements
of the MPH between two circular states (� = m = n − 1)
connected by electric dipole selection rules. The radial wave
function of such a state consists of a single Slater-type
orbital with a maximum at rmax = n2/Z. A high value of
n produces a large centrifugal barrier that renders the wave
function negligible for small distances from the nucleus. As an
indicator of the region that contributes the most to the transition
probability, we choose the cumulative acceleration integral.
This is the matrix element of the r−2 operator 〈n�|1/r2|n′�′〉.
For hydrogenic atoms, it is equal to 〈n�|r|n′�′〉(En − E′

n′ )2.
The former operator, being a bound one, is directly amenable
to accurate calculation, whereas the latter one is unbound and
is extremely inconvenient to handle numerically, especially in
the case of scattering states.

For the matrix elements mentioned above, the failure of
the LWA starts at XUV wavelengths for the extended wave
functions of high n. This result must be compared with the
one involving relatively compact wave functions of low n,
where the failure appears at much shorter wavelengths, in the
region of x ray and beyond.

The matrix element of the EDA operator for the transition
n → n + 1 between adjacent circular states is given by the
analytic expression [20] R = n2 (1+1/n)n+2

Z (1+1/2n)2n+5/2 .

The limit R → n2e1/2n/Z is reached for moderately large
n. Note the similarity of this expression with that of the
position of the maximum of the lower state. In contrast, the
energy difference between adjacent circular states is, to a
good approximation, (1/n3)(1 − 3/2n). This has an important
consequence.

The independent variable of the multipolar operators is κr ,
where κ is the photon wave number κ = ω/c and c the speed
of light, equal to 137.037 a.u. While r is of the order of n2, κ is
of the order of n−3 and therefore κr ∼ 1/n. Consequently,
since the LWA is valid for κr � 1, we have to consider
off-resonance transitions in order to study possibly realistic
departures from the predictions of the LWA.

As a case study, we chose to apply the theory to transitions
between circular states with n = 20, 21, and 22. The transition
n = 20 → n = 21 is for the electric dipole selection rules and
the transition n = 20 → n = 22 is for the electric quadrupole
ones.

Figure 1 shows the cumulative acceleration integral, which
starts piling up for r > 300 and reaches a constant at r =
600. At this radius, the wave functions drop below 10−7. The
constant is very close to the exact value of the acceleration
integral. Therefore, we consider values of r � 600. We also
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FIG. 1. Integral
∫ r

0 un1�1 (r ′)(1/r ′2)un2�2 (r ′)dr ′ for the hydrogen
circular states with n1 = 20 and n2 = 21.
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FIG. 2. Full electric radial operator O�1m1;�2m2 (r) =
〈Y m1

�1
|OE(κ,�r)|Y m2

�2
〉 [Eq. (6)] for �1 = m1 = 19 and

�2 = m2 = 20. The dashed line corresponds to the simplified
model proposed in [1].

note that for r � 250 the wave functions are negligible due
to the centrifugal barrier and the cumulative integral is of the
order of 10−10. Hence the region of interest is 250 � r � 600.

In order that κr > 1 for r > 300, we must have κ >

3.3 × 10−3. Then one has corrections to the simple LWA result
due to the cubic and higher-order terms resulting from the
region 1/κ < r < 600, which, for larger κ values, become
the dominant contribution. It is noted that for κ � 4.0 ×
10−3, the region where κr < 1 requires values of r < 250.
Therefore, it practically drops out of the calculation. For these
wave numbers, the LWA is invalid for the transition under
consideration.

Figure 2 shows the full electric radial operator for n =
20 → n = 21 and Fig. 3 shows the paramagnetic radial
operator, as functions of κr . Comparing the two operators,
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FIG. 3. Paramagnetic radial operator O�1m1;�2m2 (r) =
〈Y m1

�1
|OB (κ,�r)|Y m2

�2
〉 [Eq. (13)] for �1 = m1 = 19 and

�2 = m2 = 20.
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FIG. 4. Full electric operator matrix element for the circular states
with n1 = 20 and n2 = 21 as a function of the photon wave number
κ in a.u.. The dotted line corresponds to the simplified model of [1].
The horizontal dashed line corresponds to the EDA value. The failure
of the EDA for off-resonance matrix elements is striking.

we observe that for large κr the electric one reaches a
constant value while the paramagnetic one goes to zero, as
it is expected from Eq. (11). The former can be approximated
by the simplified model proposed in previous work [1].

