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We establish a model to describe any alkali-metal atom interacting with a position- and time-dependent
magnetic field. It includes the hyperfine structure of the atom and quantizes its center-of-mass motion. The model
is used to characterize a proposed phase-space selector. It consists of a method based on hyperfine magnetic
dipole transitions to prepare samples of atoms with well-defined position and velocity. The evolution of the
atom is determined analytically and relevant physical quantities such as the probability of transition and the
expected values of position and momentum are analyzed. It is concluded that the phase-space selector can
lead to samples of atoms whose width in velocity tends to those obtained using velocity-dependent Raman
transitions.
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I. INTRODUCTION

Raman transitions between two hyperfine sublevels are an
important tool used in experimental physics to manipulate
alkali-metal atoms [1–12]. They involve the simultaneous
absorption and stimulated emission by an atom and can
be implemented in a copropagating or counterpropagating
laser beam configurations. In the latter, Doppler shifts add
and the Raman transition becomes sensitive to the velocity
of the atoms. These velocity-dependent Raman transitions
can be used to prepare samples of atoms with well-defined
velocity [1–3] which, in turn, can be used, for example, to make
matter-wave interferometers [4] and to measure forces [5–7]
and fundamental constants [8,9]. Moreover, Raman transitions
have found applications in diverse fields such as dynamics in
optical lattices [10], quantum decoherence, and chaos [11,12].
Therefore, developing other methods that can be used to
prepare samples of atoms with well-defined position or
velocity and that exhibit other virtues when compared to
Raman transitions is important. In this article we propose one
method based on hyperfine magnetic dipole transitions. We
now present the ideas behind it.

We first describe how one can select in position, that is, how
one can obtain a sample of atoms with well-defined position.
Consider a cloud of noninteracting alkali-metal atoms in a
static magnetic field B(r) that depends on position and prepare
all the atoms in one of the ground-state hyperfine sublevels, say
|1〉. Among all the atoms in the cloud one wishes to select only
those in a small neighborhood V (r0) around a fixed position
r0. One can do this by sending only the atoms in V (r0) to
another of the ground-state hyperfine sublevels, say |2〉, and
then applying a laser field that gets rid of the atoms outside
V (r0), that is, that pushes away the atoms that remained in
state |1〉. This can be done by noticing that, as a result of the
Zeeman effect and the dependence on position of B(r), states
|1〉 and |2〉 have an energy difference �E(r) that depends on
the position r in which each atom is located. Only the atoms
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in V (r0) have �E(r) � �E(r0). Hence, one can apply a π

pulse using a monochromatic magnetic field Bp(r,t) that is
quasiresonant with the |1〉 ↔ |2〉 transition for atoms inside
V (r0). The π pulse will send all the atoms in V (r0) to state
|2〉, while all the atoms outside V (r0) will remain in state |1〉
because they are far off resonance. In this way one obtains a
sample of atoms in a small neighborhood V (r0) of r0; that is,
one selected atoms in position.

The selection in velocity is achieved by selecting in
position at two different times. After the first selection in
position, assume that the sample of atoms in state |2〉 and
in a small neighborhood V (r0) of r0 starts moving vertically
(for example, the atoms move due to gravity or a laser field
pushes the atoms). At a certain instant make another selection
in position; that is, apply a π pulse using a monochromatic
magnetic field Bp(r,t) that is quasiresonant with the |1〉 ↔ |2〉
transition for atoms inside a small neighborhood V (r1) around
r1. As a consequence of the two selections in position a
selection in velocity has been performed; that is, the cloud
of atoms in state |1〉 [the atoms in V (r1)] has well-defined
velocity. One can get rid of the atoms in state |2〉 by applying a
laser field that pushes them away. Moreover, the cloud of atoms
in state |1〉 will become spatially separated from the cloud of
atoms in state |2〉 because the clouds move under different
potentials due to the different response to the magnetic field
of the two levels.

It is the purpose of this article to characterize the phase-
space selector described above, that is, the selections in
position and in velocity described above. In order to do this
we introduce a model that describes an alkali-metal atom
interacting with a classical magnetic field and establish its
regime of validity. The model includes the hyperfine structure
of the atom and quantizes the center-of-mass motion.

The article is organized as follows. In Sec. II we review
the internal structure of an alkali-metal atom. In Sec. III
we introduce the model that describes an alkali-metal atom
with quantized center-of-mass motion and interacting with a
classical magnetic field. In Secs. IV and V we investigate the
evolution of the atom before and during the application of
Bp(r,t). In Sec. VI we characterize the selections in position
and in velocity. Finally, the conclusions are given in Sec. VII.
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II. INTERNAL STRUCTURE OF AN
ALKALI-METAL ATOM

In this section we briefly review the internal structure of
an alkali-metal atom in the mean-field approximation. All the
details are provided in Appendix A.

The ground-state configuration of an alkali-metal atom
consists of a series of full shells followed by a single s electron.
Moreover, the internal configuration is so stable that all except
high excited states of the atom involve only the valence
electron. Hence, to good approximation alkali-metal atoms
can be treated by a model in which a single electron moves
in a spherically symmetric non-Coulomb potential. In this
mean-field approximation the Hamiltonian of an alkali-metal
atom of mass M in the ground-state configuration and whose
nucleus is fixed at a position is given by [13–15]

HA = a

�2
I · J + ��W

2(2I + 1)
. (1)

Here a = 2��W/(2I + 1), ��W is the field-free ground-state
(energy) hyperfine splitting, I is the nuclear spin angular
momentum operator, I is the nuclear spin, and J is the total
angular momentum operator of the valence electron (the sum
of the orbital plus the spin angular momentum operators). In
the rest of the article we assume that I � 1/2.

We emphasize that we are restricting to the ground-state
configuration of the atom, that is, we have restricted the
principal quantum number n to its smallest value n0 and
we have taken the azimuthal quantum number l to be zero.
Hence, J = S with S the spin angular momentum operator of
the valence electron and the state space H0 of the alkali-metal
atom is spanned by the orthonormal basis

β0 = {|k0,ms,mI〉 ≡ |k0〉 ⊗ |s = 1/2,ms〉 ⊗ |I,mI 〉 :

ms = ±1/2, mI = I,I − 1, . . . , − I }. (2)

Here |k0〉 ≡ |n = n0,l = 0,ml = 0〉. The basis β0 is composed
of eigenvectors of S2, Sz, I2, and Iz.

Introducing the total angular momentum operator of the
atom F = J + I, one can define another orthonormal basis βC

0
for H0 composed of eigenvectors of HA, S2, I2, F2, and Fz,

βC
0 = {|k0,F,MF 〉 ≡ |k0〉 ⊗ |F,MF 〉 :

−F � MF � F, F = F±}, (3)

with

F± ≡ I ± 1
2 . (4)

For each −F � MF � F and F = F±, one has

HA|k0,F = F±,MF 〉 = ±��W

2
|k0,F = F±,MF 〉. (5)

We now introduce a constant classical magnetic field along
the z axis, B = Bz, with B ∈ R. The Hamiltonian of the system
atom + magnetic field is [13–15]

HAB = HA − μ · B, (6)

where μ is the magnetic moment operator of the atom and is
given by

μ = −gl

μB

�
L − gs

μB

�
S + gI

μN

�
I. (7)

The summands on the right of (7) are, respectively, the orbital
and spin magnetic moment operators of the valence electron
and the nuclear magnetic moment operator. Moreover, gl and
gs are the electron orbital and spin g factors, while gI is the
nuclear g factor. Also, μB = �e/(2me) is the Bohr magneton
and μN = �e/(2mp) is the nuclear magneton with e > 0 the
elementary charge and me and mp the mass of the electron and
the proton, respectively. We mention that one must be careful
when one compares expression (7) with other references, since
some take the nuclear g factor as −gIme/mp instead of gI (for
example, compare [14,16,17]). Nevertheless, the results can
be rewritten in terms of one convention or the other. Note that
the state space of the system is still H0.

To diagonalize HAB first define

x = B

�W

(
gs

μB

�
+ gI

μN

�

)
, γ1 =

gs − 2IgI

me

mp

2
(
gs + gI

me

mp

) ,
γ2 =

gI

me

mp

gs + gI

me

mp

,

θ (MF,x) = tan−1

⎡
⎣
√

1 − (MF

F+

)2
(

MF

F+

)+ x

⎤
⎦ ∈ [0,π ),

VF+ ,±F+ (x) = ��W

2
(1 ± 2γ1x),

VF± ,MF
(x) = ��W

2

(
−2MFγ2x ±

√
1 + 2

MF

F+
x + x2

)
,

|VF+ ,±F+(x)〉 =
∣∣∣∣k0,ms = ±1

2
,mI = ±F+ ∓ 1

2

〉
,

and

|VF± ,MF
(x)〉

= cos

[
θ (MF,x)

2

]∣∣∣∣k0,ms = ±1

2
,mI = MF ∓ 1

2

〉

±sin

[
θ (MF,x)

2

]∣∣∣∣k0,ms = ∓1

2
,mI = MF ± 1

2

〉
,

(8)

for each MF = F−,F− − 1, . . . ,−F−. Since B ∈ R, x is a
nondimensional quantity that can be positive or negative.
Before proceeding we make some comments on the notation
chosen. We write |Vj (x)〉 and Vj (x) with j = F,MF because
these quantities depend on x and j and the latter will
be potentials that affect the motion of the atom when the
center-of-mass motion is quantized. Moreover, the |Vj (x)〉
reduce to eigenvectors of F2 and Fz with respective eigenvalues
F (F + 1)�2 and MF � when B = 0. Finally, the |Vj (x)〉 play
the role of the kets |1〉 and |2〉 in the Introduction, while
Vj (x) − Vj ′ (x) play the role of the energy difference �E(r).

It follows that

�(x) = {∣∣VF,MF
(x)
〉

: −F � MF � F,F = F±
}

(9)

is an orthonormal basis for H0 composed of eigenvectors of
HAB, since

HAB

∣∣VF,MF
(x)
〉 = VF,MF

(x)
∣∣VF,MF

(x)
〉
, (10)
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for each −F � MF � F , F = F±. The formulas for the
eigenvalues of HAB are known in the literature as the Breit-Rabi
formula [15,18].

III. AN ALKALI-METAL ATOM INTERACTING WITH A
MAGNETIC FIELD

Consider an alkali-metal atom with quantized center-of-
mass motion along the z axis, subject to a constant gravitational
field, and interacting with a classical magnetic field of the
form BST(z)z + Bp(t) with z the unit vector in the direction
of the positive z axis. Appendix B gives an example of how a
magnetic field of the form BST(z)z can be produced.

The Hamiltonian of the system in the long-wavelength
approximation and neglecting terms of order me/M is

H (t) = 1

2M
P 2

z + Mg0Z + HA − μ · [BST(Z)z + Bp(t)].

(11)

Here M is the mass of the atom, Z and Pz are the center-
of-mass position and momentum operators along the z axis,
respectively, g0 = 9.8 m/s2 is the acceleration of gravity, μ is
the magnetic dipole moment operator of the atom given in (7),
and HA is the Hamiltonian in (1). Appendix C shows how
the Hamiltonian of an alkali-metal atom with center-of-mass
motion quantized in three dimensions can be reduced to (11).

We take Bp(t) to be a monochromatic plane wave propa-
gating in the direction of the positive x axis with polarization
bp and with (angular) frequency ωA. Moreover, t0 � 0 is the
instant in which Bp(t) is turned on, while t1 > t0 is the instant
in which it is turned off. Explicitly,

Bp(t) = bpB0(t)[eiωA(t−t0) + e−iωA(t−t0)]. (12)

Here bp is a constant unit real vector perpendicular to the x

axis,

B0(t) =
{

B0
2 if t0 < t < t1,

0 if t � t0 or t � t1,
(13)

and B0 > 0. The intention here is to use BST(z)z to produce
position-dependent internal energy shifts in the atom by the
Zeeman effect, while Bp(t) is used to manipulate the internal
state of the atom.

The state space of the system is

HCM ⊗ H0; (14)

that is, we consider only the ground-state configuration of
the atom. The state of the system at time t will be denoted
by |ψ(t)〉.

Two orthonormal bases for H0 are β0 and βC
0 given,

respectively, in (2) and (3). According to (5), the latter is
composed of eigenvectors of HA. Moreover, two orthonormal
bases (in the sense of Dirac) for HCM are the position and
momentum bases:

{|z〉 : z ∈ R}, {|p〉 : p ∈ R}. (15)

Recall that (HA − μ · Bz) was diagonalized in Sec. II and
the orthonormal basis �(x) given in (8) and (9) was obtained.

Replacing B with BST(z) and x with

x(z) =
(

gs

μB

�
+ gI

μN

�

)
BST(z)

�W
, (16)

one obtains an orthonormal basis

�[x(z)] = {∣∣VF,MF
[x(z)]

〉
: (F,MF ) ∈ I

}
, (17)

for H0 such that

[HA − μ · BST(z)z]
∣∣VF,MF

[x(z)]
〉

= VF,MF
[x(z)]

∣∣VF,MF
[x(z)]

〉
. (18)

In order to introduce matrix representations, we assume the
following ordering for I:

I = {(F+,F+), (F+,−F+), (F+,F−), (F−,F−),
(F+,F− − 1), (F−,F− − 1), . . . ,

(F+,−F−), (F−,−F−)}. (19)

From now on we also use the more succinct notation Vj [x(z)]
with j an ordered pair (F,MF ) ∈ I instead of VF,MF

[x(z)].
Using bases (15) and (17) we obtain an orthonormal basis

for HCM ⊗ H0,

� = {|z,Vj [x(z)]〉
≡ |z〉 ⊗ |Vj [x(z)]〉 : z ∈ R, j ∈ I}. (20)

Notice that we have the following closure and orthonormal-
ization relations

I =
∫ +∞

−∞
dz
∑
j∈I

|z,Vj [x(z)]〉〈z,Vj [x(z)]|,

and

〈z,Vj [x(z)]|z′,Vk[x(z′)]〉 = δ(z − z′)δjk. (21)

Here I is the identity operator in HCM ⊗ H0.
We now use the basis in (20) to express the Hamiltonian (11)

as a matrix and Schrödinger’s equation as a vector partial
differential equation. In order to do this, first define the
quantities

ψj (z,t) = 〈z,Vj [x(z)]|ψ(t)〉,
�δj [x(z),t] = 〈Vj [x(z)]|[−μ · Bp(t)]|Vj [x(z)]〉,

�gjk[x(z),t] = (1 − δjk)〈Vj [x(z)]|[−μ · Bp(t)]|Vk[x(z)]〉,
and

Ljk(z) =
∑

F=F±

F∑
MF =−F

(
− �

2

2M

)
〈Vj [x(z)]|k0,F,MF 〉

×
{[

∂2

∂z2
〈k0,F,MF |Vk[x(z)]〉

]

+ 2

[
∂

∂z
〈k0,F,MF |Vk[x(z)]〉

]
∂

∂z

}
, (22)

where j,k ∈ I. Notice that the diagonal matrix elements of
−μ · Bp(t) are given in �δj [x(z),t], while its nondiagonal
elements are included in �gjk[x(z),t]. Moreover, the terms
Ljk(z) arise from the dependence on position of the basis
�[x(z)].
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L. O. CASTAÑOS AND E. GOMEZ PHYSICAL REVIEW A 89, 013406 (2014)

Now use (21) and (22) to express the state of the system
|ψ(t)〉 as follows:

|ψ(t)〉 =
∫ +∞

−∞
dz
∑
j∈I

|z,Vj [x(z)]〉ψj (z,t). (23)

Using this result along with (21) and the definitions in (22)
one finds that Schrödinger’s equation is equivalent to a set of
dimH0 = 2(2I + 1) partial differential equations that can be
written succinctly as follows:

i�
∂

∂t
�(z,t)

=
{
− �

2

2M
K(z) + V(z) + �D(z,t) + �G(z,t) + L(z)

}
×�(z,t) (z,t ∈ R). (24)

Here we have introduced the matrices

Kjk(z) = δjk

∂2

∂z2
, Vjk(z) = δjk{Mg0z + Vj [x(z)]},

Djk(z,t) = δjkδj [x(z),t], Gjk(z,t) = gjk[x(z),t], (25)

Ljk(z) = Ljk(z), �j (z,t) = ψj (z,t),

where j,k = 1,2, . . . ,dimH0 = 2(2I + 1). Notice that
[−�

2/(2M)]K(z) represents the kinetic energy of the atom,
V(z) is the sum of its internal energy plus its gravitational
potential energy, �D(z,t) represents a position- and
time-dependent potential energy arising from the interaction
with Bp(t), and �G(z,t) and L(z) are couplings due to the
interaction with Bp(t) and due to the dependence on position
of the basis �[x(z)], respectively.

