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Multielectron processes in photoionization of endohedral atoms at high photon energies
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We calculate the probability of inelastic processes in the fullerene shell of an endohedral atom which follow
the ionization of the caged atom by a high-energy photon. We demonstrate that the probability is close to unity
in a large interval of the photoelectron energies. The inelastic processes are determined mainly by the final-state
interactions, which have to be included beyond the perturbative approach. At photoelectron energies E of the
order of several keV the probability drops as 1/E. It is determined by the final-state interactions, which can
be treated perturbatively. At still larger energies the probability is determined by the shake-off mechanism and
does not depend on energy E. A model for calculating the shake-off contribution is also suggested. The actual
calculations are carried out for the endohedral atoms A@C60 and A@C20.
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I. INTRODUCTION

Until now, to the best of our knowledge, the papers on the
multiple photoionization (mainly the double photoionization)
of the endohedral atoms, i.e., of the systems consisting of
an atom A caged inside the fullerene shell CN , have focused
on the case when all photoelectrons were ejected from the
caged atom [1,2]. Here we consider another channel in which
ejection of one electron from the caged atom is accompanied
by inelastic multielectron processes in the fullerene shell (FS).
These may be a single-electron excitation or ionization, double
ionization, etc. We focus on the case when the energies of the
photoelectrons ejected from the internal atom E = ω − Ia are
large enough,

E � 1 Ry. (1)

Here ω and Ia are the energies of the photon and of the ionized
state of the caged atom. We assume that the radius R of the FS
is much larger than the size of the ionized state of the internal
atom ra ,

R � ra. (2)

We consider, in agreement with what is known about
fullerenes, that the thickness of the FS

� � R. (3)

We admit that the caged atom can be shifted from the center
of the sphere.

In another channel the photon knocks out a FS electron,
and the latter ionizes the internal atom. This mechanism
requires a special direction for the momentum of the electron
ejected from the FS. The probability is quenched by a small
factor of the order of r2

a /R2. Thus we neglect the contribution
of this mechanism.

As well as in the high-energy double photoionization of
atoms [3], we can separate three mechanisms of the process
in endohedrals A@CN (N is the number of the carbon
atoms which constitute the fullerene). In the shake-off (SO)
mechanism an atomic electron is moved to the continuum due
to its direct interaction with the incoming photon. The second
electron is ejected from the FS to the continuum because of the

sudden change of the effective field of the atom caged inside
the FS of the endohedral. In the final-state-interaction (FSI)
mechanism the second electron is knocked to the continuum
due to the direct interaction of the ionized atomic electron with
an electron belonging to the FS. In the quasifree mechanism
(QFM), which was predicted long ago [3] and discovered
recently in the experiments [4], absorption of the photon by the
two-electron system takes place almost without participation
of the nucleus.

In the double photoionization of atoms both cross section
σ 2+ and its spectrum are the result of interplay between SO,
FSI, and QFM. If the photon energy ω is large enough, the SO
mechanism dominates, and the double-to-single cross-section
ratio R(ω) = σ 2+(ω)/σ+(ω) = const. At higher energies the
contribution of the QFM to this ratio becomes important. At
ω � c2 (c is the speed of light, and the atomic system of units
is used) the contributions of SO and QFM to R(ω) are of the
same order of magnitude.

We shall analyze the interplay of these mechanisms in the
photoionization of the caged atom followed by excitations of
the FS. Since the QFM requires the coalescence of the two
bound electrons [5], it does not contribute to the considered
channel. Thus we consider only the interplay between the SO
and the FSI.

Because of the lack of detailed information about the
FS wave functions, we calculate only the sum of the cross
sections of inelastic processes, also called the cross section of
absorption. Ionization of the internal atom can be followed by
ionization of the FS or its transitions to excited states, double
ionization of the FS, etc. We shall see that this sum is not
sensitive to the details of the structure of the FS functions.

