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Atomic photoionization and dynamical stabilization with subrelativistically intense
high-frequency light: Magnetic-field effects revisited
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The results of three-dimensional numerical simulations of strong-field atomic stabilization with arbitrarily
polarized light beyond the electric dipole approximation are presented. The study of the long-term evolution of
the ground-state hydrogen atom exposed to an intense high-frequency laser field reveals the persistence of the
metastable bound states up to relativistic intensities. The population of these states in a pulsed field is examined
as a function of the pulse peak intensity. These calculations resolve recent contradictions in the literature related
to the role of magnetic field in the high-frequency stabilization phenomenon.
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I. INTRODUCTION

The theory of atomic photoionization in an intense high-
frequency laser field is known to predict the counterintuitive
phenomenon of stabilization, i.e., the saturation or even
the decrease of ionization probability with increasing laser
intensity [1,2]. So far, laser sources permitting the observation
of atomic stabilization in ground-state tightly bound atomic
systems were not available. Thanks to recent advances in
free-electron laser technology, the short-pulse coherent light
sources producing VUV and soft-x-ray pulses with peak
intensity higher than 1017 W/cm2 become available, which are
expected to allow experimental observation of the atomic high-
frequency stabilization. This to a large extent determines the
recently renewed interest in this unusual phenomenon [3–7].

Although the basic mechanisms and many aspects of
atomic stabilization have been well studied theoretically,
some important issues remain unresolved. Of fundamental
significance are those related to the role of the magnetic field
of the laser pulse for intensities reaching weakly relativistic
regime. On the one hand, both the classical Monte Carlo
simulations [8] and quantum-mechanical numerical experi-
ments [9,10] have indicated that the magnetic field pushing the
electron away from the nucleus in the laser pulse propagation
direction hampers stabilization, thereby reducing to a rather
narrow window the intensity range in which the atom is
relatively stable against ionization. On the other hand, using the
relativistic strong-field approximation (RSFA) [11] to study
analytically the stabilization of the hydrogen atom in a very
intense linearly [12] and circularly [13] polarized field, Reiss
showed that (i) the H atom is increasingly stable against
ionization as the laser intensity increases and (ii) the relativistic
effects enhance stabilization. As stated in [13], this contrast
poses an interesting contradiction that needs to be resolved.
In this article, we present the results of quantum-mechanical
numerical simulations, which are to address thoroughly these
issues and shed light on the above-mentioned contradiction.

Most previous numerical studies of atomic stabiliza-
tion have been carried out within the context of reduced-
dimensionality models, which allow one to dramatically
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reduce the computational efforts [9,10,14–16]. In particu-
lar, the two-dimensional (2D) models, which contained the
essential physics of their full-dimensionality counterparts,
allowed the numerical studies of atomic stabilization in
arbitrarily polarized laser fields employing the electric dipole
approximation [10,15,16], as well as the nondipole simulations
for the case of linearly polarized field [9,10] to be carried
out. The latter approach, however, was one of the subjects of
criticism in [13] where the validity of the 2D theory to describe
the intrinsically three-dimensional (3D) phenomena, such as
those originating from the coupled electric and magnetic fields,
has been put into question.

Three-dimensional numerical studies of ionization pro-
cesses in the high-intensity laser field are, in general, com-
putationally demanding. The exception is the case of a
linearly polarized field, for which the cylyndrical symmetry
of the problem can be exploited to reduce the computational
efforts when the electric dipole approximation is assumed; the
corresponding numerical 3D studies of atomic stabilization
for ground-state hydrogen can be found, e.g., in [17,18]. For
the more demanding case of circular polarization, several 3D
numerical studies of stabilization, both within [19–21] and
beyond [22,23] the dipole approximation have been reported
to date; however, these studies were generally restricted to very
short pulses (typically no longer than 10 cycles). Furthermore,
in the nondipole case the 3D studies are scarce: For both linear
and circular polarizations, only very few specific values of the
laser parameters have been addressed.

In this paper, we present the results of numerical simulations
for the dynamic stabilization of ground-state hydrogen in
the arbitrarily polarized pulsed laser field, including the
magnetic-field effects, in full (3D) dimensionality. The long-
term evolution of the electron wave function for a wide range
of laser intensities is addressed.