It is important to notice that L(z) is a Hermitian matrix in
the following sense:

[Ljk(z)]† = Lkj (z) [j,k = 1,2, . . . ,2(2I + 1)], (26)

where the adjoint operator [Ljk(z)]† is calculated using the
usual inner product of square integrable functions and taking
boundary terms coming from integrating by parts to be zero
(see Appendix D).

From (24) one finds that the original problem of an
alkali-metal atom in the ground-state configuration with its
center-of-mass motion quantized along the z axis, subject to
a constant gravitational field, and interacting with a classical
magnetic field of the form BST(z)z + Bp(t) is similar to a
system of dimH0 = 2(2I + 1) spinless particles moving in
one dimension under the potentials Vjj (z) + �Djj (z,t) and
coupled through the interactions �Gjk(z,t) and Ljk(z).

We now simplify (24). For the rest of the article we assume
the following.

(1) BST(z) = ηz (z ∈ R) with η > 0 a constant with units
G/cm. Appendix B gives an example of how ηz can be
obtained from BST(z).

(2) The polarization bp of Bp(t) is chosen depending on
which levels |VF,MF

[x(z)]〉 and |VF ′ ,M
F ′ [x(z)]〉 one wishes to

couple. We take

bp =
{

y if |MF − MF ′ | = 1,

z if |MF − MF ′ | = 0.
(27)

Here y is the unit vector in the positive y-axis direction.

(3) Let j0,j1 ∈ I with j0 �= j1 and V be the region of space
where the atom can be found with non-negligible probability
during the time interval [t0,t1] in which Bp(t) is applied. Then

gjk[x(z),t] = 0, (28)

for all z ∈ V and t ∈ [t0,t1] if (j,k) �∈ I0 ≡ {(j0,j1),(j1,j0)}.
Here we are assuming that during the time interval [t0,t1] the
magnetic field Bp(t) couples the sets of states {|z,Vj0 [x(z)]〉 :
z ∈ V} and {|z,Vj1 [x(z)]〉 : z ∈ V} resonantly, while all other
transitions have z �∈ V or are highly detuned and, therefore,
their probability of occurrence is very small. Moreover, we
consider only pulses; that is, we assume that |t1 − t0| is
sufficiently small because condition (28) is valid only for short
times. The reason for this is that transitions that are initially
far off resonance can become resonant and the transition that
is initially resonant can become highly detuned due to the
Zeeman effect as the atom moves.

We now use these assumptions to express (24) in terms of
nondimensional quantities. First, take the characteristic length
and time of the system to be 1/κ and 1/�W , respectively,
where κ is defined to be

κ =
(

gs

μB

�
+ gI

μN

�

)
η

�W
> 0. (29)

Notice that κ has units of 1/cm, �W has units of 1/s, and
x(z) = κz.

Now define the nondimensional quantities

φj (x,τ ) = 1√
κ

ψj (z,t)

∣∣∣∣
z=x/κ,t=τ/�W

,

V 0
j (x) = 1

��W
Vj [x(z)]

∣∣∣∣
z=x/κ

,

δ0
j (x,τ ) = 1

�W
δj [x(z),t]

∣∣∣∣
z=x/κ,t=τ/�W

,

g0
jk(x,τ ) = 1

�W
gjk[x(z),t]

∣∣∣∣
z=x/κ,t=τ/�W

,

ε = �
2

2M

κ2

��W
> 0,

and

ω0
A = ωA

�W
, τ0 = �Wt0, τ1 = �Wt1,

�0(x) = − B0

2��W
〈Vj0 (x)|μ · bp|Vj1 (x)〉,

�0(x,τ ) =
{
�0(x) if τ0 < τ < τ1,

0 if τ � τ0 or τ � τ1.

�′
j (x) = − B0

2��W
〈Vj (x)|μ · bp|Vj (x)〉,

�′
j (x,τ ) =

{
�′

j (x) if τ0 < τ < τ1,

0 if τ � τ0 or τ � τ1.
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and

L0
jk(x) =

∑
F=F±

F∑
MF =−F

〈Vj (x)|k0,F,MF 〉

×
{[

∂2

∂x2
〈k0,F,MF |Vk(x)〉

]

+ 2

[
∂

∂x
〈k0,F,MF |Vk(x)〉

]
∂

∂x

}
. (30)

Note that x is the nondimensional position, while τ = �Wt is
the nondimensional time.

Using (30), one can express |ψ(t)〉 in (23) in the form

|ψ(t)〉 =
∫ +∞

−∞
dx
∑
j∈I

1√
κ

∣∣∣∣xκ ,Vj (x)

〉
φj (x,�Wt). (31)

Finally, using (30) in (24) one finds that Schrödinger’s
equation is equivalent to

i
∂

∂τ
�(x,τ )

= [−εK0(x) + V0(x) + D0(x,τ ) + G0(x,τ ) − εL0(x)]

× �(x,τ ) (x,τ ∈ R), (32)

where we have introduced the matrices

�j (x,τ ) = φj (x,τ ), K0
jk(x) = δjk

∂2

∂x2
,

V0
jk(x) = δjk

[
V 0

j (x) + Mg0

��W

x

κ

]
,

(33)
D0

jk(x,τ ) = δjkδ
0
j (x,τ ), G0

jk(x,τ ) = g0
jk(x,τ ),

L0
jk(x) = L0

jk(x),

for j,k = 1,2, . . . ,dimH0 = 2(2I + 1). Note that (32) is just
the nondimensional version of (24) using the special form
BST(z) = ηz and the characteristic length 1/κ and time 1/�W .
Recall that (24) is valid for a general form of BST(z) [for
example, it is valid for the nonlinear function given in (B2)
in Appendix B and that constitutes an accurate approximation
of an exact magnetic field with less stringent conditions (B3)
than the special form BST(z) = ηz].

Using (28) and the definitions in (30), one can express
G0(x,τ ) as follows:

G0
jk(x,τ ) = [eiω0

A(τ−τ0) + e−iω0
A(τ−τ0)

]

×

⎧⎪⎨
⎪⎩

�0(x,τ ) if (j,k) = (j0,j1),

�0(x,τ )∗ if (j,k) = (j1,j0),

0 if (j,k) �∈ I0,

(34)

for x,τ ∈ R and j,k ∈ I. In this form it is seen explicitly that
�0(x,τ ) is the (nondimensional) position-dependent atom-
Bp(t) coupling. Notice that the dependence on x arises from
the fact that |Vj (x)〉 depends on x.

Similarly, it also follows that

D0
jj (x,τ ) = �′

j (x,τ )
[
eiω0

A(τ−τ0) + e−iω0
A(τ−τ0)

]
. (35)

It is very important to realize that ε � 1; that is, ε is a
perturbation parameter in (32). This is shown explicitly in

the next section to be a consequence of the long-wavelength
approximation. Meanwhile, we illustrate this fact with a
concrete example. For future reference, we note that 87Rb has
the parameters [17,19]

gs � 2.002, de � 5.6a0 � 3 × 10−10m,

gI

me

mp

� 0.001, �W � 2π × 6.835 × 109 1

s
, (36)

I = 3

2
, M � 1.45 × 10−25kg,

where de is the average distance of the valence electron to the
nucleus and a0 is the Bohr radius. It follows that 87Rb has

ε = 1.42 × 10−23η2, (37)

where η is given in G/cm. Hence, ε is a perturbation
parameter in (32) as long as one considers values of η smaller
than 1011,1012 G/cm. Note that values η ∼ 1011,1012 G/cm
imply magnetic fields of the order of 1012 G, but these
are only found in neutron stars [20]. Hence, ε is always a
perturbation parameter as long as exotic environments such as
neutron stars are excluded. In reality the model is no longer
applicable for such high values of η, since the long-wavelength
approximation breaks down. We emphasize that the magnitude
of the magnetic field BST(z) is not an issue, it is the derivative
η of BST(z) that determines if ε is a perturbation parameter or
not.

Also, it is important to note that the presence of the
perturbation parameter ε as a factor of the term K0(x)
associated with the kinetic energy in (33) does not imply
that the kinetic energy is negligible. In fact, the expected
value of the kinetic energy of the atom is calculated in
Sec. IV and its expression shows that it can be larger than
the gravitational potential plus internal energies. The presence
of the perturbation parameter implies that the motion of the
atom will tend to be semiclassical as it is explicitly seen in
Sec. IV. The reason for this is that � is small in the system under
consideration; that is, the quantity h0 ≡ 2M�W/κ2 with units
of � can be formed with the characteristic length 1/κ , time
1/�W , and mass M of the system and � is much smaller than
h0: ε = �/h0 � 1 [21].

The following sections present simplified forms of some
of the matrices in (32) and a discussion of the validity of the
long-wavelength approximation.

A. Validity of the long-wavelength approximation

The Hamiltonian (11) was derived under the long-
wavelength approximation, so it is important to realize that
this imposes limits on both the frequency ωA of Bp(t) and the
derivative η of BST(z). We first discuss the case of Bp(t).

Since Bp(t) corresponds to a monochromatic plane wave
propagating along the positive x axis with wavelength λA =
2πc/ωA, the long-wavelength approximation requires that

λA � de ∼ a0, (38)

where we have estimated the average distance de of the
valence electron to the nucleus of the alkali-metal atom by the
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Bohr radius a0. In general, transitions between ground-state
hyperfine sublevels in alkali-metal atoms have ωA � 1013 1/s.
Therefore, λA > 10−4 m, which is much larger than a0. Hence,
the long-wavelength approximation is valid. In particular,
using (36) with ωA = �W we have λA = 4.4 × 10−2 m and
de � 3 × 10−10 m for 87Rb. Clearly, the long-wavelength
approximation is valid.

We now consider the case of BST(z) = ηz. If z is the
(average) position of the nucleus and z ± de is the (average)
position of the valence electron, then it must occur that∣∣∣∣BST(z ± de) − BST(z)

BST(z)

∣∣∣∣ =
∣∣∣∣de

z

∣∣∣∣� 1, (39)

for all z for the long-wavelength approximation to be valid.
In other words, the magnetic field at the (average) position of
the electron must be approximately equal to the magnetic field
at the (average) position of the nucleus. Since this criterion
depends on z it is better to demand that the internal energy at
the (average) position of the nucleus must be approximately
equal to the internal energy at the (average) position of the
valence electron; that is, it must occur that∣∣∣∣VF,MF

[κ(z ± de)] − VF,MF
(κz)

VF,MF
(κz)

∣∣∣∣� 1, (40)

for each z, −F � MF � F , and F = F±. To estimate (40)
we take z > 0 and F = MF = F+. Using the definition of
VF+ ,F+(κz) in (8) one finds that the left side of (40) is less than
or equal to 2γ1κde. Hence, using the definition of κ in (29) it
follows that

η � ηbound ≡ �W

de

(
gs

μB

�
− 2IgI

μN

�

) (41)

is a sufficient condition for (40) to be valid; that is, it is a
sufficient condition for the long-wavelength approximation to
be valid. In the case of 87Rb one has

ηbound = 8.2 × 1010 G

cm
. (42)

Moreover, using (41) and (42) it follows from (37) that

ε � 9.6 × 10−2. (43)

Therefore, ε is always a perturbation parameter in (32) in the
case of 87Rb. We now treat the rest of the alkali-metal atoms.

Define

ηmax = 10−nηbound, κmax = gsμB + gIμN

��W
ηmax,

(44)

εmax = �
2

2M

(
κ2

max

��W

)
,

with n � 0. Notice that κmax and εmax are the maximum values
κ and ε can have, since they are simply κ and ε with η replaced
by ηmax.

Since gs � 2, one has

2IgIμN

gsμB

� IgI

me

mp

,
gIμN

gsμB

� gI

me

2mp

. (45)

Hence, one can neglect 2IgIμN and gIμN with respect to gsμB ,
and it follows from (44) that

ηmax � 10−n ��W

degsμB

, κmax � 10−n

de

,

(46)

εmax � �

2M

(
10−2n

d2
e �W

)
.

Since all alkali-metal atoms have M > 10−27 kg and de � a0,
if we take n = 3 and �W � 1010 1/s it follows from (46) that

εmax � 2 × 10−3. (47)

Hence, ε � 1 if |2IgIμN | � gsμB and �W � 1010 1/s and
the sufficient condition (41) for the long-wavelength approx-
imation to be valid is used. We conclude that ε � 1 if the
long-wavelength approximation is valid.

B. Simplified form of L0
j k(x)

Recall that L0
jk(x) arises from the use of the position-

dependent basis �[x(z)] in (17). Hence, using (8) it follows
from (30) that

L0
jk(x)

∣∣
j=F+,±F+

= 0,

L0
jk(x)

∣∣
j=F+,MF

=

⎧⎪⎨
⎪⎩

α0(MF,x) if k = F+,MF ,

−α1(MF,x) if k = F−,MF ,

0 in another case,

(48)

L0
jk(x)

∣∣
j=F−,MF

=

⎧⎪⎨
⎪⎩

α1(MF,x) if k = F+,MF,

α0(MF,x) if k = F−,MF,

0 in another case,

with

α0(MF,x) = −1

4
θx(MF,x)2,

α1(MF,x) = 1

2
θxx(MF,x) + θx(MF,x)

∂

∂x
,

(49)

θx(MF,x) = −
√

1 − (MF/F+)2

1 + 2(MF/F+)x + x2
,

θxx(MF,x) = 2

(
MF

F+
+ x

) √
1 − (MF/F+)2

[1 + 2(MF/F+)x + x2]2
,

for k = 1,2, . . . ,dimH0 = 2(2I + 1) and −F− � MF � F−.
Here θx(MF,x) and θxx(MF,x) are the first and second partial
derivatives with respect to x of the function θ (MF,x) in (8).

From (48) it follows that L0(x) has the block-diagonal form

L0(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

O O O ... O

O M0(x) O ... O

O O M1(x) ... O

...
...

...
...

O O O ... M2F−(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (50)

013406-6



MODEL FOR A PHASE-SPACE SELECTOR USING . . . PHYSICAL REVIEW A 89, 013406 (2014)

where O is the 2 × 2 zero matrix and

Mj (x) =
(

α0(F− − j,x) −α1(F− − j,x)

α1(F− − j,x) α0(F− − j,x)

)
, (51)

for j = 0,1, . . . ,2F−. Recall that the ordering for �[x(z)] is
given in (19).

Observe that L0(x) only couples φF+ ,MF
(x,τ ) and

φF−,MF
(x,τ ) for MF = −F−, . . . ,F−. The origin of this can

be found in that |k0,F±,MF 〉 and |VF± ,MF
(x)〉 are linear

combinations of the same kets for each −F− � MF � F−
[see (8) and (30)].

We emphasize that L0(x) arises from the use of a position-
dependent basis that comes from the interaction between the
alkali-metal atom and the static magnetic field BST(z)z. Hence,
its structure is independent Bp(t).

Finally, as a consequence of the Hermiticity condition (26)
for L(z) one has a corresponding Hermiticity condition for
L0(x): [L0

jk(x)]† = L0
kj (x) for each j,k = 1,2, . . . ,dimH0 =

2(2I + 1).