Figure 4 shows the matrix element of the full electric
radial operator as a function of κ , compared with the constant
value of the EDA and the matrix element derived within the
simplified model. The failure of the EDA for off-resonance
matrix elements is striking. Figure 5 shows the matrix element
of the paramagnetic radial operator (magnetic quadrupole
selection rules) for various values of κ .

Finally, Fig. 6 shows the full electric radial operator for the
transition 20 → 22, which obeys quadrupole selection rules,
for various values of κ and a comparison is made with the
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FIG. 5. Paramagnetic operator matrix element for the circular
states with n1 = 20 and n2 = 21 as a function of the photon wave
number κ in a.u..
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FIG. 6. Full electric operator matrix element for the circular states
with n1 = 20 and n2 = 22 as a function of the photon wave number
κ in a.u.. The dashed line corresponds to the EQA value. As in the
case of the EDA, the deviation from the results of the full operator is
striking.

EQA. Here the EQA matrix element increases with increasing
energy, while it decreases in the case of the full electric
operator. These results show clearly that the EDA and EQA
overestimate considerably the value of the transition matrix
element for high energies.

IV. CONCLUSION

We have continued our investigation [1–3,8] of properties
and numerical methods of computation of matrix elements of
the multipolar Hamiltonian [4–7] (electric and paramagnetic
operators), subject to selection rules, between extended atomic
wave functions that are obtained in numerical form. Such wave
functions (i.e., Rydberg bound orbitals and scattering energy-
normalized orbitals) must enter into rigorous treatments of
a variety of properties and phenomena involving high-order
transition processes, i.e., processes whose quantum mechani-
cal description must account for off-resonance coupling matrix
elements, induced by the interaction of electromagnetic pulses
with atoms.

As explained in the preceding, Eqs. (1), (3), (6), and (8) are
the relevant ones for the computation of matrix elements of
the electric-field operator and Eqs. (9), (10), (13), and (14) for
the paramagnetic one, for a pair of orbitals with angular parts
|�1,m1〉 and |�2, m2〉. Analytic formulas are derived for the
radial integrals of Eqs. (3) and (10) in terms of the sine-integral
function and the spherical Bessel functions of various orders
(Appendix A). For the calculation of these special functions
fast and accurate algorithms and implementation routines are
available [9]. In addition, the angular part of the electric field
and paramagnetic operators [Eqs. (8) and (14), respectively]
contains 3j symbols that must be calculated efficiently. For 3j

symbols with very large arguments (� � 30), a method was
implemented that circumvents the problem of the numerical
overflows that arise with the commonly used computational
routines. Numerical techniques such as the ones presented

here are necessary in order to secure the efficient and accurate
computation of the above matrix elements, whose number may
run, for certain problems requiring the implementation of the
state-specific expansion approach [8] for the nonperturbative
solution of the TDSE, in the hundreds of thousands.

The results presented in Figs. 1–6 refer to matrix elements
for on- and off-resonance transitions between hydrogenic
circular states of high angular momentum, satisfying electric
dipole and electric quadrupole selection rules. We note that
the paramagnetic quadrupole [� = 1of Eq. (10)] obeys electric
dipole selection rules. For off-resonance couplings the validity
of the EDA and EQA is diminishing rapidly (Figs. 4 and 6).

APPENDIX A: INTEGRALS

In the expression of the electric part of the multipolar
Hamiltonian, there are integrals of the form

I−1
� (z) ≡

∫ z

0

1

x
j�(x)dx (A1)

for � > 0. In order to derive an analytic expression for them, we
use the recurrence relations of the spherical Bessel functions
[21],

� + 1

x
j�(x) = j�−1(x) − ∂

∂x
j�(x), (A2a)

j�−1(x) = � − 2

x
j�−2(x) − ∂

∂x
j�−2(x), (A2b)

and

j�(x) + j�−2(x) = 2� − 1

x
j�−1(x). (A3)

Combining these, we obtain

1

x
j�(x) =

(
� − 2

� + 1

)
1

x
j�−2(x) −

(
2� − 1

� + 1

)
∂

∂x

(
j�−1

x

)
,

(A4)

which gives, upon integration, the recursive relation

I−1
� (z) = � − 2

� + 1
I−1
�−2(z) − 2� − 1

� + 1

j�−1(z)

z
+ 1

3
δ�2, � � 2.