The paper is organized as follows. In Sec. II we briefly
describe the details of our numerical calculations in the dipole
and nonrelativistic nondipole approximations. The numerical
results are presented in Sec. III. In Sec. IIIA the results of
3D calculations of the H atom survival probability in a short
laser pulse are presented and compared with those obtained
earlier within the reduced-dimensionality models; the results
for different laser polarizations are also discussed. In Sec. IIIB
the evolution of the H atom exposed to a very long circularly
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polarized laser pulse is studied numerically and discussed
in terms of the field-dressed states and transitions between
them. The detailed study of the long-term evolution of the
part of the electron wave packet, which remained localized
after the field switching-on, is presented. The comparison
between the dipole and nondipole results for the ionization
rate in the asymptotic regime is presented in Sec. IIIC
for both linear and circular polarizations of the field. An
interpretation of the nonrelativistic nondipole results in terms
of the laser-dressed Coulomb potential and their relations with
other existing theories are discussed in Sec. IV. Section V
contains concluding remarks.

II. NUMERICAL METHOD

For the sake of comparison, the calculations were per-
formed both within the electric dipole approximation and
beyond it. In the first case, we solved the time-dependent
Schrödinger equation (TDSE), in which the vector potential
A of the electromagnetic field is assumed to be only time
dependent. In the second case, the laser field was described
by the spatially dependent vector potential A(t − z/c), which
corresponds to the laser pulse traveling in the positive z

direction. Taking into account the smallness of the localization
scale of the electron wave packet in comparison with the
laser wavelength, we used an approximate form for A(t − z/c)
retaining only the first-order retardation correction beyond the
dipole approximation A(t) [10,24]. In this case, through a
unitary transformation, the initial equation can be reduced to
the form (hereinafter, we use atomic units),

i
∂�

∂t
= −1

2

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
�

− i

(
vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
� − 1

r
�, (1)

with vx,y = Ax,y(t)/c and vz = (v2
x + v2

y)/(2c), where vz is
the z component of the classical electron velocity calculated
in the lowest order in 1/c. This equation differs from its dipole-
approximation counterpart by an additional term −ivz(∂�/∂z)
describing the motion of an electron along the z axis due
to the coupled electric and magnetic fields. We neglect the
spin of the electron, since for the laser parameters of interest
here the coupling of the magnetic laser field to the spin leads
only to small-amplitude spin oscillations, which do not affect
ionization significantly, as shown in calculations carried out to
first order in 1/c via the Pauli equation [25,26].

In both cases, the TDSE was integrated numerically using
the fast Fourier transform-based split-operator technique [27].
The calculations were performed using a multithreaded
numerical code we have created on the basis of libraries
implementing the POSIX Threads standard.

The calculations were made for the laser field
E(t) = −(1/c)∂ A(t)/∂t = exEx(t) + eyEy(t) with Ex(t) =
Ef (t) sin ωt , Ey(t) = εEx(t − T/4), where E, ω, T = 2π/ω

and ε are the electric field amplitude, angular frequency,
period, and ellipticity, respectively; the field envelope is
trapezoidal with nr -cycle linear ramps and nc-cycle interval

of constant amplitude [(nr -nc-nr ) pulse]:

f (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t/(nrT ), 0 < t/T � nr

1, nr < t/T � nr + nc

(2nr + nc − t/T )/nr, nr + nc < t/T � 2nr+nc

0, t/T /∈ [0,2nr + nc].

(2)

The calculations were performed on a grid centered at
the nucleus, with absorbing boundaries used to avoid wave-
function reflections from the edges. The probability for the
electron to remain localized around the nucleus was calculated
as the norm of the wave function over the cube with an edge
length exceeding 4α0 (we will call it the “inner region”),
where α0 = E/ω2 is the maximum classical displacement of
an electron.

III. NUMERICAL RESULTS

A. Atom survival probability in short laser pulse
with arbitrary polarization

Figure 1 shows the results of 3D simulations for the
ground-state H atom exposed to the circularly [Fig. 1(a)] and
linearly [Fig. 1(b)] polarized field with the same time profile
as in the 2D numerical study [10] of atomic stabilization in a
linearly polarized field. The laser pulse is trapezoidal (2-10-2)
pulse; the angular frequency is ω = 1 a.u. The atom survival
probability shown in Fig. 1 is the norm of the time-dependent
wave function calculated 14 cycles past the end of the pulse,
when the changes in this norm become negligible. This
probability is plotted as a function of the laser peak intensity
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FIG. 1. (Color online) Atom survival probability for a 14-cycle
pulse with ω = 1 a.u. vs laser peak intensity I = E2(1 + ε2). Dipole
(blue open squares) and nondipole (red circles) results are shown for
(a) circular and (b) linear polarization.
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I = E2(1 + ε2); dipole and nondipole results are shown for
both polarizations.