C. Simplified forms of D0(x,τ ), �0(x), and θ (MF,x)

One can further simplifyD0(x,τ ) if one evaluates the matrix
element 〈Vj (x)|μ · bp|Vj (x)〉. Using (7) and (8) it follows that

this matrix element is zero if bp = y. Therefore,

D0(x,τ ) = 0 if bp = y. (52)

On the other hand, one finds that

�′
j (x) = B0

2��W

×
{

± ( gs

2 μB − gIIμN

)
,

−gIμNMF ± 1
2 (gsμB + gIμN ) cosθ (MF,x),

(53)

for all x ∈ R and MF = −F−, . . . ,F− if bp = z. Here the
first line corresponds to j = F+,±F+, while the second line
corresponds to j = F±,MF .

It is important to note that �′
j (x) is a small quantity unless

B0 is on the order of 1 T. For example, for 87Rb one has

|�′
j (x)| � 1.03 × 10−4B0 (j ∈ I,x ∈ R), (54)

with B0 given in gauss.
Using the definitions of θ (MF,x) and �0(x) given in (8)

and (30), it can be shown that for τ0 < τ < τ1 one has

i�0(x,τ ) = i�0(x),

= B0

4�W

(
μB

�

){
gscos

[
θ(F−,x)

2

]+ gI

me

mp

√
2I sin

[
θ(F−,x)

2

]
,

gssin
[

θ(−F−,x)
2

]+ gI

me

mp

√
2Icos

[
θ(−F−,x)

2

]
,

(55)

with j0 = F+,F+ and j1 = F−,F− for the first line and j0 =
F+, − F+ and j1 = F−, − F− for the second line.

Also, using the definition of θ (MF,x) given in (8) it follows
that

cos

[
θ (MF,x)

2

]
= 1√

2

√√√√√1 +
MF

F+
+ x√

1 + 2MF

F+
x + x2

,

(56)

sin

[
θ (MF,x)

2

]
= 1√

2

√√√√√1 −
MF

F+
+ x√

1 + 2MF

F+
x + x2

,

for −F− � MF � F−.

D. A criterion to select a transition

In (28) we kept the discussion at a general level and
we did not specify which transition was chosen; that is, we
did not choose particular values for j0 and j1. While some
transitions may exhibit certain properties that may make them
more advantageous than others such as a simpler experimental
preparation of the initial state or a Vj [x(z)] that can be
approximated by a harmonic oscillator potential for small x(z),
we concentrate just on presenting a criterion that can be used
to establish which transition gives rise to the best phase-space
selector (that is, the best selections in position and velocity).
We need states with the biggest change in resonant frequency

for a given displacement, that is, that have the largest value of∣∣∣∣dV 0
j0

dx
(x) − dV 0

j1

dx
(x)

∣∣∣∣. (57)

Here we divided by ��W in order to have nondimensional
quantities.

We expect that the allowed transitions that have the largest
value of (57) have

(j0; j1) =
{

(F+,F+ ; F−,F−) for x > 0,

(F+,−F+; F−,−F−) for x < 0,
(58)

since they involve the stretched states and these are the most
sensitive to the magnetic field. We verified this claim for 87Rb.
Moreover, experimentally, it is easier to prepare atoms in the
states |Vj [x(z)]〉 with j = j0,j1 given in (58).

IV. EVOLUTION BEFORE THE PULSE

In this section we restrict to 0 � t � t0 so that Bp(t) = 0
during this time interval. The Schrödinger equation is solved in
the first section, while the evolution is analyzed in the second
section. The reader interested only in the analysis can jump to
the second section.

A. Solution of the Schrödinger equation

Since Bp(t) = 0 during the time interval 0 � t � t0
[see (13)], it follows from (22), (30), and (33) that D0(x,τ ) =
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G0(x,τ ) = 0 for x ∈ R and 0 � t � t0. Hence, (32) takes the
form

i
∂

∂τ
�(x,τ ) = [V0(x) − εK0(x) − εL0(x)] �(x,τ ). (59)

Using the structure of the matrices on the right one finds
that (59) is equivalent to the following set of equations:

i
∂

∂τ
φF+,±F+(x,τ )

=
[
−ε

∂2

∂x2
+ 1

2
+
(

±γ1 + Mg0

��Wκ

)
x

]
φF+ ,±F+(x,τ )

(60)

for the stretched states and

i
∂

∂τ

(
φF+ ,MF

(x,τ )

φF− ,MF
(x,τ )

)
= A(MF,x)

(
φF+ ,MF

(x,τ )

φF− ,MF
(x,τ )

)

for −F− � MF � F−. Here

A(MF,x) =
(

V 0
F+ ,MF

(x) + Mg0

��Wκ
x 0

0 V 0
F− ,MF

(x) + Mg0

��Wκ
x

)

− ε

(
∂2

∂x2 + α0(MF,x) −α1(MF,x)

α1(MF,x) ∂2

∂x2 + α0(MF,x)

)
,

(61)

with the definitions in (8), (30), and (49). Notice that φj (x,τ )
evolves independently of the rest for j = (F+,±F+), while
φF+,MF

(x,τ ) and φF− ,MF
(x,τ ) are weakly coupled (−F− �

MF � F−). This weak coupling arises from the position-
dependent basis �[x(z)] used to write the Schrödinger equa-
tion.

We now focus our attention on φj (x,τ ) for j = F+,±F+.
As explained in Sec. IIID, these are the states with the highest
sensitivity to the magnetic field and give rise to the best phase-
space selector.

Equations (60) have the generic form

i
∂

∂τ
φ(x,τ ) =

(
−ε

∂2

∂x2
+ q1 + q2x

)
φ(x,τ ), (62)

with q1,q2 ∈ R.
Notice that the equation for φF+,±F+(x,τ ) is recovered by

taking φF+,±F+(x,τ ) = φ(x,τ ) and

q1 = 1

2
, q2 =

(
Mg0

��Wκ
± γ1

)
. (63)

We now solve (62) subject to the initial condition φ(x,0)
and assuming that φ(·,τ ) ∈ S(R) and that (∂/∂τ )Fx[φ(x,τ )] =
Fx[(∂/∂τ )φ(x,τ )] for each τ ∈ R. HereFx denotes the Fourier
transform with respect to x and S(R) is the space of infinitely
differentiable complex-valued functions defined on R that
decrease rapidly at infinity [22].

Since φ(·,τ ) ∈ S(R) and (∂/∂τ )Fx[φ(x,τ )] =
Fx[(∂/∂τ )φ(x,τ )] for each τ ∈ R, we can take the Fourier
transform with respect to x on both sides of (62) to obtain the

equivalent equation

∂

∂τ
φ̂(k,τ ) − q2

∂

∂k
φ̂(k,τ ) = −i(q1 + εk2)φ̂(k,τ ) (64)

for k,τ ∈ R. Here φ̂(k,τ ) is the Fourier transform of φ(x,τ )
with respect to x; that is,

φ̂(k,τ ) = 1√
2π

∫ +∞

−∞
dxφ(x,τ )e−ikx, (65)

for k,τ ∈ R. By taking the Fourier transform we have changed
a second-order linear partial differential equation into a first-
order one.

Using the method of characteristics [23] one can solve
Eq. (64). We omit the details and write only the solution

φ̂(k,τ ) = φ̂(k + q2τ,0)

× exp

[
−iq1τ + i

ε

3q2
k3 − i

ε

3q2
(k + q2τ )3

]
. (66)

Taking the inverse Fourier transform of (66) and making a
change of variables one arrives at the solution of (62):

φ(x,τ ) = exp

[
−iq1τ − iq2τ

(
x + ε

3
q2τ

2

)]

× 1√
2π

∫ +∞

−∞
dkφ̂(k,0)

× exp[−iετk2 + ik(εq2τ
2 + x)]. (67)

Note that φ(x,τ ) in (67) is indeed in S(R) for each τ ∈ R if
φ(x,0) ∈ S(R).

In the following we assume that ψ(z,0) is a coherent state
wave packet [16]; that is,

ψ(z,0) =
[

1

2π�Z(0)2

]1/4

exp

{
−1

4

[
z − z0

�Z(0)

]2

+ i
p0

�
z

}
.

(68)

Using (30) it follows from (68) that

φ(x,0) = 1√
κ

ψ

(
x

κ
,0

)
. (69)

Now substitute (68) and (69) in (67) and evaluate the integral
by the method of residues. The result is

φ(x,τ ) =
[

1

2πσx(τ )2

]1/4

exp

{
−1

4

[x − ζ (τ )]2

σx(τ )2

+ i�p(x,τ ) − i

2
tan−1

[
ετ

σx(0)2

]}
. (70)

Here we introduced the nondimensional quantities

σx(0) = κ�Z(0), ρ0 = p0

�κ
, x0 = κz0,

σx(τ ) =
√

σx(0)2 +
[

ετ

σx(0)

]2

,

ζ (τ ) = x0 + 2ρ0(ετ ) − q2(ετ 2),
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and

�p(x,τ ) = −τ

(
q1 + ε

3
q2

2τ 2

)
+ σx(0)2

σx(τ )2
(ρ0 − q2τ )(x − ρ0ετ )

+ ετ

4σx(τ )2σx(0)2

[
(x − x0)2 + 4ρ0x0ετ

− 2q2ετ
2

(
x + x0 − q2

2
ετ 2

)]
. (71)

Notice that φ(x,τ ) is a Gaussian wave packet whose standard
deviation σx(τ ) increases just like a free particle Gaussian
wave packet (the free particle case is obtained by taking q1 =
q2 = 0).

In the following section the result in (70) is used to
determine the state of the system |ψ(t)〉 for 0 � t � t0.

B. Evolution of the atom

Suppose that the state of the system at time t = 0 is

|ψ(0)〉 =
∫ +∞

−∞
dx

1√
κ

∣∣∣∣xκ ,Vj0 (x)

〉
φ(x,0), (72)

with j0 = F+,F+ or F+,−F+ and φ(x,0) the coherent state wave
packet in (68) and (69). Notice that we used (31) to write (72).

It follows from (72) and the results of the previous section
that the state of the system at time 0 � t � t0 is given by

|ψ(t)〉 =
∫ +∞

−∞
dx

1√
κ

∣∣∣∣xκ ,Vj0 (x)

〉
φ(x,�Wt), (73)

where φ(x,τ ) is the Gaussian wave packet given in (70)
and (71).

Using (73) and the definition of |z,Vj0 [x(z)]〉 in (8) and (20)
it is straightforward to show that the expected values of position
〈Z〉(t) and momentum 〈Pz〉(t) and the dispersions (or standard
deviations) of position �Z(t) and momentum �Pz(t) are given
by

〈Z〉(t) = ζ (�Wt)

κ
= z0 + p0

M
t − 1

2
geff t

2,

�Z(t) = 1

κ
σx(�Wt),

=
√

�Z(0)2 +
[

�

2M�Z(0)

]2

t2, (74)

〈Pz〉(t) = M
d

dt
〈Z〉(t),

�Pz(t) = �Pz = �

2�Z(0)
,

where z0 = 〈Z〉(0), p0 = 〈Pz〉(0), ζ (�Wt) is the nondi-
mensional expected value of position, and σx(�Wt) is the
nondimensional standard deviation of position. Also,

geff = g0 ± g′, g′ = �

2M

(
gs

μB

�
− 2IgI

μN

�

)
η. (75)

The ± sign in (75) is chosen according to j0 = F+,±F+.
Moreover, the probability density functions (pdf’s) of

position and momentum are found to be respectively given

by

fZ(z,t) = κ|φ(κz,�Wt)|2

= 1√
2π�Z(t)2

exp

[
−1

2

(
z − 〈Z〉(t)

�Z(t)

)2]
, (76)

fP(p,t) = 1√
2π�P 2

z

exp

[
−1

2

(
p − 〈Pz〉(t)

�Pz

)2]
,

for z,p ∈ R and t ∈ [0,t0].
From (59) and (60) one knows that the Schrödinger

equation of the system for the initial state in (72) and for
t ∈ [0,t0] reduces to that of a single spinless particle moving
in one dimension under an effective potential that includes
the gravitational potential energy of the atom and its internal
energy [we include the interaction energy with the static
magnetic field BST(z)z = ηzz in the internal energy]. From the
aforementioned equations it follows that this effective potential
is given by

Mg0z + Vj0 (κz) = ��W

2
+ Mgeffz, (77)

with j0 = F+,±F+. Hence, from (74) we conclude that 〈Z〉(t)
and 〈Pz〉(t) follow the classical equations of motion; that is,
they are equal to the position and momentum of a classical
point particle of mass M and position z(t) that is subject to the
potential in (77) and that satisfies the initial conditions z(0) =
z0 and (dz/dt)(0) = p0/M . Notice that the internal energy of
the atom [including the interaction energy with BST(z)z)] gives
rise to an augmented acceleration of gravity geff = g0 + g′ >

g0 in the case j0 = F+,F+. On the other hand, it gives rise
to a decreased acceleration of gravity geff = g0 − g′ < g0 for
j0 = F+,−F+. In the latter case, geff can become negative for
sufficiently large values of η and, hence, the atom can be
accelerated upwards even in the presence of gravity. For 87Rb
one has

geff = 9.8 ± 0.64η, (78)

where η is given in G/cm and geff is in units of m/s2. If η =
100 G/cm, then one has the augmented (reduced) value geff =
73.8 m/s2 (geff = −54.2 m/s2).

Notice that both the position and momentum pdf’s are
Gaussians with means equal to 〈Z〉(t) and 〈Pz〉(t), respectively.
Also, the dispersion �Pz in momentum is constant in time.
This is due to the fact that the force associated with the effective
potential (77) is independent of z. The dispersion �Z(t) in
position is equal to that of a freely evolving Gaussian wave
packet. Hence, there is no compression of the position pdf
as it is reflected downwards by the potential Vj0 (κz) + Mg0z

in the case j0 = F+,F+ (compare this with the evolution of
Gaussian wave packets under the potential e−z2

[24]). It is
important to notice that �Z(t) does not depend on the value
of η; that is, it is independent of the magnetic field ηzz.
Nevertheless, the same is not true of the nondimensional
dispersion σx(�Wt) = κ�Z(t). If η is replaced by λη (λ > 0),
then σx(τ ) is replaced by λσx(τ ).

We mention that using Ehrenfest’s theorem and that the
atom moves under the effective potential (77) (a polynomial
of degree 1 in z), one could have also anticipated that 〈Z〉(t)
and 〈Pz〉(t) follow the classical equations of motion.
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L. O. CASTAÑOS AND E. GOMEZ PHYSICAL REVIEW A 89, 013406 (2014)

To end this section we consider the expected values
〈P 2

z /(2M)〉(t) of the kinetic energy, 〈V〉(t) of the effective
potential energy, and 〈H 〉(t) of the total energy as well as the
dispersion (or standard deviation) �H (t) of the total energy.
Again, using (73) and the definition of |z,Vj0 [x(z)]〉 in (8)
and (20) it is straightforward to show that

〈
P 2

z

2M

〉
(t) = 〈Pz〉(t)2

2M
+ �P 2

z

2M
,

〈V〉(t) = ��W

2
+ Mgeff〈Z〉(t),

〈H 〉(t) = 〈Pz〉(0)2

2M
+ �P 2

z

2M
+ ��W

2
+ Mgeff〈Z〉(0),

�H (t)2 =
(

�P 2
z

2M

)2

+ [Mgeff�Z(0)]2

+ �P 2
z

2M

[
�P 2

z

2M
+ 4

〈Pz〉(0)2

2M

]
. (79)

Here V = Mg0Z + HA − μ · BST(Z)z is the sum of the
gravitational potential energy of the atom plus its internal
energy plus its interaction with BST(z)z energy. Also, observe
from (11) that H (t) = P 2

z /(2M) + V for all t ∈ [0,t0].
Notice that the expected value of the kinetic energy is

equal to the classical kinetic energy plus a term associated
with the dispersion in momentum, while the expected value of
the gravitational potential plus internal plus interaction with
BST(z)z energies is equal to the classical energy associated
with the effective potential in (77). As a consequence, 〈H 〉(t)
is equal to the classical energy (kinetic energy of the center-
of-mass motion plus effective potential energy) plus the
correction �P 2

z /(2M) due to the dispersion in momentum.
Finally, the square of the standard deviation �H (t)2 of the
energy is equal to the square of the fluctuation in the kinetic
energy [�P 2

z /(2M)]2 plus the square of the fluctuation in the
effective potential energy [Mgeff�Z(0)]2 plus a correction
embodied by the third term on the right in the equation for
�H (t)2 in (79).