From Eqs.(1) and (2) the cross section of the process with
a transition of the FS to a particular final state n contains the
cross section of the photoionization of the isolated atom σγ

as a factor. The factorization is violated by terms of the order
of V/E, with V being the potential of the FS “felt” by the
photoelectron. Since |V | � 1 Ry, such terms can be neglected
in our approach. Thus we write

σn = σγ Sn. (4)
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We investigate the behavior of the ratio

r(E) = σA(E)

σγ (E)
, (5)

where σγ and σA are the cross section of photoionization
of the encapsulated atom and the absorption cross section,
respectively. The energy of the photoelectron is E = ω − Ia .
We calculate the absorption cross section σA as the difference
between the total cross section

σt = σγ St , St =
∑

n

Sn, (6)

and the elastic cross section σ0 = σγ S0, which describes the
process in which the FS state does not change, i.e.,

r(E) = St (E) − S0(E). (7)

We employ the model in which we assume that the electrons
of the caged atom and those of the FS move in an independent
way; that is, their wave functions do not mix. Thus we assume
that the cross section of photoionization of the encapsulated
atom σγ is equal to that of the isolated atom. It was
shown [6–8], however, that in some cases this approach may
not be true for the outer electrons since their mixing, called
“hybridization,” with those of the FS becomes important. In
this case our analysis, which does not include the hybridization
effects, is valid for inner subshells of the caged atom.

Since the FS electrons are separated from the caged atom by
distances of the order of R � 1, all their interactions and their
changes after the photoionization are quenched by a factor of
the order of 1/R, and the probability of the SO is of the order
of 1/R2. Note that the FS reacts to the change of the field as a
whole and the probability of the SO does not depend explicitly
on the number of the electrons in the FS.

The FSI between the photoelectron moving with momen-
tum p and each of the FS electrons is determined by the
Sommerfeld parameter [9]

ξ = 1

pc
� 1, (8)

with p = |p|. Here we neglected the momenta of the FS
electrons. One can write

ξ 2 ≈ 1

2E
� 1. (9)

However, due to the large number N � 1 of the FS elec-
trons the actual parameter of the FSI between the photoelectron
and the FS is Nξ 2. In the broad interval of energies Nξ 2 � 1.
At these energies (we call them intermediate energies) the
FSI provides the leading contribution to the absorption cross
section. Due to conditions expressed by Eqs. (2) and (3) it
appeared to be possible to find the contribution beyond the
perturbative approach in a model-independent way [10]. The
ratio r(E) was shown to be close to unity for energies which
are large enough (E � 50 eV) and for which Nξ 2 � 1. This
is E � 1.5 keV for the fullerene C20 and E � 5 keV for the
fullerene C60.

In this paper we extend the analysis to the high-energy
region where Nξ 2 � 1 and both FSI and SO mechanisms
are important. Here the perturbative treatment of the FSI is
possible. Calculating the contribution of the SO mechanism

requires knowledge of the ground-state wave functions of the
FS. We suggest a simple model which assumes that the FS
electrons have a uniform distribution. This enables us to trace
the energy dependence of the function r(E) determined by
Eq. (5).

In the next section we calculate the FSI in the perturbative
approach, following [11], and sum up all the perturbative
series [10]. In Sec. III we suggest a model for the SO. In
Secs. IV and V we present the partial-wave analysis and the
results for the ratio r(E). We summarize in Sec. VI.

II. FINAL-STATE INTERACTIONS

A. Perturbative approach

The amplitude of a process which includes the final-state
interaction between the fast electron and the electronic shell
up to terms of the order of ξ 2 is [11]

Fx = F (0)
x + F (1)

x + F (2)
x , (10)

where the upper index denotes the number of interactions
between the fast electron and the FS and index x labels the
final state of the FS. The amplitudes F (i)

x contain the amplitude
of ionization of the isolated atom Fγ as a factor [11]:

F (i)
x = Fγ T (i)

x , i = 0,1,2. (11)

Here T (0)
x = 〈�x |�i〉, �i is the initial-state wave function of

the FS with the encapsulated atom, and �x is the final-state
wave function of the FS with the encapsulated ion. The
amplitude T (0)

x describes the SO, where the FSI are neglected
(the “zero-order” FSI term). The accuracy of this equation
is Va/E � 1, with Va being the potential energy of the
photoelectron in the field of the caged atom.