Comparison of the 3D results in Fig. 1(b) with those ob-
tained within the reduced-dimensionality hydrogenlike models
for the same laser pulse parameters [10,28] shows that the
dimensionality has no decisive influence on the very existence
of the atomic stabilization effect as well as on the extension of
the stabilization window (the stabilization effect is manifested
in Fig. 1 as an increase in the atom survival probability for
the laser intensities between approximately 1 and 50–100
a.u.; this intensity range is called the “stabilization window”).
Although the width and depth of the “death valley” (the
region around the minimum of the atom survival probability)
increase with the dimensionality of the model, the position of
the minimum of the atomic survival probability is about the
same for one-dimensional (1D), 2D, and 3D cases; also the
same for 2D and 3D cases is the value of the intensity, starting
from which the effect of the magnetic field leads to a reduced
survival probability as compared to what would be expected
from a dipole-approximation consideration. Moreover, for
both dipole and nondipole cases, the results for different
laser polarizations are also close to each other [cf. Figs. 1(a)
and 1(b)].

To discuss further the issues raised in [13], we will consider
in detail the case of a circularly polarized laser pulse. This
analysis will be based on a series of 3D simulations of the
long-term evolution of the ground-state H atom exposed to a
very long trapezoidal laser pulse [(2-200-2) pulse] with carrier
frequency ω = 4 a.u.

B. Long-term evolution of the H atom

Figure 2 shows, for different peak intensities of the
circularly polarized laser field, the time evolution of the
probability to find an electron localized in the inner region;
in all cases shown are the results obtained both in the dipole
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FIG. 2. (Color online) Long-term behavior of the inner-region
population for a 204-cycle (≈320 a.u.) circularly polarized laser
pulse with ω = 4 a.u. and different peak intensities (see legends).
Dipole (blue dotted curve) and nondipole (red solid curve) results are
shown.

approximation and beyond it. The case shown in Fig. 2(a)
corresponds to a laser intensity lying within the H atom
stabilization window for ω = 4 a.u. The difference between
the dipole and nondipole calculations in this case is small
and the behavior of the atomic electron is very close to
that familiar from the dipole approximation, in which it is
known to be conveniently described in terms of the Kramers-
Henneberger (KH) states [1,29]. KH states arise in the theory of
atomic stabilization as a result of the application of the high-
frequency Floquet theory (HFFT) to the TDSE transformed
to the KH frame, which is the rest frame of the classical
electron in the ac electric field E(t). In lowest order in ω−1,
HFFT describes atomic states in an intense high-frequency
field as the stationary dressed states (KH states) in the
effective static potential V0(α0,r) = (1/T )

∫ T

0 V (r + α(t))dt ,
which is the cycle-averaged oscillating Coulomb potential
V (r + α(t)), α(t) = (1/c)

∫ t

−∞ A(t ′)dt ′. The harmonics of the
potential V (r + α(t)) are, in the KH picture, responsible for
ionization.

For a circularly polarized field, the effective potential is
a circular trough of radius α0; the probability distribution in
the ground KH state then has a toroidal shape [15,30]. In
the laboratory frame, this torus rotates around the Coulomb
center like a hoop twirling around the dancer’s waist [19]. For
a quickly ramped laser pulse considered here, the dynamics
of an electron is more complicated because of “shake-up”
processes described within the HFFT as the nonadiabatic
transitions to excited Floquet eigenstates. Since the system
is shaken up into a superposition of discrete Floquet states
with different azimuthal quantum numbers and quasienergies,
the probability density is nonuniformly distributed in a time-
dependent manner along the ring [20].

Figures 2(b)–2(d) show how the behavior of the inner-
region population changes as the laser intensity goes beyond
the above-mentioned regime. Both dipole and nonrelativistic
nondipole simulations (note that the maximum classical
electron velocity for the calculations shown in Fig. 2 does
not exceed 0.13 c, which justifies the use of a nonrelativistic
approach) show that the dynamics of the system now follows a
generic scenario that includes two successive stages: (i) rapid
loss of a bound-state population due to the “shake-off” into the
continuum during the turn-on of the field and (ii) smooth decay
because of the steady transfer of population to the continuum
due to ionization from the superposition of populated bound
states.