V. EVOLUTION DURING THE PULSE

In this section we determine the evolution of the system
during the application of the microwave pulse Bp(t); that is,
we restrict to the time interval t0 < t < t1.

As before, we take j0 and j1 given in (58). According to (27)
and (52) the polarization bp of Bp(t) is y and D0(x,τ ) = 0.

We assume that the state of the system at time t = 0 is given
in (72). Hence, the state of the system at time t0 is given in (73)
with t = t0.

In the first section below an approximate solution of
the Schrödinger equation is derived with the rotating wave
approximation (RWA) and perturbation theory. Its accuracy
and the validity of the RWA are discussed in the following two
sections. The reader interested in the details and in the regime
of validity of the approximate solution should go through them.
Otherwise, the reader can take on faith the results below and
jump to Sec V D.

The state of the system at time t = τ/�W ∈ (t0,t1) is given
by

|ψ(t)〉 =
∫ +∞

−∞
dx

{
1√
κ

∣∣∣∣xκ ,Vj0 (x)

〉
φj0 (x,τ )

+ 1√
κ

∣∣∣∣xκ ,Vj1 (x)

〉
φj1 (x,τ )

}
, (80)

where(
φj0 (x,τ )

φj1 (x,τ )

)
�
(

e−iω0
0(τ−τ0)φ0

00(x,τ )

e−iω0
1(τ−τ0)φ0

10(x,τ )

)
,

(81)(
φ0

00(x,τ )

φ0
10(x,τ )

)
= φ(x,τ0)e−i�p(x)(τ−τ0)

(
U11(x,τ )∗

−U21(x,τ )

)
,

and

U11(x,τ ) = cos

[
�R(x)

2
(τ − τ0)

]

+ icos[�R(x)]sin

[
�R(x)

2
(τ − τ0)

]
, (82)

U21(x,τ ) = −γ3(x)sin[�R(x)]sin

[
�R(x)

2
(τ − τ0)

]
.

Here we have introduced the following nondimensional quan-
tities

δ00(x) = V 0
j0

(x) − V 0
j1

(x) − ω0
A,

�p(x) = 1

2

[
V 0

j0
(x) − ω0

0 + V 0
j1

(x) − ω0
1

]+ Mg0

��Wκ
x,

�R(x) =
√

δ00(x)2 + 4|�0(x)|2,
(83)

�R(x) = cos−1

[
δ00(x)

�R(x)

]
∈ [0,π ),

γ3(x) = sgn[i�0(x)], ζR(τ ) = x0R + 2ρ0Rετ − q2ετ
2,

ω0
l = V 0

jl
(x) + Mg0

��Wκ
x

∣∣∣∣
x=ζR (τ0)

, ω0
A = ω0

0 − ω0
1,

where x0R and ρ0R are nondimensional real numbers, q2 is the
nondimensional quantity given in (63), and l = 0,1, and 2.
Also, j2 = F+,±F− with the sign chosen according to j0 =
F+,±F+. The index j2 is only used to deduce the approximate
solution of the Schrödinger equation.

From (55) it is clear that i�0(x) is a real quantity [recall
that �0(x) is the nondimensional atom-Bp(t) coupling that it
is defined in (30) and simplified in (55) for the choice of j0

and j1 given in (58)]. Moreover, one can prove that

i�0(x) > 0, (84)

if j0,j1,x satisfy (58) and either gI > 0 or gs �
|gI |me

√
2I/mp. For 87Rb the last condition is satisfied;

see (36).
Also, δ00(x) plays the role of a (nondimensional) position-

dependent detuning, while �R(x) is a (nondimensional)
position-dependent Rabi frequency. The position-dependent
Rabi angular frequency (units of rad/s) is given by �W�R(x).
This is seen explicitly in Sec. VD below.
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Observe that the nondimensional angular frequency ω0
A

of Bp(t) [see (30)] is defined to be the nondimensional
angular transition frequency between the levels |z,Vj0 [x(z)]〉
and |z,Vj1 [x(z)]〉 with z = ζR(τ0)/κ . Comparing ζR(τ )/κ with
ζ (τ )/κ in (74), it follows that ζR(τ )/κ with 0 � τ � τ0 is the
expected value of the position of an atom whose expected
values of position and momentum at time t = 0 are x0R/κ

and M(2ρ0Rε�W )/κ = �κρ0R, respectively. Therefore, the
magnetic field Bp(t) will be resonant with the desired transition
if ζR(τ0) = ζ (τ0) and the atom is well localized around its
expected value of position 〈Z〉(t0) = ζ (τ0)/κ in (74). Notice
that ζR(τ0)/κ plays the role of a resonant position.

We emphasize that we defined the angular frequency of
Bp(t) to be resonant with the transition (58) if the atom is well
localized around ζ (τ0)/κ = ζR(τ0)/κ . This is evidenced since
the detuning is δ00[ζR(τ0)] = 0. In fact, from (83) one has

cos�R[ζR(τ0)] = 0, �R[ζR(τ0)] = 2|�0[ζR(τ0)]|,
(85)

sin�R[ζR(τ0)] = 1, δ00[ζR(τ0)] = 0.

Also, notice that ω0
l is the (nondimensional) effective

potential energy of an atom that is well localized around
ζR(τ0)/κ and in the internal state |Vjl

[ζR(τ0)]〉.
The approximate solution in (80) and (81) is called the

first-term approximation and it will be used in the rest of the
article. Observe that the first-term approximation corresponds
to what one imagines a pulse to be like: a sudden application
of a (magnetic) field that affects the atom and that is so brief
that the atom barely moves. That the atom does not move
during the pulse in the first-term approximation can be seen
by calculating the position pdf fZ(z,t) of the atom from (80)
and (81). It is given by

fZ(z,t) = κ|φj0 (κz,τ )|2 + κ|φj1 (κz,τ )|2,
� κ|φ(κz,τ0)|2, (86)

for z ∈ R and t = τ/�W ∈ [t0,t1].

A. Solution of the Schrödinger equation

In this section we solve the Schrödinger equation in the
time interval t0 < t < t1. Since the state of the system at time
t = t0 is given in (73) with t = t0, it follows from (32) and (73)
that one has to solve the equation

i
∂

∂τ
�(x,τ ) = [−εK0(x) + V0(x) + G0(x,τ ) − εL0(x)]

× �(x,τ ), (87)

subject to the initial conditions

�j (x,τ0) = δjj0φ(x,τ0). (88)

Recall that at the beginning of this section it was observed that
D0(x,τ ) = 0 due to the choice of polarization of Bp(t).

Notice from (33) that K0(x) and V0(x) are diagonal. Also,
from (34) it follows that G0(x,τ ) only couples φj0 (x,τ ) and
φj1 (x,τ ). Furthermore, from (50) and the observation made
in the paragraph below (51) one has that L0(x) only couples

φj1 (x,τ ) and φj2 (x,τ ) with

j2 = F+,±F−, (89)

and the sign chosen according to j1 = F−,±F−. Hence, it
follows from (87) and the initial conditions in (88) that

φj (x,τ ) = 0 (j �= j0,j1,j2). (90)

These wave functions started out as zero and remain zero
because they are not coupled to φjl

(x,τ ) for l = 0,1,2.
Only the equations for φj (x,τ ) with j = j0,j1,j2 have to

be solved. We now make a transformation in order to be able
to perform the RWA.

Define

φ0
jl

(x,τ ) = eiω0
l (τ−τ0)φjl

(x,τ ),

Mll(x) = V 0
jl

(x) − ω0
l + Mg0

��Wκ
x,

M13(x,τ ) = �0(x)
[
1 + ei2ω0

A(τ−τ0)
]
,

(91)

N22(x,MF ) = − ∂2

∂x2
− α0(MF,x),

N23(x,MF ) = α1(MF,x)ei(ω0
2−ω0

1)(τ−τ0),

N32(x,MF ) = −α1(MF,x)e−i(ω0
2−ω0

1)(τ−τ0),

and

M0(x,τ ) =

⎛
⎜⎝

M00(x) 0 M13(x,τ )

0 M22(x) 0

M13(x,τ )∗ 0 M11(x)

⎞
⎟⎠ ,

(92)

M1(x,τ ) =

⎛
⎜⎝− ∂2

∂x2 0 0

0 N22(x,MF ) N23(x,MF )

0 N32(x,MF ) N22(x,MF )

⎞
⎟⎠ ,

for each l = 0,1,2. Notice that we have made use of the
quantities ω0

l and ω0
A defined in (83) and of the quantities

α0(MF,x) and α1(MF,x) defined in (49). Here and in the
following MF = F− if j1 = F−,F− and MF = −F− if j1 =
F−,−F−.

Using (90)–(92) one finds that (87) reduces to

i
∂

∂τ

⎛
⎜⎝

φ0
j0

(x,τ )

φ0
j2

(x,τ )

φ0
j1

(x,τ )

⎞
⎟⎠ = [M0(x,τ ) + εM1(x,τ )]

⎛
⎜⎝

φ0
j0

(x,τ )

φ0
j2

(x,τ )

φ0
j1

(x,τ )

⎞
⎟⎠ .

(93)

When we defined φ0
jl

(x,τ ) in (91) we eliminated the fast
(time) evolution of φjl

(x,τ ) if the atom is well localized around
ζR(τ0)/κ . This fast evolution is associated with the internal
and gravitational potential energies. All that is left is the slow
(time) evolution due to the interaction with Bp(t) and due to the
couplingL0(x) introduced by the use of the position-dependent
basis �. Hence, we assume that the φ0

jl
(x,τ ) (l = 0,1,2) evolve

on a time scale much larger than π/ω0
A and 2π/(ω0

2 − ω0
1); that
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is, we assume that

φ0
jl

(x,τ ′) � φ0
jl

(x,τ ) (l = 0,1,2), (94)

if τ,τ ′ ∈ (τ0,τ1) and

|τ ′ − τ | � π

ω0
A

,
2π(

ω0
2 − ω0

1

) . (95)

Therefore, one can perform the RWA in (93); that is, one can
neglect terms in (93) that average to zero because they oscillate
at (angular) frequencies of 2ω0

A and (ω0
2 − ω0

1). One obtains
exactly the same equation as in (93) with the change

[M0(x,τ ) + εM1(x,τ )] → [M′
0(x) + εM′

1(x)]. (96)

Here we have introduced the matrices

M′
0(x) =

⎛
⎜⎝
M00(x) 0 �0(x)

0 M22(x) 0

�0(x)∗ 0 M11(x)

⎞
⎟⎠ ,

(97)

M′
1(x) =

⎛
⎜⎝− ∂2

∂x2 0 0

0 N22(x,MF ) 0

0 0 N22(x,MF )

⎞
⎟⎠ .

The validity of the RWA is discussed in a section below.
Notice that the matrix on the right side of (96) is now

time independent. Moreover, the coupling between φ0
j2

(x,τ )
and φ0

j1
(x,τ ) disappeared with the RWA. Hence, it follows

from (93), (96), and the initial conditions in (88) that

φ0
j2

(x,τ ) = 0; (98)

that is, this wave function is zero because it started out as zero
and it is not coupled to φ0

jl
(x,τ ) for l = 0,1.

From (93)–(98) it follows that we are left with a two-level
problem that can be written as

i
∂

∂τ

(
φ0

j0
(x,τ )

φ0
j1

(x,τ )

)
= [M′′

0(x) + εM′′
1(x)]

(
φ0

j0
(x,τ )

φ0
j1

(x,τ )

)
,

(99)

with

M′′
0(x) =

(
V 0

j0
(x) − ω0

0 + Mg0

��Wκ
x �0(x)

�0(x)∗ V 0
j1

(x) − ω0
1 + Mg0

��Wκ
x

)
,

(100)

and

M′′
1(x) =

(
− ∂2

∂x2 0

0 − ∂2

∂x2 − α0(MF,x)

)
. (101)

We now take advantage of the fact that ε � 1 to use
perturbation theory to solve (99).

Assume that the solution of (99) has the asymptotic
expansion(

φ0
j0

(x,τ )

φ0
j1

(x,τ )

)
∼
(

φ0
00(x,τ )

φ0
10(x,τ )

)
+ ε

(
φ0

01(x,τ )

φ0
11(x,τ )

)
+ · · · .

(102)

Substituting (102) in (99) one finds the following set of
equations:

i
∂

∂τ

(
φ0

00(x,τ )

φ0
10(x,τ )

)
= M′′

0(x)

(
φ0

00(x,τ )

φ0
10(x,τ )

)
,

i
∂

∂τ

(
φ0

0l(x,τ )

φ0
1l(x,τ )

)
= M′′

0(x)

(
φ0

0l(x,τ )

φ0
1l(x,τ )

)
(103)

+M′′
1(x)

(
φ0

0,l−1(x,τ )

φ0
1,l−1(x,τ )

)
,

for each l = 1,2, . . .. From (88) and (102) one finds that these
equations are subject to the initial conditions(

φ0
00(x,τ0)

φ0
10(x,τ0)

)
=
(

φ(x,τ0)

0

)
,

(104)(
φ0

0l(x,τ0)

φ0
1l(x,τ0)

)
=
(

0

0

)

for each l = 1,2, . . .. Although φ(x,τ0) does depend on ε, the
initial conditions in (104) remain valid because we are only
using ε to determine the form of φ(x,τ0) and not to alter the
order established in (102).

The equations in (103) subject to the initial conditions
in (104) are solved using the exponential of a matrix [25].
It can be shown that exp[iM′′

0(x)(τ − τ0)] is a 2 × 2 unitary
matrix given by

exp[iM′′
0(x)(τ − τ0)]

= ei�p(x)(τ−τ0)

(
U11(x,τ ) −U21(x,τ )

U21(x,τ ) U11(x,τ )∗

)
, (105)

with the quantities defined in (82).
Using (105) it follows for l = 1,2, . . . that(

φ0
00(x,τ )

φ0
10(x,τ )

)
= exp[−iM′′

0(x)(τ − τ0)]

(
φ(x,τ0)

0

)

= φ(x,τ0)e−i�p(x)(τ−τ0)

(
U11(x,τ )∗

−U21(x,τ )

)
,

(106)(
φ0

0l(x,τ )

φ0
1l(x,τ )

)
= −iexp

[−iM′′
0(x)(τ − τ0)

]

×
∫ τ

τ0

dτ ′exp[iM′′
0(x)(τ ′ − τ0)]

×M′′
1(x)

(
φ0

0(l−1)(x,τ ′)
φ0

1(l−1)(x,τ ′)

)
.

The results in the second line of (106) are expressed in a
simple form that can be evaluated numerically, but only the
first-term approximation [the first line in (106)] provides an
explicit analytic form that can be handled with ease.

In the following we restrict to a first-term approximation of
the exact solution of (99) with the initial conditions in (104).
Moreover, we assume that it provides an accurate description
of the exact solution. Its accuracy is discussed in the following
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section. The state of the system at time t = τ/�W ∈ (t0,t1) is
then given by (80) and (81).

B. Accuracy of the first-term approximation

In this section we establish a criterion that can be evaluated
numerically to determine whether the first-term approximation
in (81) is accurate. Moreover, we discuss the conditions under
which one should expect the approximation to work.