(A5)

The last quantity is the Kronecker delta and results from
limz→0

j1(z)
z

= 1
3 . Equation (A5) is the desired relation, which

we utilize in order to derive an analytic expression for the
integral (A1). The integrals corresponding to the even values
of � start with

I−1
2 (z) = 1

3
− j1(z)

z
, (A6)

an expression obtained from Eq. (A5) for � = 2. Note that
limz→0I

−1
2 (z) ∼ z3.

For the integrals corresponding to odd values of �, the value
of I−1

1 (z) is required. This is obtained from the relation (A2a)
for � = 1 as

I−1
1 (z) = 1

2 [Si(z) − j1(z)], (A7)

where Si(z) = ∫ z

0 j0(x)dx is the sine-integral function. Inter-
estingly, the asymptotic behavior of I−1

1 (z) has the same form
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as Eq. (A6), i.e.,

lim
z→∞ I−1

1 (z) = π

4
− j0(z)

z
+ O

(
1

z3

)
, (A8a)

while

lim
z→0

I−1
1 (z) = 1

3z + O(z3). (A8b)

Equation (A5) for � > 2, together with the starting expressions
(A7) for the odd � values and (A6) for the even ones,
produces the integral I−1

� (z) for any value of � and is
easily programmable. However, for reasons of clarity we
shall also give the explicit expression of I−1

� (z). This is
written compactly in terms of the double factorials, defined
by (2n)!! = 2 × 4 × · · · × (2n) ≡ 2nn! with (0)!! ≡ 1 and
(2n + 1)!! = 1 × 3 × · · · × (2n + 1) with (−1)!! ≡ 1. Let us
set I−1

0 (z) ≡ 1. Then, for � > 1

I−1
� (z) = (� − 2)!!

(� + 1)!!
(p + 1)I−1

p (z) − (� − 2)!!

(� + 1)!!

×
�−1−p∑
q=1
odd

(� − q)!!

(� − q − 1)!!
[2(� − q) + 1)]

j�−q(z)

z
,

(A9)

where q takes odd values q = 1,3, . . . ,� − 1 − p. We define

p =
{

1 if � is odd
0 if � is even (A10)

We note that the even �integrals contain odd-order spherical
Bessel functions while the odd �integrals contain even-order
ones.

Equation (A8) makes transparent the behavior of the
integrals for large values of z. In contrast, in order to examine
the behavior of these integrals for small z, it is much simpler to
substitute j�(x) ≈ x�

(2�+1)!! in the original integral equation (A1)

and obtain I−1
� (z) ≈ z�

�(2�+1)!! . It is quite difficult to obtain this
result from Eq. (A9) due to the many cancellations involved.

Next, we will examine integrals that appear in the expres-
sion of the paramagnetic part of the multipolar Hamiltonian
and have the form

I 1
� (z) ≡

∫ z

0
xj�(x)dx. (A11)

We wish to derive an analytic expression for these for � > 0.
For � = 0, one easily obtains I 1

0 (z) = 1 − cos z. We employ
Eq. (A2b) in the form

xj�(x) = �j�−1(x) − ∂

∂x
(xj�−1). (A12)

Integrating Eq. (A12), we transform the above integral to a
simpler one, defined as

I 0
� (z) ≡

∫ z

0
j�(x)dx. (A13)

The relation between the two is

I 1
� (z) = �I 0

�−1(z) − zj�−1(z). (A14)

In order to calculate the I 0
� (z) integrals, we use another

recurrence relation of the spherical Bessel functions, i.e.,

�j�(x) = (� − 1)j�−2(x) − (2� − 1)
∂

∂x
j�−1(x). (A15)

Upon integration we obtain

I 0
� (z) = � − 1

�
I 0
�−2(z) − 2� − 1

�
j�−1(z) + δ�1. (A16)

The even � series, for � � 2, starts with

I 0
0 ≡

∫ z

0
j0(x)dx = Si(z), (A17)

while the odd � series starts with

I 0
1 ≡

∫ z

0
j1(x)dx = 1 − j0(z), (A18)

a result obtained from Eq. (A16) for � = 1. Equation (A16) is
the analog of Eq. (A5) for the I 0

� (z) integrals. Equation (A16)
for � > 2, together with the starting expressions (A17) for the
even � values and (A18) for the odd ones, produces the integral
I 0
� (z) for any value of � and is easily programmable. Again, we

shall also give the expression of I 0
� (z). The analog of (A9) is

I 0
� (z) = (� − 1)!!