One can write for the cross section of the process with a
transition of the FS to a particular final state x [11] [see Eq. (4)]

Sx = ∣∣T (0)
x

∣∣2 + 2T (0)
x ReT (1)

x + ∣∣ImT (1)
x

∣∣2 + 2T (0)
x ReT (2)

x .

(12)

Now we calculate the FSI amplitudes. One can write

T (1)
x = 〈�x |U1|�0〉, (13)

where U1 = ∑
k U1(r(k)), with k labeling the FS electron, and

U1(r(k)) is its interaction with the photoelectron in the lowest
order of the FSI. One can write

U1(r(k)) = 1

c

∫
d3f

(2π )3
G(f)g(f )ei(f·r(k)), (14)

where G(f ) = 2[μ2 − (p + f)2 + iν], with μ2 = p2 + 2εf i ,
is the free-electron propagator. The energy εf i is transferred
by the FSI, g(f ) = 4π/(f 2 + λ2), λ → 0. Keeping only the
term proportional to the large momentum p in the denominator
of the electron propagator, we can put

G(f) = −2

2(p · f) − iν
. (15)

Using the well-known formula

1

a

1

c
=

∫ 1

0

dx

[ax + c(1 − x)]2
, (16)
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we obtain

− 1

2(p · f) − iν

1

f 2 + λ2

= −
∫ 1

0

dx

[2(p · f)(1 − x) + f 2x + λ2x − iν]2
. (17)

Introducing y = (1 − x)/x and f′ = f + py and integrating
over f′ by using the relation∫

d3f

(2π )3

4πei(f·r)

(f 2 − b2 − iν)2
= 1

2b

∂

∂b

eibr

r
= i

eibr

2b
,

(18)
b2 = p2y2 − λ2,

we find

U1(r(k)) = −i
1

c

∫ ∞

0

dy

b(y)
eib(y)r (k)−i(p·r(k))y. (19)

This leads to

U1 = iξ
∑

k

ln
(
r (k) − r (k)

z

)
λ. (20)

Thus the amplitude T (1)
x is mostly imaginary,

T (1)
x = iξ 〈�x |

∑
k

ln
(
r (k) − r (k)

z

)
λ|�0〉. (21)

The imaginary part dominates since the pole of the electron
propagator provides the leading contribution. This means that
the photoelectron passes the distances of the order of the FS
radius R � 1 and interacts with the FS electrons at the region
of their location. The divergence at λ = 0 is just the Coulomb
phase of the interaction between the photoelectron and the
electronic shell [11]. The divergent contributions will cancel
after the second-order terms are taken into account.

Since the leading contribution to T (1)
x is imaginary, while

T (0)
x is real, the leading nonvanishing contribution of the FSI

is of the order of ξ 2. In order to find it one has to include the
second-order amplitude T (2)

x and the terms of the order of f/p

in the first-order amplitude T (1)
x .

The second-order amplitude can be written as

T (2)
x = 〈�x |U2|�0〉, (22)

with

U2 = 1

c2

∑
k1k2

∫
d3f1

(2π )3

d3f2

(2π )3
G(f1)g(f1)

×G(f1 + f2)g(f2)ei(f1·r(k1))ei(f2·r(k2)). (23)

Using Eq. (15) for the Green’s function G and putting in the
integrand

1

(p · f1)

1

[p(f1 + f2)]

= 1

2

(
1

(p · f1)

1

[p(f1 + f2)]
+ 1

(p · f2)

1

[p(f1 + f2)]

)
(24)

= 1

2

1

(p · f1)

1

(p · f2)
,

we find that

U2 = U 2
1

/
2. (25)

Here again the FSI takes place in the region of the FS. As
for the terms of the order of f/p in the amplitude T (1)

x , they
determine its real part ReT (1)

x . They describe the interactions
between the photoelectron while it is close to the caged atom.
Thus they have additional factor 1/R � 1. Hence, the second
term on the right-hand side (RHS) of Eq. (12) is

T (0)
x ReT (1)

x ≈ ξ 2N

R
|〈�x |�0〉|2 ≈ ξ 2N

R3
. (26)

Thus neglecting terms of the order of 1/R2 in the FSI terms,
we find

St = 1, S0 = ∣∣T (0)
0

∣∣2 + |〈�0|U1|�0〉|2 − 〈
�0

∣∣U 2
1

∣∣�0
〉
.