From (102) we know that a two-term approximation is given
by(

φ0
j0

(x,τ )

φ0
j1

(x,τ )

)
∼
(

φ0
00(x,τ )

φ0
10(x,τ )

)
+ ε

(
φ0

01(x,τ )

φ0
11(x,τ )

)

= e−iM′′
0(x)(τ−τ0)

[(
φ(x,τ0)

0

)

− iε

∫ τ

τ0

dτ ′eiM′′
0(x)(τ ′−τ0)M′′

1(x)

(
φ0

00(x,τ ′)
φ0

10(x,τ ′)

)]
,

(107)

with x ∈ R and τ ∈ (τ0,τ1). Hence, the first-term approxima-
tion will be accurate if

ε

∣∣∣∣
∫ τ

τ0

dτ ′fk(x,τ ′)
∣∣∣∣ �

{|φ(x,τ0)| if k = 1,

1 if k = 2,
(108)

for each x, where |φ(x,τ0)| has non-negligible values and τ ∈
[τ0,τ1). Here

f(x,τ ′) = exp[iM′′
0(x)(τ ′ − τ0)]M′′

1(x)

(
φ0

00(x,τ ′)
φ0

10(x,τ ′)

)
,

(109)

and fk(x,τ ′) denotes the kth component of f(x,τ ′).
Using the property that the modulus of an integral is

less than or equal to the integral of the modulus, it follows
from (108) that the first-term approximation will be accurate
if

ε

∫ τ1

τ0

dτ ′|fk(x,τ ′)| �
{|φ(x,τ0)| if k = 1,

1 if k = 2,
(110)

for each x where |φ(x,τ0)| has non-negligible values. In
this article we use (110) to determine whether the first-term
approximation is accurate.

It is important to realize that the first-term approximation
is always accurate if the duration (τ1 − τ0) of the pulse is
sufficiently small. In particular, from (86) we know that a
necessary condition for the first-term approximation to be
accurate is that the atom must move a negligible distance
during the application of the pulse. Nevertheless, our numeri-
cal calculations indicate that this is not a sufficient condition
(the reason for this is that other position-dependent quantities
such as the phase of the wave function also play a role). To
find if (τ1 − τ0) is sufficiently small one has to evaluate (110)
numerically. Since (110) appears to give no clue as to when
one should expect the first-term approximation to be accurate,
we now derive an estimate that does give some insight.

First observe that

ε

∫ τ1

τ0

dτ ′|fk(x,τ ′)| � ε(τ1 − τ0)||A||, (111)

with

A ≡ M′′
1(x)

(
φ0

00(x,τ ′′)
φ0

10(x,τ ′′)

)
, (112)

τ ′′ ∈ [τ0,τ1], k = 1,2, and || · || the usual Euclidean vector
norm. To obtain (111) we used the mean value theorem for
integrals, the Cauchy-Schwarz inequality, and the fact that
exp[iM′′

0(x)(τ − τ0)] is a unitary matrix.
We now bound ||A||. First observe from (70) that

∂

∂x
φ(x,τ ) = f1(x,τ )φ(x,τ ),

(113)
∂2

∂x2
φ(x,τ ) = [f1(x,τ )2 + f2(x,τ )]φ(x,τ ),

where t = τ/�W ∈ [0,t0], x ∈ R, and

f1(x,τ ) = i
〈Pz〉(t)

�κ
− x − ζ (τ )

2[σx(0)2 + iετ ]
,

(114)

f2(x,τ ) = − 1

2[σx(0)2 + iετ ]
.

Now we make the following approximations.
(1) Neglect α0(MF,x).
(2) Neglect the first and second derivatives with respect to

x of �p(x), �R(x), and �R(x).
(3) Take x = ζ (τ0).
Making these approximations and using (113) it is straight-

forward to show that

||A|| � [2πκ2�Z(t0)2]−1/4

∣∣∣∣
[ 〈Pz〉(t0)

�κ

]2

+ 1

2κ2�Z(t0)2

− i
ε�Wt0

2κ4�Z(0)2�Z(t0)2

∣∣∣∣. (115)

It follows form (110) and (111) that the first-term approxima-
tion will be accurate if the right side of (111) with (115) is much
smaller than 1 and |φ(x,τ0)| for each x where |φ(x,τ0)| has
non-negligible values (assuming that the three approximations
above are valid). Our numerical calculations show that it is a
rough estimate and, therefore, it should be taken only as an
expression that gives insight into the conditions that have to
be met so that the first-term approximation is accurate.

We now relate the aforementioned estimate to the (nondi-
mensional) Rabi frequency �R(x). In order to do this, lets take
τ1 to be given by

τ1 = π

�R[ζR(τ0)]
+ τ0, (116)

so that we have a π pulse. From (115) and (116) it follows that

ε(τ1 − τ0)||A|| � επ

�R[ζR(τ0)]
[2πκ2�Z(t0)2]−1/4

∣∣∣∣
[ 〈Pz〉(t0)

�κ

]2

+ 1

2κ2�Z(t0)2
− i

ε�Wt0

2κ4�Z(0)2�Z(t0)2

∣∣∣∣.
(117)
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Since one requires ε(τ1 − τ0)||A|| � 1, from (117) we find
that larger values of 〈Pz〉(t0) require larger values of the Rabi
frequency �R[ζR(τ0)] and, hence, of B0. Moreover, it is clear
that 〈Pz〉(t0) � 0 will allow one to use the smallest values of
�R[ζR(τ0)]. Our numerical calculations led us also to these
conclusions and they are in accordance with the condition
that the atom must move a negligible distance during the
application of the pulse.

Finally, we emphasize that it is important to establish if the
first-term approximation is accurate or not, since the validity
of the results rely on this. Moreover, it is also important in
the interpretation of experiments because the instant in which
the pulse is applied might imply large values of B0 for the
first-term approximation to be accurate and these might not
be used or the equipment available might not even be able to
reach them. Hence, more terms in the asymptotic expansion
would have to be included in order to explain correctly the
results of the experiment.

C. Validity of the RWA

Recall that (99) was derived from (93) using the RWA
and (98) (the latter being a consequence of the RWA and
the initial conditions). Moreover, the RWA is valid if and
only if the conditions in (94) and (95) are satisfied. In this
section we express them in terms of the position-dependent
(nondimensional) Rabi frequency �R(x).

First assume that the first-term approximation provides
an accurate description of the exact solution of (99) for
τ ∈ (τ0,τ1) with the initial conditions in (88). Then it follows
from (94), (95), and (106) that the RWA is valid if and only if

|�p(x)|, 1
2�R(x) � 2ω0

A,ω0
2 − ω0

1, (118)

for each x where |φ(x,τ0)| has non-negligible values. If in
addition φ(x,τ0) is well localized around x = ζR(τ0) [that is,
the atom is well localized around ζR(τ0)/κ at time t0], then
�p(x) is approximately zero and �R(x) can be evaluated at
x = ζR(τ0). In this case the RWA is valid if and only if

1
2�R[ζR(τ0)] � 2ω0

A,ω0
2 − ω0

1. (119)

Hence, one recovers the condition for the validity of the RWA
corresponding to the case of a two-level atom fixed at a
position and interacting resonantly with an electric (magnetic)
field [26].

We now make some comments on how the RWA can break
down. Recall that in the first-term approximation the atom
moves a negligible distance during the application of the pulse
Bp(t). Also, in (91) we eliminated the fast free evolution of
φjl

(x,τ ) in φ0
jl

(x,τ ) when the atom is fixed at ζR(τ0)/κ . If
the atom moves a non-negligible distance, then the fast free
evolution of φjl

(x,τ ) will change and it will not be completely
eliminated in φ0

jl
(x,τ ). In fact, this fast free evolution of

φjl
(x,τ ) at the new positions can be very different from that

at ζR(τ0). Hence, the RWA gets progressively worse and it can
eventually break down if the atom moves a non-negligible
distance during the application of Bp(t). We had already
observed in the paragraph following (28) that the model is not
valid if the duration of the pulse is sufficiently long. Finally,
one cannot simply change the transformation defining φ0

jl
(x,τ )

so as to eliminate the fast free evolution of φjl
(x,τ ) at another

position, since this would require that the frequency ωA of
Bp(t) to change as the atom moves. Moreover, it is not entirely
clear how ωA would have to change in time, since one can see
from (99) that components of the state of the atom move under
different potentials.

D. Probability to make the transition

In this subsection we determine the probability P (t) for the
atom to make the transition, that is, the probability to find the
atom at time t ∈ (t0,t1) in the set of states

{|z,Vj1 [x(z)]〉 : z ∈ R}. (120)

From (80)–(82) one finds that

P (t) =
∫ +∞

−∞
dx|φj1 (x,τ )|2,

�
∫ +∞

−∞
dx|φ(x,τ0)|2sin2[�R(x)]sin2

[
�R(x)

2
(τ − τ0)

]
,

(121)

with t = τ/�W . Notice that (121) is the usual formula for Rabi
oscillations in the Jaynes-Cummings model [26] averaged by
the (nondimensional) position pdf |φ(x,τ0)|2 of the atom at
the beginning of the pulse [see (86)]. We mention that the
two-term approximation does include the velocity of the atom
since φ0

11(x,τ ) in (106) depends on the first and second partial
derivatives of φ(x,τ ) with respect to x and these depend on
〈Pz〉(t) [see (113) and (114)].

From (121) one observes that the wave packet φ(x,τ0) can
alter considerably the probability of the transition. Suppose
first that the atom is well localized around 〈Z〉(t0) = ζ (τ0)/κ
at the beginning of the pulse Bp(t); that is, �Z(t0) = σx(τ0)/κ
is sufficiently small so that |φ(x,τ0)|2 is well localized around
ζ (t0). Then (121) takes the well-known form describing Rabi
oscillations

P (t) � sin2{�R[ζ (τ0)]}sin2

{
�R[ζ (τ0)]

2
(τ − τ0)

}
. (122)

If one wishes to apply a π pulse, that is, if one wishes to apply a
pulse that sends the atom to the set of states in (120), then τ1 has
to be chosen as in (116). Using that |φ(x,τ0)|2 is well localized
around ζ (τ0) = ζR(τ0) and assuming that i�0[ζ (τ0)] > 0 (see
the paragraph following (84) for sufficient conditions for this to
hold), it follows from (80)–(83), (85), and (122) that P (t1) � 1
and

|ψ(t1)〉 � e−iθπ

∫ +∞

−∞
dx

1√
κ

∣∣∣∣xκ ,Vj1 (x)

〉
φ(x,τ0),

(123)

with θπ = ω0
1π/�R[ζR(τ0)]. Comparing (123) with the state

of the system at the beginning of the pulse, that is, with (73)
at time t = t0 = τ0/�W , we observe that (except for a global
phase) the effect of the π pulse is simply to change the internal
state of the atom (j0 changes to j1). Recall that this is precisely
what we described as a pulse in preceding paragraphs.

Now suppose that the atom is not well localized at the
beginning of the pulse and that one wishes to apply a π pulse.
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FIG. 1. (Color online) The figures show contour plots of the probability P (t1) that the atom makes the transition at the end of a π pulse
(purple solid lines), the criterion for the accuracy of the first-term approximation (black dashed lines), and the criterion that the atom makes
the transition (black dotted line with value 0) as a function of the maximum height 〈Z〉 and B0. The π pulse is applied from t = t0 to t = t1,
with t0 the instant in which the atom reaches the maximum height 〈Z〉 starting from z = 0 at t = 0. Panels (a) and (b) ((c) and (d)) have η = 10
(100) G/cm. Also, (a) and (c) ((b) and (d)) have �Z(0) = 5 × 10−7 (10−6) m.

Then the probability of transition P (t1) in (121) diminishes
greatly. These facts are illustrated further below in Fig. 1, but
we first propose a criterion to determine whether the atom
makes the transition or not due to the width of the wave packet
φ(x,τ ) in the case ζ (τ0) = ζR(τ0) or, equivalently, in the case
were the expected value of the position of the atom 〈Z〉(τ0)
at time t0 is equal to the resonant position ζR(τ0)/κ . Recall
that this position is resonant because the angular frequency
ωA of Bp(t) was chosen to be equal to the angular transition
frequency when the atom is exactly located at ζR(τ0)/κ [see
the paragraphs following (83)].

Observing (121) we propose the following criterion: The
transition does not take place if

sin2[�R(y)]|y=y±≡ζR (τ0)±σx (τ0) � 1
2 . (124)

Recall that σx(τ ) is the nondimensional standard deviation in
position [see its definition in (74)]. We note that the transition
does not take place if the inequality in (124) is satisfied for at
least one of y±. In simple terms the proposed criterion states

that the transition does not take place at the end of the π pulse
if the half width at half maximum (HWHM) of sin2[�R(x)] is
smaller than the HWHM of |φ(x,τ0)|2. The criterion in (124)
has the purpose of identifying when an atom that would make
the transition if it were well localized [that is, if the atom were
well localized around the resonant position ζR(t0)/κ], actually
does make the transition at least half the times due to the
expansion of the wave packet. We chose the value 1/2 as the
border of making the transition or not at the end of the π pulse
because it is the most relaxed condition one can impose (half
the times the atom makes the transition).

We now simplify the criterion in (124). Using the definition
of �R(y) in (83), it follows that (124) is equivalent to
δ00(y±)2 − 4|�0(y±)|2 � 0. Using Taylor series centered at
ζR(τ0) and neglecting terms of order [x − ζR(τ0)]n with n � 3,
it follows that

δ00(x)2 − 4|�0(x)|2 � a0(y0)[x − ζR(τ0) − r+(y0)]

× [x − ζR(τ0) − r−(y0)], (125)
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with y0 = ζR(τ0) and

r±(y) = 2

a0(y)

{
d

dy
|�0(y)|2

±
√[

d

dy
|�0(y)|2

]2

+ a0(y)|�0(y)|2
}
, (126)

a0(y) =
[

d

dy
δ00(y)

]2

− 2

[
d2

dy2
|�0(y)|2

]
.

Moreover, the right side of (125) will be an accurate approxi-
mation of the left side if[

d

dy
δ00(y)

∣∣∣∣
y=ζR (τ0)

]2

�
∣∣∣∣ d3

dy3
δ00(y)2

∣∣∣∣
y=ζR (τ0)

∣∣∣∣ 1

3!
|x − ζR(τ0)|,

(127)∣∣∣∣ d2

dy2
|�0(y)|2

∣∣∣∣
y=ζR (τ0)

∣∣∣∣
�
∣∣∣∣ d3

dy3
|�0(y)|2

∣∣∣∣
y=ζR (τ0)

∣∣∣∣13 |x − ζR(τ0)|.

These conditions are deduced by asking that the correction of
order [x − ζR(τ0)]3 to the right side of (125) be much smaller
than the right side of (125).

Using (125) and the definitions in (83) one can conclude
that if a0[ζR(τ0)] > 0 and (127) are satisfied for x = y± =
ζR(τ0) ± σx(τ0), then (124) is equivalent to

τ0 − σx(0)

ε

√
max{0,r±[ζR(τ0)]2 − σx(0)2} � 0. (128)

That is, the transition does no take place if (128) is satisfied.
We mention that one should expect the conditions in (127) to
be satisfied for x = y± = ζR(τ0) ± σx(τ0) since the functions
δ00(x) and |�0(x)| normally do not vary much over the
extension of |φ(x,τ0)|2. Also notice that (128) is a very simple
criterion that can be used to determine whether the transition
will take place.