�!!
I 0
p(z) − (� − 1)!!

�!!

×
�−1−p∑
q=1
odd

(� − q − 1)!!

(� − q)!!
[2(� − q) + 1)]j�−q(z),

(A19)

valid for � � 2, with p as defined above.

APPENDIX B: THE 1s→ 2 p1 TRANSITION MATRIX
ELEMENT FOR THE MULTIPOLAR HAMILTONIAN

The theoretical approach that is presented in this work
is concerned with the calculation of matrix elements of
atom-radiation interaction, at the level of the multipolar
Hamiltonian. The formal theory of the MPH and its
connection to the minimal coupling Hamiltonian is presented
clearly in Refs. [6,7].

In order to illustrate the applicability of the formulation,
here we derive the analytic result for the MPH matrix element
of the simplest possible one-photon transition between two
circular states, namely, that for the 1s → 2p1 transition in
hydrogen. We stress that the result holds for any value of the
frequency of the incident radiation and not just for that on
resonance with the energy difference ω = (E2p − E1s)/�.

For the on-resonance case, Craig and Thirunamachandran
[7] obtained the analytic expression for the 1s → 2p matrix
element using the well-known full interaction from the MCH
e

mc
�p · �A(�r,t) [7]. They compared the MCH result to that from

the EDA. The analytic expression for the ratio of the matrix
elements 〈MCH〉/〈EDA〉 is simple (in a.u.):

R(1s → 2p) = 〈MCH〉
〈EDA〉 =

[
1 + 4

9
κ2

]−2

, (B1)

where κ is the photon wave number, with κ = ω/c.
As we will show below, the answer for R which is obtained

by using the MPH, is the same. In fact, in order for this equality
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between the MCH and MPH results to be achieved precisely (it
holds only for the on-resonance matrix element), it is necessary
(as dictated by the fundamentals of the theory of radiation) to
add the contribution of the magnetic field even though, for this
case in hydrogen, it is orders of magnitude smaller than that
of the electric field.

Since �1 = m1 = 0 and �2 = m2 = 1, only the term with
� = 1 survives in the expansions (3) and (9) for the interaction
Hamiltonians. The radial wave function of a hydrogenic
circular state has the simple form of a Slater-type orbital,
i.e., r� e−[Z/(�+1)], where Z is the nuclear charge. In our case,
u1s = 2e−rand u2p = 1

2
√

6
re−r/2.

1. Matrix element of the electric-field operator

Equation (8) gives 〈Y 0
0 |	1(θ,φ)|Y 1

1 〉 = − 1√
6

for the
angular term. The integral F1 in the expression of the time-
independent operator OE(κ,�r) defined in Eq. (3) is, according
to (A7),

3F1(κr) = 3

2κ
Si(κr) − 3

2κ
j1(κr). (B2)

Substituting the above expressions in Eq. (3), we obtain

〈1s|OE(κ,�r)|2p〉

= 1

4κ

∫ ∞

0
r3e−(3/2)r [Si(κr) − j1(κr)] dr

= 1

4λ

(
2

3

)5 ∫ ∞

0
x3e−x[Si(λx) − j1(λx)] dx, (B3)

where λ = 2
3κ . After integration the final result is

〈1s|OE(κ,�r)|2p〉 = 1

2

(
2

3

)5 [
5+8λ2+3λ4

(1 + λ2)3
+ 3

tan−1(λ)

λ

]

= 1

2

(
2

3

)5 [
5 + 3λ2

(1 + λ2)2
+ 3

tan−1(λ)

λ

]
.

(B4)

In the case of the long-wavelength approximation, where
κr ∼ 0, Eq. (B2) is reduced to the EDA form

3F1(κr) ≈ r. (B5)

Thus the EDA version of Eq. (B3) is

〈1s|OE(κ,�r)|2p〉EDA = 1

4λ

(
2

3

)5 ∫ ∞

0
x4e−xdx = 27

35
.