(27)

Here we employed the closure condition∑
x

�x |〉〈�x | = 1. (28)

From Eq. (3) we can put r (k) = R in Eq. (20), resulting in

U1 = iξ�, � =
∑

k

ln(1 − t (k)), (29)

with t (k) = r (k)
z /r (k). Thus Eq. (27) takes the form

S0 = ∣∣T (0)
0

∣∣2 + ξ 2(|〈�0|�|�0〉|2 − 〈�0|�2|�0〉). (30)

Here the three terms on the RHS describe the SO, FSI, and
their interference. respectively. Direct calculation provides

r(E) = ζ + ξ 2N, ζ = 1 − ∣∣T (0)
0

∣∣2
. (31)

Here we neglected the higher-order term ζ ξ 2N .
Employing the closure condition requires that the energy E

is large enough to include all important excited states

E � ε̄, (32)

with ε̄ being the energy loss of the photoelectron. At large
energies ε � IFS the energy distributions drop as 1/ε2, and
thus ε̄ is determined by IFS � ε � E. It is [12]

ε̄ = ξ 2N

4R2
ln

E

IFS
. (33)

Thus we need E � 50 eV for both C60 and C20.

B. Beyond the perturbative approach

One can see that Eq. (24) can be generalized for the
case of an arbitrary number n of interactions between the
photoelectron and the FS. Introducing an = p · f1 + p · f2 +
· · · + p · fn, we can write

1

a1
· 1

a2
· · · · · 1

an

= 1

n!

1

an
1

. (34)

This equation, which can be proved by the induction method,
was used to calculate the radiative corrections in the electro-
magnetic interactions [13]. Thus for the interaction of the nth
order between the photoelectron and the FS,

Un = Un
1

n!
. (35)
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We denote U0 = 1 and find for the total amplitude, which also
includes the SO (zero order in FSI) term,

Tx =
∑

n

T (n)
x = 〈�x |eiξ�|�0〉, (36)

with � defined by Eq. (26). Employing Eq. (3), we can put
r (k) = R and find for any excited state

Tx = 〈�x |�k(1 − t (k))iξ |�0〉, (37)

with t (k) = pr(k)/pr (k). Here we omitted the constant factor
(Rλ)iξ .

The absorption cross section can be defined as the difference
between the total cross section and the elastic one. At large E

the sum over the exited states of the FS can be calculated by
employing the closure condition, as in the previous section.
This provides

r(E) = 1 − |〈�0|eiξ�|�0〉|2
= 1 − |〈�0|�k(1 − t (k))iξ |�0〉|2, (38)

and thus

r(E) = 1 −
∣∣T (0)

0

∣∣2

(1 + ξ 2)N1
= 1 − e−N1 ln(1+ξ 2)

∣∣T (0)
0

∣∣2
, (39)

with N1 being the number of electrons which can participate
in the process. At E � Ic, with Ic ≈ 300 eV being the binding
energy of the core electrons in the FS, only the valence FS
electrons can participate. Thus N1 = 4N . At larger energies
all electrons participate, and N1 = 6N . Here we do not need
the actual value of the SO amplitudes. It is sufficient to know
that 1 − |T (0)

0 |2 � 1.
Thus we can write

r(E) = 1 − e−N1 ln(1+ξ 2). (40)

If the photon energy is so large that Nξ 4 � 1 (i.e., E �
300 eV for C60, E � 100 eV for C20), we find

r(E) = 1 − e−Nξ 2
. (41)

At these energies all the FS electrons participate, and N1 = 360
for C60, while N1 = 120 for C20. At Nξ 2 � 1 the second
equality of Eq. (39) provides the perturbative behavior (31).