We now illustrate the above results concerning P (t).
Consider a 87Rb atom, j0 = F+,F+ = 2,2, and j1 = F−,F− =
1,1. The atom has the initial state given in (68), (69), and (72)
with ζ (τ0) = ζR(τ0), expected value of position z0 = 0 at time
t = 0, and expected value of momentum p0 at time t = 0 such
that the expected value of the position of the atom reaches a
maximum height 〈Z〉. At the instant t = t0 in which the atom
reaches the maximum height 〈Z〉, the magnetic field Bp(t) is
applied from t = t0 to t = t1 = τ1/�W . The probability P (t)
that the atom makes the transition is calculated numerically
using the second line in (121). Notice that ζ (τ0) = ζR(τ0) was
chosen so that Bp(t) is resonant with the transition if the atom
is well localized around its expected value of position ζ (t0)/κ
at time t = t0.

First consider a π pulse, that is, τ1 given in (116). Figure 1
shows contour plots of P (t = t1) for different values of the
maximum height 〈Z〉, the strength B0 of Bp(t), the standard
deviation of position �Z(0) at time t = 0, and the derivative
η of BST(z). Figures 1(a) and 1(b) have η = 10 G/cm, while

Figs. 1(c) and 1(d) have η = 100 G/cm. Moreover, Figs. 1(a)
and 1(c) have �Z(0) = 5 × 10−7 m, while Figs. 1(b) and 1(d)
have �Z(0) = 10−6 m.

In Fig. 1 the contours 0.01 and 0.1 limit the region in which
the first-term approximation is known to be accurate. In the
region above the yth contour (y = 0.01,0.1), the two-term ap-
proximation can modify the first-term approximation at most in
y × 102% so that the first-term approximation is accurate. We
now describe how these contours were obtained. The integrals
in (110) where evaluated numerically in an 11-point uniform
mesh from x = ζ (τ0) − 5σx(τ0) to x = ζ (τ0) + 5σx(τ0) and
the maximum value was taken. This was done for each value
of ζ (τ0) = κ〈Z〉 in a uniform mesh between 〈Z〉 = 0 cm and
〈Z〉 = 2 cm. The values of the integrals associated with the
first components of (110) were divided by |φ[ζ (τ0),τ0]| (the
maximum value of |φ(x,τ0)|). Then the maximums between
the latter (values of the first components of the integrals divided
by |φ[ζ (τ0),τ0]|) and the integrals associated with the second
components of (110) were taken to construct the contours.

The contour 0 of the function on the left of (128) is also
shown. Hence, according to the criterion in (128), the transition
only takes place in the region above this contour. One observes
from Fig. 1 that the criterion works very well, since the region
above the 0 contour has P (t1) > 1/2.

From Fig. 1 one notices that the uncertainty in position
�Z(t) of the atom has a deteriorating effect on P (t1). It can
be observed in Figs. 1(a) and 1(c) that P (t1) decreases very
rapidly for increasing maximum height 〈Z〉 when compared
to Figs. 1(b) and 1(d). The reason for this is that �Z(t) grows
more rapidly when �Z(0) = 5 × 10−7 m when compared to
the case where �Z(0) = 10−6 m [see the formula for �Z(t)
in (74)]. Notice that P (t1) decreases considerably because
Bp(t) is not resonant with the desired transition when the
atom is not well localized. Moreover, one also observes that
the uncertainty in position �Z(t) of the atom has a more
deteriorating effect for larger η. The reason for this is that the
nondimensional uncertainty σx(τ ) is larger for larger η; that is,
in a sense, the expansion of the wave packet is more noticeable
for larger η.

Also notice in Fig. 1 that P (t1) increases with larger B0. To
explain this fact, first observe from (55) that the atom-Bp(t)
coupling �0(x) increases with larger B0. Hence, it follows
from the definitions in (83) that the (nondimensional) Rabi fre-
quency �R(x) increases with B0, while the (nondimensional)
detuning δ00(x) is independent of B0. Using the continuity
of the function δ00(x)/�R(x) and the fact that δ00[ζR(τ0)] = 0
[see (85)], it follows that the length of the interval Iδ centered
at ζR(τ0) and in which δ00(x)/�R(x) � 0 increases with larger
B0. Since �R(x) varies slowly with x and sin2[�R(x)] � 1 for
x ∈ Iδ [see the definition of �R(x) in (83)], one concludes
from (121) that P (t1) increases with larger B0. Also, as the
length of Iδ grows it includes more and more of the region Iφ

where |φ(x,τ0)|2 takes non-negligible values. For sufficiently
large B0 the interval Iδ contains Iφ and |φ(x,τ0)|2 can be
considered to be well localized. In this case (122) applies and
one obtains from (116) that P (t1) � 1 when ζR(τ0) = ζ (τ0).
In simple terms, P (t1) increases with larger values of B0

because the atom-Bp(t) interaction becomes less sensitive to
the position of the atom.
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Finally, consider a 2π pulse, that is, τ1 is chosen as

τ1 = 2π

�R[ζR(τ0)]
+ τ0. (129)

Figure 2 illustrates P (t = τ/�W ) as a function of τ ∈ [τ0,τ1]
for B0 = 0.3 G and several values of the maximum height
〈Z〉. Figures 2(a) and 2(c) have �Z(0) = 5 × 10−7 m, while
Figs. 2(b) and 2(d) have �Z(0) = 10−6 m. Also, Figs. 2(a)
and 2(b) have η = 10 G/cm, while Figs. 2(c) and 2(d) have η =
100 G/cm. Notice that the uncertainty in position �Z(t) of the
atom leads to a deteriorating visibility of the Rabi oscillation
for increasing 〈Z〉. This is particularly noticeable for smaller
values of �Z(0) and larger values of η, since �Z(t) increases
faster in the first case and the expansion of the wave packet is
more noticeable in the second [σx(τ ) is larger for larger η].

VI. THE PHASE-SPACE SELECTOR

We now use the results obtained so far to characterize the
phase-space selector presented in the Introduction. In the rest
of this section we assume that the first-term approximation is
accurate, the atom is well localized around its expected value
of position 〈Z〉(t0) = ζ (τ0)/κ at time t0 = τ0/�W , a π pulse is
applied with τ1 in (116), a0[ζR(τ0)] > 0, and conditions (127)
hold with x = ζ (τ0).

Define the interval

IS[ζR(τ0)] = [l−[ζR(τ0)],l+[ζR(τ0)]] (130)

with

l±[ζR(τ0)] = ζR(τ0) + r±[ζR(τ0)]

κ
. (131)

Recall that r±(y) was defined in (126).
Since the first-term approximation is accurate and the

atom is well localized around its expected value of position
〈Z〉(t0) = ζ (τ0)/κ at time t0 = τ0/�W , one can use expres-
sion (122) with t = t1 for the probability P (t1) to find the
atom in the set of states (120) at time t1. Using that expression
and the definition of �R(x) in (83), one obtains the following
implications:

0 < δ00(x)2 − 4|�0(x)|2|x=ζ (τ0)

⇔ sin2[θR(x)]|x=ζ (τ0) < 1
2

⇒ P (t1) < 1
2 . (132)

Since a0[ζR(τ0)] > 0 and conditions (127) hold with x = ζ (τ0),
one can use (125) to conclude that

〈Z〉(t0) �∈ IS[ζR(τ0)] ⇒ 0 < δ00(x)2 − 4|�0(x)|2|x=ζ (τ0).

(133)

Combining (132) and (133), one obtains that

〈Z〉(t0) �∈ IS[ζR(τ0)] ⇒ P (t1) < 1
2 . (134)

Hence, if an atom has probability �1/2 of making the
transition to the set of states (120) at the end of the π pulse, then
its expected value of position 〈Z〉(t0) = ζ (τ0)/κ is included in
the interval IS[ζR(τ0)] defined in (130).

Notice that the we never used the second factor in (122)
with τ1 given in (116) for the π pulse:

sin2

{
�R[ζ (τ0)]

2
(τ1 − τ0)

}
= sin2

{
π�R[ζ (τ0)]

2�R[ζR(τ0)]

}
. (135)
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FIG. 2. (Color online) The figures show the probability P (τ ) that
the atom makes the transition for a 2π pulse as a function of the
nondimensional time τ ∈ [τ0,τ1] for B0 = 0.3 G and several values
of the maximum height 〈Z〉 of the expected value of the position of
the atom. The 2π pulse is applied from τ = τ0 to τ = τ1, with τ0 the
instant in which the atom reaches the maximum height 〈Z〉 starting
from z = 0 at t = 0. The values are 〈Z〉 = 0 cm (red solid lines),
0.4 cm (blue dashed lines), 1 cm (magenta dot-dashed lines), and
2 cm (black dotted lines). Panels (a) and (b) ((c) and (d)) have η =
10 (100) G/cm. Also, panels (a) and (c) ((b) and (d)) have �Z(0) =
5 × 10−7 (10−6) m.

Therefore, the interval Imin[ζR(τ0)] that satisfies

〈Z〉(t0) ∈ Imin[ζR(τ0)] ⇔ P (t1) � 1
2 (136)

is contained in IS[ζR(τ0)] and has smaller length.
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In the following we refer to the atoms that have a probability
�1/2 of making the transition as the selected atoms. Notice
that we have taken the value P (t1) = 1/2 to be the border
between the atoms that made the transition and those that did
not. We chose this value because we wanted to estimate the
full width at half maximum (FWHM) of P (t1) as a function
of the detuning between the transition angular frequency
and the angular frequency ωA of Bp(t). This detuning arises
from the atoms not being located at the resonant position
ζR(τ0)/κ [recall that ωA was chosen so that the atoms make
the transition with probability 1 if they are well localized
around their expected value of position 〈Z〉(t0) at time t0 and
if 〈Z〉(t0) = ζR(τ0)/κ]. This is similar to the way in which
the width of the selected velocities is calculated for Raman
transitions [14] and to the way in which the resonance width
of a sinusoidally varying perturbation of a time-independent
Hamiltonian is calculated using perturbation theory [16].

The minimum value �zM of the length �z of IS[ζR(τ0)] is

�zM = limx→±∞
4|�0(x)|

κ
∣∣ d
dx

[
V 0

j0
(x) − V 0

j1
(x)
]∣∣ ,

= 1∣∣γ1 + F−γ2 + 1
2

∣∣ B0

η
, (137)

The sign ± is chosen according to j0 = F+,±F+. Notice
that (137) establishes the best possible selection in terms of
a simple functional relationship among the strength B0 of
the magnetic field Bp(t), the derivative η of BST(z), and a
factor which depends on the alkali-metal atom used. On the
other hand, the first line in (137) expresses �zM in terms of
the (nondimensional) resonant Rabi frequency �R[ζR(τ0)] =
2|�0[ζR(τ0)]| divided by the criterion (57) used to determine
which transition gives place to the best phase-space selector.
In fact, taking the limit in the denominator and evaluating the
numerator at x = ζR(τ0) in the right side of the first line of (137)
we obtain the following estimate involving the (angular) Rabi
frequency �W�R[ζR(τ0)] at the resonant position ζR(t0)/κ:

�zM � 2

κ�W
∣∣γ1 + F−γ2 + 1

2

∣∣�W�R[ζR(τ0)]. (138)

Therefore, the selection in position is better for smaller Rabi
frequencies and larger values of η [recall that κ is proportional
to η; see the definition in (29)].

We now use (130), (134), and (137) to characterize the
selection in position and velocity described in the Introduction.

Assume that you have a cloud of noninteracting, well-
localized, and identical alkali-metal atoms such that the
expected value of the velocity of the cloud is zero. At time
t = 0 prepare each atom in the state (72) with j1 replacing
j0. At time t = 0 an arbitrary atom in the cloud has an
expected value of position z0 = ζ (0)/κ and an expected value
of momentum p0. Among all atoms in the cloud one wishes
to select only those that are in a small neighborhood of z0R =
ζR(0)/κ . Hence, one applies a π pulse with t0 = τ0/�W = 0.
It follows from (134) that the selected atoms have z0 in the
interval IS(κz0R).

Figure 3(a) shows a contour plot of the width �z of IS(κz0R)
(units of m) for 87Rb, j0 = F+,F+ = 2,2, j1 = F−,F− = 1,1,
and η = 100 G/cm when z0R = 〈Z〉(t0 = 0) is varied from 0
to 2 cm. We note that the change of �z for the values of
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FIG. 3. (Color online) Panel (a) shows contour plots of the length
�z (purple solid lines) of the interval in (130) and of �zM (black
dashed lines) as a function of ζR(τ0)/κ and B0. The quantity ζR(τ0)/κ
is denoted in the figure by 〈Z〉(t0). Panel (b) does the same for the
width �v (purple solid lines) of the velocity interval in (139) and
for �vM (black dashed lines). The units of �z and �zM are m, while
those of �v and �vM are m/s. Both figures have η = 100 G/cm and
show the contour 0.1 (black dotted lines) above which the first-term
approximation is accurate.

〈Z〉(t0 = 0) considered is negligible (it is of order 5 × 10−7 m).
Figure 3(a) also shows a contour plot (black dashed lines)
of �zM. The contours are exactly the same as those for �z

and appear displaced upwards. Observe that �zM gives a
reasonable estimate of �z for the lower values of B0. We note
that the first-term approximation is known to be accurate in the
region above the contour 0.1 (black dotted line), since in that
region the two-term approximation can correct the first-term
approximation in at most 10%. The contour is exactly the
same as that of Fig. 1(d). Finally, the duration (t1 − t0) of the
π pulse varies with 〈Z〉(t0 = 0), but is approximately equal to
1.36 × 10−6 s (40.8 × 10−6 s) for B0 = 0.3 G (B0 = 0.01 G)
and the values of 〈Z〉(t0 = 0) shown.

If one wishes to make a selection in velocity, one proceeds
as follows. At the end of the π pulse mentioned above we make
a projective measurement to determine in which set of states
{|z,Vj [x(z)]〉 : z ∈ R} (j = j0orj1) each atom is found. Now
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give the cloud of selected atoms (the cloud of atoms that did
make the transition to the set of states {|z,Vj0 [x(z)]〉 : z ∈ R})
a kick upwards if geff > 0 or downwards if geff < 0. The new
instant t = 0 corresponds to the end of the kick. The atoms
in the selected cloud now have approximately the same initial
expected values of position z0 (the kick is brief), but new
initial expected values of momentum p0 = �κρ0. Since each
of the atoms in the selected cloud is found in the set of states
{|z,Vj0 [x(z)]〉 : z ∈ R} and we are assuming that they are well
localized, we approximate their initial states by (72).

Among all the atoms selected by the first pulse one wishes to
select those with respective initial expected values of position
and momentum z0R and p0R = �κρ0R. Apply a π pulse at
the time t0 = ρ0R/(q2�W ) > 0 [see (63) for the definition
of q2] when the atoms with expected value of position
equal to ζR(τ )/κ reach the maximum (minimum) height if
geff > 0 (geff < 0). It follows that the selected atoms have their
expected value of position 〈Z〉(t0) in the interval IS[ζR(τ0)].

Each projective measurement can be performed by applying
a laser that pushes away the atoms that did not make the
transition. More precisely, one applies a laser that connects
the set of states {|z,Vj [x(z)]〉 : z ∈ R} (with j = j0 or j = j1

depending on which atoms one wants to push) with other states
so as to have an optical transition. For example, in 87Rb one
could use the D1 or D2 lines [17]. The atoms that did not make
the transition gain on average momentum in the direction of
the traveling wave associated with the laser thanks to photons
absorbed and subsequently emitted spontaneously. On the
other hand, atoms that did make the transition are not pushed
because they are far off resonance with the aforementioned
optical transition.

The kick is also applied by using a laser that pushes (in the
appropriate direction) the atoms that did make the transition
and leaves them in the set of states {|z,Vj0 [x(z)]〉 : z ∈ R}.
The duration of the application of the laser must be brief so
that the momentum of the atoms is changed, leaving them
at approximately the same position. In fact, the projective
measurement mentioned above can be achieved directly with
this kick.