At high laser intensities, the inner-region depopulation at
the stage (i) is enhanced dramatically in the nondipole case
compared with the dipole calculations. This is the consequence
of the photon momentum transfer taken into account in
the calculations beyond the dipole approximation [31]. As
the laser intensity increases, more photons can be involved
in the Raman transitions giving rise to the “shake-up” and
“shake-off” processes. The resulting larger net momentum
transfer leaves the electron less chance to remain bound to the
Coulomb center. As a result, a significant part of the electron
wave packet is pushed away from the nucleus; see Fig. 3(a)
(the snapshot taken at stage (i) captures a particlelike electron
subpacket escaping along a helical path from the core to the
upper border of the box displayed in the figure). The rest
of the population after the field turn-on remains localized
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FIG. 3. (Color online) (a) Delocalized and (b) localized parts of
the electron wave packet for the H atom driven by a circularly polar-
ized laser pulse with ω = 4 a.u. and I = 2.25×104 a.u. (nondipole
results). The snapshots in (a) and (b) are taken at t ≈ 10 a.u. and
t ≈ 250 a.u., respectively. The color scale for the probability density
differs between (a) and (b) by a factor of 6×104. Shown on the
coordinate planes are the contour plots of the probability density in
the mutually orthogonal planes passing through the nucleus. The grid
line spacing is 12.8 a.u.; a proton is at the origin.

near the nucleus; see Fig. 3(b) [the snapshot is taken long
after the delocalized part of the electron wave packet has
drifted beyond the box, stage (ii). Note the large difference
in color scales between Figs. 3(a) and 3(b)]. The probability
for the atomic bound electron to remain localized after the
field switching-on depends strongly on the shape of the rising
edge of the pulse [32]. For example, for I = 4.9×103 a.u.
the inner-region population at the time instant t = 100 a.u. is
0.406 for our trapezoidal pulse [see Fig. 2(c)], whereas for the
flat-top pulse with Gaussian-shaped edges, this value is 0.205,
0.438, and 0.535 for the turn-on width at half maximum of
intensity equal to 1, 2, and 4 cycles, respectively.
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FIG. 4. (Color online) Long-term behavior of the expectation
value of the electron’s coordinate along the laser pulse propagation
direction for the localized part of electron wave packet. Nondipole
results are shown for (a) circularly and (b) linearly polarized laser
pulse with ω = 4 a.u. and I = 104 a.u.

The localized population demonstrates slow decay ap-
proaching asymptotically an exponential law as time goes to
infinity. In this limit, the slow shaken-off electrons no longer
contribute to the inner-region population, so the temporal
evolution of the depopulation of this region in the asymptotic
regime provides a highly accurate value of the rate of ionization
from the bound states.

The behavior of the localized part of the electron wave
packet is now not the same as in the dipole approximation
but rather resembles the motion of the hoop as the dancer
performs the “corkscrew” trick: The electron now not only
rotates around the nucleus but also takes an excursion back
and forth along the z axis [see Figs. 4(a) and 5(a) showing,
respectively, the time dependence of the z coordinate of the
electron wave-packet center of mass and the fragment of the
3D trajectory for this case].

C. Ionization rate in the asymptotic regime

An inspection of the inner-region population decay at the
stage (ii) reveals, opposed to the stage (i), no visible difference
between the dipole and nondipole results [cf. blue dotted
and red solid curves in Figs. 2(b)–2(d)]. This is shown more
explicitly in Fig. 6(a) that plots the ionization rates in the
asymptotic regime vs the intensity of a circularly polarized
laser field. The ionization rates were calculated by fitting the
exponential function to the numerical data for inner-region
population at large t . The calculations have been done up to
the intensities beyond which the higher-order corrections in
1/c should be taken into account.

A similar analysis was also done for other laser polariza-
tions. The results turn out to be, in general, very similar to those
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FIG. 5. (Color online) Center-of-mass trajectory for the localized
part of the electron wave packet in the (a) circularly and (b) linearly
polarized laser pulse with ω = 4 a.u. and I = 104 a.u. The relevant
time intervals are depicted by arrows in Fig. 4.

for a circular polarization. This is in spite of the fact that the
structures of the stabilized states in the linear and circular cases
are quite different and the nondipole center-of-mass trajectory
of the localized electron wave packet in the linear case is
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FIG. 6. (Color online) Ionization rate vs laser peak intensity for
H atom at ω = 4 a.u. in the asymptotic regime. Dipole (blue open
squares) and nondipole (red circles) results are shown for (a) circular
and (b) linear polarization.