In the broad energy region r(E) is close to unity. At E =
2 keV we find that for C60 1 − r(E) ≈ 0.09; that is, r(E) is
still very close to unity. At E = 5 keV, r(E) ≈ 0.62, dropping
as 1/E at larger energies, following Eq. (31). For C20 the ratio
r(E) reaches this value at E ≈ 1.7 keV.

Now we focus on the region where Nξ 2 � 1. Here we need
some model for the SO.

III. SHAKE-OFF

A. General equation

Let us totally neglect the FSI. The SO amplitude is

FSO = Fγ 〈�x |�0〉. (42)

Recall that Fγ is the amplitude of photoionization of the caged
atom, and �0 describes the ground state of the FS electrons
moving in the superposition of its self-consistent field and that
of the internal atom. In the final state �x the electrons “feel”
the self-consistent field of the FS and that of the ion with the

hole in its electronic shell. The matrix element on the RHS
of Eq. (42) obtains nonzero values only if the initial and final
states have the same angular momenta. Thus the SO can lead
to only the monopole transitions.

The sum of the cross sections of inelastic processes can be
written as

σSO = σγ (1 − 〈�0|�0〉2), (43)

where σγ is the cross section of the photoionization and |�0〉
is the ground state of the FS with a hole in the electronic shell
of the caged atom created by the photon impact.

B. A model for the ground state

The wave function �0 is strongly quenched outside the
region

R � r � R + �, (44)

with the radial part depending on

x = r − R, 0 � x � �. (45)

The same is true for the function �0. However, the values of
parameters R and � in state |�0〉 differ from those in state
|�0〉.

To estimate the matrix element 〈�0|�0〉 in Eq. (43) we
assume that in the ground state the FS density does not depend
on x. Under this assumption the wave function of the FS
electrons with the angular momentum � is

�i(r) =
(

N�

V

)1/2

Y�m(�) (46)

for r in the interval determined by Eq. (45), and it vanishes
otherwise (� is the solid angle). In this equation V = 4πR2�

is the volume of the FS.
The FS electrons can be viewed as moving in an effective

self-consistent field Ui which also does not depend on x. The
Thomas-Fermi equation

ρ0 = (2U0)3/2 1

3π2
(47)

relates the electron density ρ0 and the potential

U0 = 1

2

(
3π2 N

V

)2/3

. (48)

Here N is the total number of active electrons.
After the ejection of the photoelectron the new value of the

potential is

Uf = U0 + Uh, (49)

where Uh is the potential created by the hole in state n of the
internal atom,

Uh(r) =
∫

d3ra

ρn(ra)

|r − ra| ≈ 1

r
≈ 1

R
, (50)

where ρn is the electron density in state n and ra and r are the
coordinates of the atomic electron and of that in the FS.

Thus the final-state wave function can be written as

�0(r) =
∑

�

N�

V ′ Y�m(�), (51)
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with

V ′ = V + 3

2

1

RU0
. (52)

Employing Eqs. (46) and (51), we obtain

〈�0|�0〉 = 1 − 3

4

1

RU0
. (53)

Assuming, following [14], that the values of the FS
parameters for the fullerene C60 are

R = 6.02, � = 1.25 (54)

(in this case N = 240), we find

1 − 〈�0|�0〉 = 0.046, 〈�0|�0〉2 = 0.91. (55)

The numerical results do not depend strongly on the actual
values of the parameters. For example, taking R = 5.75 a.u.
and � = 1.89 a.u. [15], we find

1 − 〈�0|�0〉 = 0.060, 〈�0|�0〉2 = 0.88.

For the fullerene C20 we can put, following [16], R = 3.89,
� = 1.8, providing

〈�0|�0〉2 = 0.80. (56)

Some additional data can be obtained by studying the
distributions of the electrons ejected from the FS.

IV. PARTIAL-WAVE ANALYSIS

Here we consider the energies for which Nξ 2 � 1, and
thus the perturbative treatment of the FSI is possible. We must
include both FSI and SO mechanisms. The ratio r(E) given
by Eq. (31) can be written as the sum of the contributions of
the partial waves,

r(E) =
∑
n�

|〈�n�|�0〉|2 + ξ 2
∑
n�

|〈�n�|�|�0〉|2

− ξ 2
∑
n�

〈�0|�n�〉〈�n�|�2|�0〉, (57)

with the sum carried out over the excited states n 
= 0. There
are certain limits on the values of � for any particular state n.