Using that 〈Z〉(0) ∈ IS(κz0R), 〈Z〉(t0) ∈ IS[ζR(τ0)], the
forms of 〈Z〉(t) = ζ (τ )/κ in (74) and of ζR(τ ) in (83), and
that the second π pulse is applied when ζR(τ )/κ reaches the
maximum height [that is, t0 = ρ0R/(q2�W ) with q2 defined
in (63)], one can conclude that the atoms selected in the second
π pulse have velocities 〈P 〉(t0)/M in the interval

I2S[ζR(τ0)] = [l2−[ζR(τ0)],l2+[ζR(τ0)]], (139)

with

l2±[ζR(τ0)] = 1

κt0
{r±[ζR(τ0)] − r∓(κz0R)}. (140)

Hence, a selection in velocity has been performed; that is, we
have prepared a sample of atoms with well-defined velocity.
Notice that, as a consequence of the second π pulse, the sample
has also well-defined position.

Taking the limit x → ±∞ according to j0 = F+,±F+ we
obtain the minimum length (width) of the velocity interval
in (139),

�vM = 2
�zM

�t
, (141)

with �t the time interval between pulses (in the case we are
describing �t = t0). Hence, the best possible selection is again
determined by a very simple formula which now includes the
time �t between pulses. Moreover, as time increases from t =
t1, the cloud of atoms in the set of states {|z,Vj0 [x(z)]〉 : z ∈ R}
becomes spatially separated from the cloud of atoms in the set
of states {|z,Vj1 [x(z)]〉 : z ∈ R}, because the former moves
under the potential Vj0 [x(z)] + Mg0z, while the latter moves
essentially under the different potential Vj1 [x(z)] + Mg0z

[we say essentially because it moves under the potential
Vj1 [x(z)] + Mg0z only if one neglects the weak coupling
introduced by L0(x); see (24) and (25)]. In other words, the
clouds become separated due to the different response to the
magnetic field of different Zeeman sublevels.

Figure 3(b) shows a contour plot of the length �v of
I2S[ζR(τ0)] (units of m/s) for 87Rb, j0 = F+,F+ = 2,2, j1 =
F−,F− = 1,1, and η = 100 G/cm. The first pulse is applied for
z0R = 0. The maximum height ζR(t0)/κ [denoted by 〈Z〉(t0) in
the x axis of the figure] is varied from 0.5 to 2 cm. The figure
also shows a contour plot of the minimum width �vM (black
dashed lines) given in (141). The contours are exactly the same
as those for �v and appear displaced upwards. Notice that �vM

estimates reasonably well �v . As expected, �v decreases for
increasing maximum height [denoted by 〈Z〉(t0) in the figure],
since the time between pulses is larger. Moreover, the first-term
approximation is known to be accurate in the region above the
contour 0.1 [this contour is exactly the same as the one in
Fig. 1(d)]. We note that a0[κ〈Z〉(t0)] > 0 for all values of
〈Z〉(t0) in the figure. Moreover, the duration (t1 − t0) of the
second π pulse is approximately the same as before.

A. Efficiency of the phase-space selector

We now discuss how small �z and �v really are. A cloud
of 87Rb atoms in a magneto-optical trap at a temperature T =
20 × 10−6 K can be modeled by Gaussian distributions fr in
position and fv in velocity with respective standard deviations
σr ∼ 10−3 m and σv = √

kBT /M ∼ 4.5 × 10−2 m/s, with kB

the Boltzmann constant. Hence, the FWHM of fr (fv) is
approximately equal to 2σr ∼ 2 × 10−3 m (2σv ∼ 10−1 m/s).
From Figs. 3(a) and 3(b) it follows that the selection in position
(velocity) can lead to a sample of atoms whose distribution
in position (velocity) has a FWHM two orders of magnitude
smaller.

Moreover, the recoil velocity of 87Rb associated with
the absorption or emission of a photon with wavelength λ2

corresponding to the D2 line [17] is v(2)
r = 5.9 × 10−3 m/s.

From Fig. 3(b) one observes that fv can have a FWHM of
about vr/6 � 0.001 m/s if B0 � 0.1 G and η = 100 G/cm.
Therefore, using the method we propose one may achieve
a velocity resolution which tends to those obtained using
velocity-dependent Raman transitions [3]. It is important to
note that the widths of the selections in position and in velocity
using our method are actually smaller than �z and �v , since we
only know that the selected atoms have positions and velocities
included in the intervals (130) and (139) [see (134) and (136)].

Velocity-dependent Raman transitions transfer atoms in a
range of velocities of width [14]

�v � λ

�tR
, (142)
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where λ is the wavelength of the optical transition used in
the Raman technique and �tR is the duration of the pulse.
Note that the Raman technique uses a single long optical
pulse whose duration appears in the denominator in (142),
while the proposed method uses two short microwave pulses
separated by �t in (141). Hence, the proposed method relaxes
the experimental requirements for frequency stability when
compared to the Raman technique.

Finally, we discuss what happens when the atom is not
well localized around its expected value of position 〈Z〉(t0) =
ζ (τ0)/κ at time t0 = τ0/�W for a fixed B0. In this case it was
observed in Sec. VD that the probability that the atom makes
the transition decreases considerably when its expected value
of position is equal to the resonant position ζR(τ0)/κ . Hence,
the phase-space selector does not work since atoms that should
make the transition, in fact, do not. In Sec. VD it was also
shown that increasing B0 increases the probability that the
atom makes the transition and that the atom can be considered
to be well localized for sufficiently large values of B0. Hence,
if the atom is not well localized for a given value of B0 one
must then increase B0 until the atom can be considered to be
well localized. Once this is done all the results established
in Sec. VI apply. It is important to note that by increasing
B0 one is not localizing the atom, one is simply making the
interaction of the atom with Bp(t) less sensitive to the position
of the atom. For example, assume that �Z(0) = 10−6 m and
that η = 100 G/cm. From Fig. 1(d) it follows that B0 must take
a value between 0.3 and 0.5 G in order to have a probability of
making the transition approximately equal to 1 when ζR(τ0)/κ
[denoted by 〈Z〉(t0) in the figure] varies from 0 to 2 cm. For
these values of B0 the atom can be considered to be well
localized and the results of Sec. VI can be applied. From
Fig. 3(b) it then follows that the length �v of the interval
in (139) is �v � 0.003,0.005 m, which is still quite good. In
conclusion, in order to apply the results of Sec. VI one must use
values of B0 that are compatible with the condition of having a
well-localized atom and these values of B0 are determined by
demanding that the atoms with expected value of position equal
to the resonant position ζR(τ0)/κ have probability of making
the transition approximately equal to 1. It is important to note
that the expansion of the center-of-mass wave packet is the
principal phenomenon limiting the efficiency of the proposed
phase-space selector, since it affects the values of B0 that can
be used. If a way is found to limit the expansion, then smaller
widths can be obtained.

VII. CONCLUSIONS

In this article we established a model that describes any
alkali-metal atom interacting with a position- and time-
dependent classical magnetic field. It includes the hyperfine
structure of the atom and quantizes its center-of-mass motion.
Moreover, we proposed a method directed to prepare samples
of atoms with both well-defined position and well-defined
velocity. The method is based on magnetic dipole transitions
between hyperfine levels whose energy separation depends on
the position of the atoms due to the presence of a position-
dependent static magnetic field such as the one found in a
magneto-optical trap.

The model was used to characterize the proposed method.
It was determined which transitions give place to the best
selections in position and velocity and the evolution of
the state of the atom was calculated analytically. Simple
expressions where obtained for relevant physical quantities
such as the probability that the atom makes a transition, the
expected values of position, momentum, and energy, and their
dispersions. This allowed us to calculate approximately the
widths of the selected positions and velocities and to establish
the efficiency of the method. It was concluded that the proposed
method can lead to samples of atoms whose width in velocity
tends to those obtained using velocity-dependent Raman
transitions. Also, it was concluded that the main phenomenon
prohibiting smaller widths in position and velocity is the
expansion of the atomic center-of-mass wave packet. If a way
can be found to circumvent this problem, then much smaller
widths are possible.

It is important to note that the idea on which the proposed
method is based consists of taking a cloud of atoms and
applying magnetic pulses that are resonant with a previously
defined transition only for atoms located at a certain position.
The dependence on position of the energy separations of the
levels of the atoms is achieved by using a static magnetic field
that depends on position, while a time-dependent magnetic
field (the pulse) is used to make transitions between the levels.
One pulse selects those atoms that are located around a certain
position, while a second pulse separated by a time interval
from the first one selects the atoms at another position. The
effect of the two pulses is to select from the cloud of atoms
a sample with both well-defined position and well-defined
velocity. Although the method was analyzed only for alkali
metals, it could be applied for other types of atoms. Moreover,
we considered the case where the second pulse is applied
when the atoms that want to be selected reach a maximum
height. The reason for this is that the first-term approximation
used to characterize the widths of the selections in position
and velocity is accurate in this case. Nevertheless, the second
pulse could be applied during the flight of the cloud of atoms.
The analytic expressions for the widths are still valid if the
first-term approximation is accurate, but this accuracy would
have to be checked using, for example, the criterion presented
in the article.

The proposed method is specially attractive because it is
easier to implement experimentally than velocity-dependent
Raman transitions and can lead to comparable results. More-
over, it has the advantage that it also selects in position. Hence,
it also offers an alternative to the use of slits and holes in
plates to perform this task. Finally, we mention that it might
be possible to combine the proposed method with the Raman
technique to prepare samples of atoms with both well-defined
velocity and well-defined position.
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APPENDIX A

In this appendix we review a model used to describe the
internal structure of an alkali-metal atom of mass M . We
consider the nucleus and the electrons of the full shells as
a single-point particle of mass M − me (me is the mass of
the electron), spin I equal to the spin of the nucleus, and
position equal to the position of the nucleus. In the following
we refer to this particle as the core particle and we assume
it is fixed at the coordinate origin. Moreover, we also assume
that I � 1/2. The core particle acts as a center of force that
affects the valence electron which is referred to simply as the
electron.

The state space of the atom is

H = Her ⊗ Hes ⊗ HI , (A1)

where Her and Hes are the state spaces for the spatial and spin
degrees of freedom of the electron, respectively, and HI is the
state space for the spin degrees of freedom of the core particle.

The Hamiltonian of the atom is [13,14]

HA = He + HSO + HHFS, (A2)

where He is the sum of the kinetic and potential energies of
the electron

He = 1

2me

P2
e + V (Re), (A3)

HSO is the spin-orbit interaction of the electron

HSO = ξ (Re)L · S, (A4)

and HHFS is the hyperfine Hamiltonian. An explicit expression
for HHFS is given later.

Here Re, Pe, S, and L = Re × Pe are respectively the
position, momentum, spin, and orbital angular momentum
operators of the electron, while V (r) is a spherically symmetric
non-Coulomb potential and

ξ (r) = 1

2m2
ec

2

1

r

dV

dr
(r), (A5)

with c the speed of light in vacuum.
Now the goal is to define the ground-state configuration of

the atom and to introduce an orthonormal basis for it. In order
to do this we first diagonalize He in Her .

Since He commutes with the three components of L, one
can diagonalize simultaneously He, L2, and Lz in Her . Hence,
there exists an orthonormal basis

βer = {|n,l,ml〉 : n = n0,n0 + 1, . . . ,

− l � ml � l, l = 0,1, . . . ,n − 1}, (A6)

for Her composed of eigenvectors of He, L2, and Lz, that is,

He|n,l,ml〉 = En,l|n,l,ml〉,
L2|n,l,ml〉 = l(l + 1)�2|n,l,ml〉, (A7)

Lz|n,l,ml〉 = ml�|n,l,ml〉.
We remark that βer is a standard basis; that is, the action of
the angular momentum ladder operators L± on its elements
satisfy the usual relations [16].

In the following we consider only the ground-state configu-
ration of the atom; that is, we restrict to the following subspace

of H,

H0 ≡ H0
er ⊗ Hes ⊗ HI , (A8)

with H0
er the subspace of Her spanned by the basis

{|k0〉 ≡ |n0,l = 0,ml = 0〉}. (A9)

Notice that our use of the model of a single electron interacting
with a core particle to describe an alkali-metal atom is entirely
adequate because we are restricting the principal quantum
number n to its lowest possible value n0.

Now everything is set to introduce a basis forH0. Since Hes

and HI are the state spaces for the spin degrees of freedom
of the electron and of the core particle, respectively, we can
choose standard bases

βes = {|s = 1/2,ms〉 : ms = ±1/2},
(A10)

βI = {|I,mI〉 : mI = I,I − 1, . . . , − I },
for Hes and HI composed of eigenvectors of S2, Sz, I2, and Iz;
that is,

S2|s = 1/2,ms〉 = 3
4 �

2|s = 1/2,ms〉,
Sz|s = 1/2,ms〉 = ms�|s = 1/2,ms〉,

(A11)
I2|I,mI 〉 = I (I + 1)�2|I,mI 〉,
Iz|I,mI 〉 = mI�|I,mI 〉.

Here I is the spin angular momentum operator of the nucleus
(or core particle).

From (A8)–(A11) it follows that β0 in (2) is an orthonormal
basis forH0 composed of eigenvectors of He, L2, Lz, S2, Sz, I2,
and Iz. Notice that the dimension ofH0 is dimH0 = 2(2I + 1).
Also,

βesI = {|ms,mI〉 ≡ |s = 1/2,ms〉 ⊗ |I,mI〉 :

ms = ±1/2,mI = I,I − 1, . . . ,−I }, (A12)

is an orthonormal basis for Hes ⊗ HI composed of eigenvec-
tors of S2, Sz, I2, and Iz.

Now we proceed to diagonalize HA in H0. Notice that for
this to make sense it must result thatH0 is an invariant subspace
under HA.

From (A7)–(A9) first observe that

L = 0, He + HSO = En0,0 in H0. (A13)

Using this result in (A2) it follows that to diagonalize HA in
H0 we only need to diagonalize HHFS. It can be shown [14,16]
that the restriction of HHFS to H0 takes the form

HHFS = a

�2
I · J in H0, (A14)

where a > 0 is a constant, J = L + S is the total angular
momentum of the electron.

Introducing the total angular momentum of the atom F =
J + I, we can express HHFS in the form

HHFS = a

2�2
(F2 − J2 − I2) in H0. (A15)

Therefore, to diagonalize HHFS in H0 we need to diagonalize
simultaneously F2, J2, and I2 in H0.
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Using (A13) it follows that

J = S, F = S + I in H0, (A16)

and it is clear that S2, I2, F2, and Fz can be diagonalized
simultaneously in Hes ⊗ HI . Hence, there exists a standard
basis

βC
esI = {|F,MF 〉 : −F � MF � F, F = I ± 1/2},

(A17)
for Hes ⊗ HI composed of eigenvectors of S2, I2, F2, and Fz;
that is,

S2|F,MF 〉 = 3
4 �

2|F,MF 〉,
I2|F,MF 〉 = I (I + 1)�2|F,MF 〉,

(A18)
F2|F,MF 〉 = F (F + 1)�2|F,MF 〉,
Fz|F,MF 〉 = MF �|F,MF 〉.

Using βC
esI one can define the orthonormal basis βC

0 for H0

given in (3) and (4) composed of eigenvectors of He, L2, Lz,
S2, I2, F2, and Fz.