(B6)

The expression (B6) is also obtained from Eq. (B4) for λ = 0.
Using Eqs. (B4) and (B6), we obtain the ratio

〈1s|OE(κ,�r)|2p〉
〈1s|OE(κ,�r)|2p〉EDA

= 1

23

[
5 + 3λ2

(1 + λ2)2
+ 3

tan−1(λ)

λ

]
.

(B7)

2. Matrix element of the paramagnetic-field operator

Equation (12a) gives 〈Y 0
0 |	1(θ,φ)|Y 1

1 〉 = − 1
2i

√
6

for the
angular term. The integral F1 in the expression of the time-

independent operator OB(κ,�r) defined in Eq. (13) is, according
to (A14) and (A17),

3F1(κr) = 3

(κr)2
[Si(κr) − sin(κr)]. (B8)

Thus, for the magnetic field we obtain

〈1s|OB(κ,�r)|2p〉

= − 3√
6κ2

∫ ∞

0
r e−(3/2)r [Si(κr) − sin(κr)] dr

= − 3√
6

(
2

3

)4 1

λ2

∫ ∞

0
xe−x[Si(λx) − sin(λx)] dx.

(B9)

Performing the integration, we obtain

〈1s|OB(κ,�r)|2p〉 = 4

34λ2

{
λ

1 − λ2

(1 + λ2)2
− tan−1(λ)

}
. (B10)

Division of Eq. (B10) by the EDA result yields

〈1s|OB(κ,�r)|2p〉
〈1s|OE(κ,�r)|2p〉EDA

= 1

25λ

[
3

1 − λ2

(1 + λ2)2
− 3

tan−1(λ)

λ

]

= 1

4λ

[
1

(1 + λ2)2
− 〈1s|OE(κ,�r)|2p〉

〈1s|OE(κ,�r)|2p〉EDA

]
, (B11)

where use of (B7) was made.

3. Matrix element of the full operator

In order to obtain the total matrix element, we add the
expression (B11), divided by c, to (B7). Now cλ = 2

3ω and

0 100 200 300 400 500 600 700 800
0.0

2.0x10-4

4.0x10-4

6.0x10-4

8.0x10-4

1.0x10-3

|R
|

ω  (a.u.)

FIG. 7. Absolute value of the ratio R of the matrix element of the
paramagnetic field operator to that of the electric one [Eqs. (B11) and
(B7)] for the transition between the 1s and 2p circular states of H, as
a function of ω.
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ω = 3
8 a.u., so cλ = 1

4 a.u. Consequently,

〈1s|OE(κ,�r)|2p〉 + c−1 〈1s|OB(κ,�r)|2p〉
〈1s|OE(κ,�r)|2p〉EDA

= 1

(1 + λ2)2
≡

[
1 + 4

9
κ2

]−2

. (B12)

Equation (B12) is identical to Eq. (B1).
Finally, it is of interest to calculate the ratio R of the matrix

element of the paramagnetic field operator to that of the electric
one [Eqs. (B11) and (B7)]. The absolute value of the ratio |R|

is shown in Fig. 7 as a function of ω; |R| takes its maximum
value of 9.88 × 10−4 for λ = 1.04 a.u. (ω = 213.8 a.u.),
a result showing that the electric-field operator is the most
significant part of the multipolar interaction Hamiltonian.

The ratio of the matrix elements shown in Eq. (B12)
corresponds to nuclear charge Z = 1. For the case
of Z �= 1 it takes the general form [1 + 4

9 ( κ
Z

)2]−2 =
[1 + 3.328Z2 × 10−6]−2.

This is so because κ = ω/c scales as Z2 for the on-
resonance case (ω = E2p − E1s). Consequently, apart from
relativistic effects on the wave functions, the larger the nuclear
charge Z is, the larger the deviation of the full operator matrix
elements from its EDA counterpart is.
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and E. J. Brändas, Vol. 60 (Elsevier, New York, 2010),
Pt. 1.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes, 3rd ed. (Cambridge University
Press, Cambridge, 1992).

[10] A. Bommier, D. Delande, and J. C. Gay, in Atoms
in Strong Fields, edited by C. A. Nicolaides, C. W.