The first and the third terms on the RHS obtain nonzero
values only for � = 0. For the second one we can employ
expansion in terms of the Legendre polynomials,

ln(1 − t) =
∑

�

a�P�(t),

a� = (2l + 1)

2

∫ 1

−1
dtP�(t) ln(1 − t), (58)

a0 = ln 2 − 1, a��1 = − 2� + 1

�(� + 1)
. (59)

Introducing

An� = 〈�r
n�|�r

0〉, (60)

with �r and �r being the radial parts of the wave functions,
we can write for the matrix element in the second term on the

RHS of Eq. (57)

〈�n�|�|�0〉 = An�〈�m|�|00〉 (61)

since

〈�m| ln (1 − t)|00〉 = δm0
a�

(2� + 1)1/2
, (62)

with 〈�m| denoting the state with definite values of the angular
momentum � and its projection m, while a� are defined by
Eq. (34). We can present Eq. (57) in the form

r(E) =
∑

n

(
δ�0A

2
n0 − ξ 2Nδ�0A

2
n0 + ξ 2N

∑
�=1

b�A
2
n�

)
,

(63)
with the sum carried out over the excited states of the FS,

b� = 2� + 1

�2(� + 1)2
. (64)

The first term on the RHS of Eq. (63) is caused by SO, the
second one comes from the interference between the SO and
the FSI, and the last one corresponds to FSI.

Presenting

2� + 1

�2(� + 1)2
= 1

�2
− 1

(� + 1)2
, (65)

we see that
∞∑

�=1

b� = 1. (66)

This is the consequence of the closure of angular functions.
Using Eq. (62), we can write

∑
�m

|〈�m| ln (1 − t)|00〉|2 =
∑

�

a2
�

(2� + 1)
. (67)

On the other hand,

〈00| ln2 (1 − t)|00〉 = (ln 2 − 1)2 + 1. (68)

Thus

(ln 2 − 1)2 + 1 = a2
0 +

∑
�=1

b�, (69)

leading to Eq. (66). Recall, however, that for any excited state
n the possible values of � are limited by a certain value �max,
i.e., � � �max. Since all b� > 0, we find

�max∑
�=1

b� < 1. (70)

Since both ξ 2N and A2
n� are small, we can write in the

lowest order

r(E) = 1 − A2
00 + ξ 2N

∑
n

∑
�=1

b�A
2
n�, (71)

with the dipole term thus providing more than 3/4 of the
FSI contribution. The amplitude of the dipole transition to
a particular excited state n is proportional to the overlap
of the radial wave functions 〈�r

n1|�r
0〉. Thus investigat-

ing the spectrum of the electrons ejected from the FS
would provide the data which are complimentary to that
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obtained from the studies of direct photoionization of the
fullerenes [17,18].

Recall that these results are true if ξ 2N � 1. This means
that E � 5 keV for the fullerene C60 and E � 1.7 keV for
C20. At such energies all N electrons of the fullerene CN can
participate in the process.

V. TOTAL CROSS SECTION

Now we can trace the energy dependence of the cross
section of absorption by the FS in this process. Employing
Eqs. (32) and (33), we find that closure can be used at
E � 50 eV. If the energy E is smaller than the ionization
potential of the core 1s electrons Ic ≈ 315 eV, the ratio r(E) is
determined by Eq. (39) with N = Nv , where Nv is the number
of valence electrons, Nv = 240 for C60, and Nv = 80 for C20.
At E close to Ic we find 1 − r(E) ≈ 2 × 10−5 for C60 and
r = 0.97 for C20.

At E > Ic the core electrons are involved in the process as
well. Thus N = 360 for C60 and N = 120 for C20. While E is
of the order of Is , their contribution cannot be calculated by
employing closure since some of the excited states cannot be
reached due to restrictions imposed by the energy conservation
law. However, Eq.(39) with N = Nv provides the upper limit
for the value of 1 − r(E) at these energies.