Using (A2), (A13), (A15), (A16), and (A18) it follows that

HA|k0,F,MF 〉 =
{
En0,0 + a

2

[
F (F + 1) − I (I + 1) − 3

4

]}
× |k0,F,MF 〉, (A19)

for MF = −F, . . . ,F and F = I ± 1/2. Hence, βC
0 in (3) is

an orthonormal basis for H0 composed of eigenvectors of HA

and H0 is an invariant subspace under HA.
All the information about the hyperfine structure of the

ground-state configuration of the atom is contained in (3)
and (A19). We find that the ground-state configuration of the
atom has two possible energies (eigenvalues of HA):

E+ ≡ En0,0 + a

2
I, E− ≡ En0,0 − a

2
(I + 1). (A20)

The energy E+ is (2I + 2) degenerate, while E− is 2I

degenerate. Moreover, the vectors |k0,F = F+,MF 〉 (MF =
F+,F+ − 1, . . . ,−F+) have energy E+, while the kets |k0,F =
F−,MF 〉 (MF = F−,F− − 1, . . . ,−F−) have energy E−. To
simplify the notation we have used the quantities in (4). Finally,
we note that the field-free ground-state (energy) hyperfine

splitting is

��W ≡ E+ − E− = a

2
(2I + 1). (A21)

Introduction of a classical magnetic field

We now introduce a constant classical magnetic field along
the z axis B = Bz with B ∈ R. The Hamiltonian of the system
atom + magnetic field is given in (6) and (7). We note that the
state space of the system is still given by H in (A1). What is
not immediately clear is if it still makes sense to restrict to the
subspace H0. This happens if and only if H0 is invariant under
−μ · B. From (A11) and (A13) we find that

− μ · B|k0,ms,mI〉 = �B

(
gs

μB

�
ms − gI

μN

�
mI

)
|k0,ms,mI〉.

(A22)
Hence, β0 is an orthonormal basis for H0 composed of
eigenvectors of −μ · B and H0 is invariant under HAB.

We now proceed to diagonalize HAB in H0. Given the
definitions of HA in (A2) and HAB in (6), it follows from (A13)
that this is accomplished if we diagonalize HHFS − μ · B. Since
F and MF are no longer good quantum numbers, the basis βC

0
is not useful and we return to the basis β0 in (2). First, define
the sets

β(MF ) = {|k0,ms = 1/2,mI = MF − 1/2〉,
|k0,ms = −1/2,mI = MF + 1/2〉

}
, (A23)

β(MF = ±F+) = {|k0,ms = ±1/2,mI = ±I 〉},
for MF = F−,F− − 1, . . . , − F− [recall the definition of F±
in (4)]. It is clear that

β0 =
F+⋃

MF =−F+

β(MF ). (A24)

Moreover, using (A15), (A16), (A22), and the electron and
nuclear spin angular momentum ladder operators S± and I± it
is straightforward to show that β(MF ) spans a subspace of H0,
denoted by spanβ(MF ), that is invariant under HHFS, −μ · B,
and Fz for each MF = F+,F+ − 1, . . . , − F+. In particular, the
matrix representation of HHFS − μ · B in spanβ(MF ) is

[HHFS − μ · B]β(MF ) = ��W

2I + 1

⎛
⎜⎝ MF − 1

2

√
I (I + 1) − M2

F
+ 1

4√
I (I + 1) − M2

F
+ 1

4 − (MF + 1
2

)
⎞
⎟⎠+ �B

2

(
U+ 0

0 U−

)
, (A25)

with

U± = ±gs

μB

�
− 2gI

(
MF ∓ 1

2

)
μN

�
, (A26)

for each −F− � MF � F−. These are 2 × 2 matrices and
can be diagonalized easily [16]. Using (A13) it follows that
the eigenvectors of each of these matrices along with the

vectors in β(MF = ±F+) define the orthonormal basis �(x)
in (8) and (9) composed of eigenvectors of HAB. Explicitly,
one has

HAB

∣∣VF,MF
(x)
〉 = [En0,0 − ��W

2(2I + 1)
+ VF,MF

(x)

]∣∣VF,MF
(x)
〉
,

(A27)
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for each −F � MF � F and F = F±. Moreover, it is easy to
show that

F2|VF+ ,±F+(x)〉 = F+(F+ + 1)�2|VF+,±F+ (x)〉,
(A28)

F2
∣∣VF,MF

(x)
〉∣∣

B=0 = F (F + 1)�2
∣∣VF,MF

(x)
〉∣∣

B=0,

for each −F− � MF � F−, F = F±.
To simplify the formula in (A27) we now redefine the zero

of the energy scale in such a way that

En0,0 − ��W

2(2I + 1)
→ 0. (A29)

This can be accomplished by redefining HA to be

HA = He + HSO + HHFS −
[
En0,0 − ��W

2(2I + 1)

]
, (A30)

which reduces to (1) when restricted to H0. In particular,
with (A30) the formulas (5) and (10) are satisfied.

APPENDIX B

Consider a pair of parallel circular coils of radius R carrying
steady currents in opposite directions. Establish a coordinate
system such that one of the coils carries a current Ic > 0 and
has its center at (0,0,d0) with d0 > 0, while the other coil
carries a current −Ic and has its center at (0,0, − d0). We now
establish several approximations for the magnetic field B2C(r)
produced by the two coils.

Using the Biot-Savart law and the Taylor series expansion
of (1 + x)−3/2 with center at x = 0, it follows that

B2C(r) ∼ BST(z)z, (B1)

to zero order in x/R and y/R with

BST(z) = μ0Ic

2

{
R2

[R2 + (z − d0)2]3/2

− R2

[R2 + (z + d0)2]3/2

}
. (B2)

BST(z)z will be an accurate approximation of B2C(r) if

3

4

(√
x2 + y2

R

)
� 1. (B3)

This condition was obtained by asking that terms linear in x/R

and y/R be much smaller than (B2).
It is important to notice that BST(z)z does not satisfy the

Maxwell equation ∇ · B = 0. Nevertheless, it does constitute
an accurate approximation to B2C(r) if the condition in (B3) is
fulfilled. To obtain an approximation that does satisfy ∇ · B =
0, the expansion has to be carried to order (2n − 1) in x/R and
y/R (n = 1,2, . . .).

Again, using the Biot-Savart law and the Taylor series
expansion of (1 + x)−3/2 with center at x = 0 it follows that

B2C(r) ∼ α1
z√

R2 + d2
0

z + α2(z)

(
x

R
x + y

R
y
)

, (B4)

to order 1 in x/R, y/R, and z/

√
R2 + d2

0 , with

α2(z) = 3μ0Ic

4

R2(
R2 + d2

0

)3/2

×
[

z−d0
R

1 + ( z−d0
R

)2 −
z+d0

R

1 + ( z+d0
R

)2
]

, (B5)

α1 = 3μ0Ic

R2d0(
R2 + d2

0

)2 .

The expression on the right of (B4) will be an accurate
approximation of B2C(r) if the following conditions are
satisfied:

|z ± d0| � 2
√

x2 + y2, 2|z| � d0. (B6)

These conditions were obtained by asking that the first
correction to (B4) be much smaller than (B4).

If in addition to (B6), the condition

√
x2 + y2 � |z| 4d0/R

1 + (d0/R)2
(B7)

is satisfied, then the term multiplied by α2(z) in (B4) can be
dropped out and an accurate approximation to B2C(r) is given
by

B2C(r) ∼ ηzz, (B8)

with

η = μ0Ic

3R2d0(
R2 + d2

0

)5/2
. (B9)

For example, taking d0 = R, it follows from (B4)–(B9) that
ηzz is an accurate approximation of B2C(r) if the following
conditions hold:

2
√

x2 + y2, 2|z| � R,
1

2

√
x2 + y2 � |z|. (B10)

In summary, the magnetic field produced by the two coils is
approximately equal to ηzz if one is sufficiently close to the
axis of the coils, sufficiently far away from the origin, and
sufficiently far away from the coils.

APPENDIX C

In this appendix we extend the model of Appendix A to
include the quantized center-of-mass motion of the alkali-
metal atom.

Now consider that the core particle is no longer fixed
at the coordinate origin. It has position and momentum
operators R and P, respectively, and the atom is subject to
a constant gravitational field. In Appendix A the position of
the electron was measured from the coordinate origin which
was the position of the core particle (and of the nucleus). Now
the position of the electron is measured from the position of the
core particle (which coincides with the position of the nucleus),
Re is the associated operator, and Pe is the corresponding
conjugate momentum.
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The state space of the atom is now

HT = Hcore ⊗ H, (C1)

whereHcore is the state space for the spatial degrees of freedom
of the core particle and H is given in (A1).

The Hamiltonian that describes an alkali-metal atom subject
to a constant gravitational field is now

HAT = 1

2(M − me)
P2 + (M − me)g0Z

+meg0(Z + Ze) + HA, (C2)

where g0 = 9.8 m/s2 is the acceleration of gravity and HA is
given in (A30). Notice that HAT is the sum of the kinetic energy
of the core particle, plus the gravitational potential energies of
the core particle and the electron, plus the Hamiltonian HA

describing the internal degrees of freedom of the alkali-metal
atom. We can simplify (C2) as follows:

HAT = 1

2M(1 − me/M)
P2 + Mg0

(
Z + me

M
Ze

)
+ HA.

(C3)

Now we neglect the terms multiplied by me/M in (C3) to
obtain the Hamiltonian

HAT = 1

2M
P2 + Mg0Z + HA. (C4)

Notice that by neglecting the terms multiplied by me/M

we are identifying the position of the core particle (which
coincides with the position of the nucleus) with the position
of center of mass of the atom. Therefore, we refer to the
core particle also as the center-of-mass particle when this
approximation is used. Since me/M � 1 and the expected
value 〈Ze〉(t) of Ze at any time t satisfies |〈Ze〉(t)| ∼ a0 with
a0 the Bohr radius, the approximation works well. Moreover,
it gets progressively better as heavier alkali-metal atoms are
considered. For example, me/M = 5.4 × 10−4 for hydrogen,
while me/M = 6.3 × 10−6 for 87Rb.

The ground-state configuration of the atom now corre-
sponds to the subspace HCM ⊗ H0, where we define HCM =
Hcore and H0 is still defined by (A8). All the results about H0

obtained in Appendix A are valid.

1. Introduction of a classical magnetic field

We now introduce a classical magnetic field B(r,t). The
state space of the system [alkali-metal atom with quantized
center-of-mass motion subject to a constant gravitational field
and interacting with B(r,t)] is still given by (C1), while
the ground-state configuration is still given by Hcm ⊗ H0 =
Hcore ⊗ H0.

The Hamiltonian of the system is

H3D(t) = HAT −
(

−gl

μB

�
L − gs

μB

�
S
)

· B(R + Re,t)

− gI

μN

�
I · B(R,t), (C5)

where HAT is given in (C4) and the rest of the terms on the
right are described in Appendix A.

We now assume that B(r,t) varies with respect to r on a
scale much larger than the average distance of the electron

to the core particle. Then one can make the long-wavelength
approximation in (C5) to obtain the following Hamiltonian:

H3D(t) = 1

2M
P2 + Mg0Z + HA − μ · B(R,t). (C6)

We emphasize that (C6) was obtained using the long-
wavelength approximation and neglecting terms multiplied by
me/M .

2. Reduction to one dimension

Now assume that

B(r,t) = B2C(r) + Bp(r,t), (C7)

where B2C(r) is the magnetic field of Appendix B and

Bp(r,t) = B0bpRe{ei[kx−ωA(t−t0)]}, (C8)

with r = (x,y,z), B0 > 0, bp a constant real unit vector
perpendicular to the x axis, k = ωA/c, and Re the real part
of a complex number.

Assume that for all time of interest t one has k|〈X〉(t)| � 1
and the condition (B3) in Appendix B is satisfied for x =
〈X〉(t), y = 〈Y 〉(t), and z = 〈Z〉(t). Here 〈X〉(t), 〈Y 〉(t), and
〈Z〉(t) are the expected values of the position of the atom in the
x, y, and z directions at time t . From the results of Appendix B
and from (C8) it follows that accurate approximations of
B2C(r) and Bp(r,t) are

B2C(r) ∼ BST(z)z,
(C9)

Bp(r,t) ∼ Bp(t) = B0bpRe[e−iωA(t−t0)],

with BST(z) in (B2). If in addition conditions (B6) and (B7)
in Appendix B are satisfied for all time of interest t and for
x = 〈X〉(t), y = 〈Y 〉(t), and z = 〈Z〉(t), then BST(z) can be
approximated by ηz with η in (B9).

Using the approximations (C9) in (C6) one obtains

H3D(t) =
(

1

2M
P 2

x + 1

2M
P 2

y

)
+ H (t), (C10)

with H (t) given in (11). Therefore, H3D(t) is separable. The
center-of-mass motion of the atom in the xy plane corresponds
to that of a free particle moving in two dimensions, while the
center-of-mass motion along the z axis and the internal degrees
of freedom of the atom evolve according to the Hamiltonian
H (t) studied in the article.

APPENDIX D

In this appendix we prove (26); that is, we prove that
[Ljk(z)]† = Lkj (z) [see (25) for the definition of L(z)].

Assume that φ(z),ψ(z) ∈ S(R) and that 1 � j,k �
dimH0 = 2(2I + 1). Recall that f (z) ∈ S(R) if and only if
f (z) is an infinitely differentiable complex-valued function
defined on R such that the product of any polynomial times
any derivative of f (z) [including the zero derivative, that is,
f (z)] tends to zero if x → ±∞ [22].

In what follows we use the more succinct notation

∑
F,MF

(·) ≡
∑

F=F±

F∑
MF =−F

(·). (D1)
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Also, from (3) we have the completeness relationship∑
F,MF

|k0,F,MF 〉〈k0,F,MF | = I0, (D2)

where I0 is the identity operator in H0.
Substituting the definition of Ljk(z) given in (22), adding

and subtracting the operator ∂2/∂z2 inside the curly brack-
ets in the expression of Ljk(z) in (22), and grouping
the terms associated with the second partial derivative
of 〈k0,F,MF |Vk[x(z)]〉ψ(z) with respect to z, one obtains
that ∫ +∞

−∞
dzφ(z)∗[Ljk(z)ψ(z)]

=
∑
F,MF

(
− �

2

2M

)∫ +∞

−∞
dzφ(z)∗〈Vj [x(z)]|k0,F,MF 〉

×
{

∂2

∂z2
〈k0,F,MF |Vk[x(z)]〉ψ(z)

−〈k0,F,MF |Vk[x(z)]〉 ∂2

∂z2
ψ(z)

}
. (D3)

Now integrate by parts the first term inside the curly brackets
in (D3) and note that the resulting boundary terms are zero
because φ(z),ψ(z) ∈ S(R). Also, use (D2) to simplify the
integral associated with the the second term inside the curly
brackets in (D3). Then one obtains that∫ +∞

−∞
dzφ(z)∗[Ljk(z)ψ(z)]

=
∑
F,MF

(
− �

2

2M

)∫ +∞

−∞
dz〈k0,F,MF |Vk[x(z)]〉ψ(z)

× ∂2

∂z2
φ(z)∗〈Vj [x(z)]|k0,F,MF 〉

+ �
2

2M

∫ +∞

−∞
dzφ(z)∗〈Vj [x(z)]|Vk[x(z)]〉 ∂2

∂z2
ψ(z).

(D4)

Expanding the second-order partial derivative in the first
integral in (D4), using the definition of Lkj (z) in (22), and
using (D2) to simplify the resulting integrals, it follows that∫ +∞

−∞
dzφ(z)∗[Ljk(z)ψ(z)]

=
∫ +∞

−∞
dz[Lkj (z)φ(z)]∗ψ(z)

− �
2

2M

∫ +∞

−∞
dzψ(z)〈Vj [x(z)]|Vk[x(z)]〉 ∂2

∂z2
φ(z)∗

+ �
2

2M

∫ +∞

−∞
dzφ(z)∗〈Vj [x(z)]|Vk[x(z)]〉 ∂2

∂z2
ψ(z).

(D5)

Using 〈Vj [x(z)]|Vk[x(z)]〉 = δjk [see (9)], integrating by parts
the last integral in (D5) and noting that boundary terms are
zero because φ(z),ψ(z) ∈ S(R), it follows from (D5) that∫ +∞

−∞
dzφ(z)∗[Ljk(z)ψ(z)]

=
∫ +∞

−∞
dz[Lkj (z)φ(z)]∗ψ(z). (D6)

Using the definition of the adjoint of an operator one concludes
from (D6) that

[Ljk(z)]† = Lkj (z). (D7)
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