essentially 2D instead of 3D. This is the drifting “eight-figure”
motion [see Fig. 5(b)]. The spatial extent in x of the trajectory
shown in Fig. 5(b) is 11.4 a.u., which agrees satisfactorily
with the KH picture (the deviation from 2α0 = 12.5 a.u. can
be explained by the contributions of excited dressed states),
whereas the width of the “figure eight” is 0.285 a.u., which
agrees perfectly with the exact solution [33] of the relativistic
equation of motion for the classical electron in the plane-wave
field. This trajectory in the linear case exhibits the same slow
oscillations along the z axis as in the circular case [cf. Figs. 4(a)
and 4(b)]. Note also that the curve in Fig. 4(b) looks thicker;
this is because the movement along the z coordinate in this
case also includes small-scale oscillations at a frequency 2ω;
see Fig. 5(b). Moreover, the ionization rate in the asymptotic
regime behaves with increasing laser intensity in the same way
for any laser polarization. In particular, the slope of the straight
lines in Figs. 6(a) and 6(b) is the same, whereas the value of
the ionization rate for the linear case is on average only about
1.3 times larger than in the circular case. Most importantly, in
all cases the ionization rate in the asymptotic regime shows no
influence of the magnetic field.

IV. DISCUSSION

The results in Figs. 3–6 can be interpreted in terms of the
laser-dressed Coulomb potential, which is the generalization of
the KH potential taking into account the relativistic and higher
multipole effects. For linear polarization, this generalization
was proposed in Ref. [34]. In this case, the laser-dressed
Coulomb potential is singular along a figure eight rather
than a straight line. Our study shows that the nonadiabatic
switching of the laser field creates the superposition of bound
states in this eight-shaped potential, thereby giving rise to
the electron wave-packet center-of-mass motion shown in
Figs. 4(b) and 5(b). Note, however, that the scale in Fig. 5(b)
differs between the x and z axes by a factor of four, so even
for intensity as high as I = 104 a.u., the eight figure is very
much flattened. This is the manifestation of the fact that for
the intensity range explored above, the nondipole corrections
to the KH potential are still very small. This conclusion
agrees with the estimation [34] that for α0 < 147(2ω)−3/4 (in
atomic units) the nonrelativistic dipole treatments by Gavrila
and coworkers for the metastable bound states (see [1] and
references therein) are valid; for the case of ω = 4 a.u., the
above-mentioned condition is fulfilled for I < 2.4 × 105 a.u.

FIG. 7. (Color online) Same as in Fig. 6(a) plotted against the
RSFA relativistic calculations from [13].
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One can expect that in this intensity range not only the cycle-
averaged potential but also the harmonics of the oscillating
Coulomb potential are not yet distorted too strongly to lead to
visible difference between the dipole and nondipole results
for the ionization rate [32], which is indeed the case; see
Fig. 6(b).

Although the calculations in [34] were limited to the case
of linear polarization, this treatment may be likely generalized
to an arbitrary polarization. Our study has revealed that,
for a wide range of intensities beyond the nonrelativistic
dipole regime, the metastable bound states persist for any
polarization with the lifetimes comparable to those for the
linear polarization. Whereas the nondipole corrections lead to
the above-mentioned qualitative changes of the bound-electron
wave-packet evolution, they, just like for the linear polarization
case, do not result in significant changes of the ionization rate.

Now it is interesting to compare the bound-state population
decay rates shown in Fig. 6 with the ionization rates calculated
using the RSFA [13]. In the latter approximation, by the way,
the ionization rates for both nonrelativistic and relativistic
cases turn out to agree perfectly with the results of the
nonrelativistic HFFT theory [35] in a wide range of laser
intensities. For comparison, the results of our TDSE numerical
simulations for ω = 4 a.u. are plotted in Fig. 7 against
the RSFA calculations. Good qualitative agreement between
these calculations is seen. The quantitative differences in the
ionization rates can be explained by the slower ionization of the
excited Floquet states [36] contributing in our case compared
to the ground state addressed in [13,35].

V. CONCLUSION

In conclusion, in this work the extensive full-dimensionality
nondipole numerical simulations of high-frequency stabiliza-
tion of the hydrogen atom with an arbitrarily polarized pulsed
laser field have been performed. Our study provides direct
evidence that a set of metastable bound states of the system
persists up to relativistic intensities, whose lifetimes increase
with the intensity and do not depend significantly on the
laser polarization and the magnetic field of the pulse. For
intensities exceeding the critical level determined by the net
momentum transfer from the incoming photons to the electron,
the population of the metastable states decreases quickly
with the intensity. It’s worth noting, however, that the latter
effect depends strongly on the shape of the rising edge of
the laser pulse. Future technologies of the soft-x-ray pulse
shaping can be therefore expected to facilitate experimental
observation of the atomic high-frequency stabilization in
a relativistically strong laser field. We believe our study
is helpful for understanding the dynamics of an atom in
intense high-frequency pulsed laser fields and bridging the
gap between the existing theories and ab initio numerical
simulations.
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