At larger energies E � Ic the ratio r(E) is determined by
Eq. (41) with the core electrons included. At E = 2 keV we
find 1 − r(E) ≈ 0.09 for C60, i.e., r(E) is still very close to
unity. At E = 5 keV, r(E) ≈ 0.62 for C60, dropping as 1/E

at larger energies, following Eq. (31). For C20 this value is
reached at E = 1.7 keV. The FSI and the SO contributions to
the ratio r(E) expressed by Eq. (39) have the same order of
magnitude at E � 50 keV in the case of C60 and at E � 8
keV for C20. The dependence r(E) of the endohedral atoms
A@C60 and A@C20 is shown in Fig. 1.

If the binding energy of the ionized state of the caged atom
Ia and the photon energy are small enough, both SO and FSI
contributions to the cross section are enhanced by the same

FIG. 1. The ratio r(E) defined by Eq. (5). Lines 1 and 2
are for endohedral atoms A@C60 and A@C20, respectively. The
photoelectron energy E is in keV units.

factor. This happens because the external photon is strongly
influenced by the FS due to the polarization of the latter. This
effect manifests itself as the factor

D(ω) = 1 − α(ω)/R3 (72)

in the amplitude of ionization of the internal atom [19]. Here
α(ω) is the dynamic dipole polarizability of the FS. Since in
this region α(ω) < 0, the factor |D(ω)|2 increases the cross
section of the single photoionization [19],

σ+
pol(ω) = σ+(ω)D2(ω). (73)

The polarizability α(ω) has a strong maximum due to FS
giant resonance at ω ≈ 1 a.u. [19]. The role of polarization
diminishes with increasing photon energy. It becomes negli-
gible at ωmax ≈ 2.5 a.u.; thus here D2(ω) ≈ 1. However, the
characteristic binding energy of a FS electron is I = 7 eV. If
the binding energy of the ionized state of the caged atom is
of the same order or smaller, the factor D2(ω) increases both
SO and FSI contributions to the double-photoionization cross
section at the lower limit. Note that the factor D2(ω) enters the
cross sections of the double and single photoionizations in the
same way. Thus it cancels in their ratio r(E).

VI. SUMMARY

We investigated the high-energy photoionization of the
endohedral atoms A@CN followed by inelastic processes in
the fullerene shell. We traced the energy dependence of the
ratio r(E) of the cross section to that of photoionization of an
isolated atom. In a broad interval of values of the photoelectron
energies E the ratio is dominated by the final-state interactions
and is calculated in a model-independent way beyond the
perturbative approach. The ratio is shown to be close to unity
until we reach the region where E is several keV. In the
case of C60 the ratio r(E) = 0.62 at E = 5 keV; for C20 this
value is reached at E = 1.7 keV. While the nonperturbative
approach is important, the multiparticle and the single-particle
states of the FS can be excited. The monopole excitations are
quenched.

At larger energies the ratio is still determined by the FSI,
which can be treated perturbatively. Now only the single-
particle state can be excited. The relative probability of the
dipole excitations is more than 75%. The monopole excitations
are still quenched.

The contributions of the FSI and of the shake-off are the
same order at very high energies, E ≈ 50 keV for C60 and
E ≈ 8 keV for C20. The SO leads to excitation of the monopole
states of the FS.

One of the results of the present work (see also our earlier
publication [10]) is that in a broad interval of the photon
energies almost any event of photoionization of the caged
atom A is accompanied by a transition in the fullerene shell.
Therefore, the measured cross section of one-electron pho-
toionization of the inner atom would appear to be much smaller
than that of an isolated atom. The electron spectroscopy
method permits us to separate the photoionization cross section
of a given subshell nl from all other contributions. As a
result, photoionization cross sections of the nl atomic subshell
measured for an endohedral atom A@CN using the electron
spectroscopy method in a broad ω region have to be much
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smaller than the corresponding cross section for an isolated
atom A. This prediction is far from being trivial and deserves
special experimental verification.
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