Clark, and M. H. Nayfeh (Plenum, New York, 1990),
p. 155.

[11] R. Lutwak, J. Holley, P. P. Chang, S. Paine, D. Kleppner, and
T. Ducas, Phys. Rev. A 56, 1443 (1997).

[12] R. E. Tuzun, P. Burkhardt, and D. Secrest, Comput. Phys.
Commun. 112, 112 (1998).

[13] National Institute of Standards and Technology digital library
of mathematical functions, Sec. 34.3.14 (unpublished).

[14] Th. Mercouris, Y. Komninos, S. Dionissopoulou, and C. A.
Nicolaides, J. Phys. B 30, 2133 (1997).

[15] Y. Komninos, Th. Mercouris, and C. A. Nicolaides, Phys. Rev.
A 86, 023420 (2012).

[16] W. Pauli, General Principles of Quantum Mechanics (Springer-
Verlag, Berlin, 1980).

[17] J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley,
Reading, MA, 1967).

[18] C. A. Nicolaides and D. R. Beck, Chem. Phys. Lett. 35, 202
(1975).

[19] A. Messiah, Quantum Mechanics, Vol. II (Wiley, New York,
1958), Appendix C.

[20] D. P. Dewangan, Phys. Rep. 511, 1 (2012).
[21] M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1964).

013420-10

http://dx.doi.org/10.1103/PhysRevA.65.043412
http://dx.doi.org/10.1103/PhysRevA.65.043412
http://dx.doi.org/10.1103/PhysRevA.65.043412
http://dx.doi.org/10.1103/PhysRevA.65.043412
http://dx.doi.org/10.1088/0953-4075/35/6/303
http://dx.doi.org/10.1088/0953-4075/35/6/303
http://dx.doi.org/10.1088/0953-4075/35/6/303
http://dx.doi.org/10.1088/0953-4075/35/6/303
http://dx.doi.org/10.1103/PhysRevA.71.023410
http://dx.doi.org/10.1103/PhysRevA.71.023410
http://dx.doi.org/10.1103/PhysRevA.71.023410
http://dx.doi.org/10.1103/PhysRevA.71.023410
http://dx.doi.org/10.1098/rsta.1959.0008
http://dx.doi.org/10.1098/rsta.1959.0008
http://dx.doi.org/10.1098/rsta.1959.0008
http://dx.doi.org/10.1098/rsta.1959.0008
http://dx.doi.org/10.1098/rspa.1971.0049
http://dx.doi.org/10.1098/rspa.1971.0049
http://dx.doi.org/10.1098/rspa.1971.0049
http://dx.doi.org/10.1098/rspa.1971.0049
http://dx.doi.org/10.1103/PhysRevA.56.1443
http://dx.doi.org/10.1103/PhysRevA.56.1443
http://dx.doi.org/10.1103/PhysRevA.56.1443
http://dx.doi.org/10.1103/PhysRevA.56.1443
http://dx.doi.org/10.1016/S0010-4655(98)00065-4
http://dx.doi.org/10.1016/S0010-4655(98)00065-4
http://dx.doi.org/10.1016/S0010-4655(98)00065-4
http://dx.doi.org/10.1016/S0010-4655(98)00065-4
http://dx.doi.org/10.1088/0953-4075/30/9/014
http://dx.doi.org/10.1088/0953-4075/30/9/014
http://dx.doi.org/10.1088/0953-4075/30/9/014
http://dx.doi.org/10.1088/0953-4075/30/9/014
http://dx.doi.org/10.1103/PhysRevA.86.023420
http://dx.doi.org/10.1103/PhysRevA.86.023420
http://dx.doi.org/10.1103/PhysRevA.86.023420
http://dx.doi.org/10.1103/PhysRevA.86.023420
http://dx.doi.org/10.1016/0009-2614(75)85314-0
http://dx.doi.org/10.1016/0009-2614(75)85314-0
http://dx.doi.org/10.1016/0009-2614(75)85314-0
http://dx.doi.org/10.1016/0009-2614(75)85314-0
http://dx.doi.org/10.1016/j.physrep.2011.10.001
http://dx.doi.org/10.1016/j.physrep.2011.10.001
http://dx.doi.org/10.1016/j.physrep.2011.10.001
http://dx.doi.org/10.1016/j.physrep.2011.10.001



