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The basic physics of e+,e− creation and annihilation is overviewed. It is shown that for atomic hydrogen targets
electron capture by a free positron to form positronium is vastly more probable than in-flight annihilation. Cross
sections are presented using the classical trajectory Monte Carlo (CTMC) approach for the charge-exchange
process:

e+ + Aq+ → Ps + A(q+1)+,

where Aq+ is some target ion of charge q. Charge-exchange cross sections for hydrogenic ion targets are
presented. It is found that while the CTMC gives adequate results for positronium formation for e+-hydrogen and
e+-cesium collisions, its high-energy behavior for hydrogenic ions is not in agreement with quantum mechanical
predictions. Since we are interested in situations where many multicharged ions will be present we have looked
for an alternative approach. Scaling rules are proposed and used to estimate the charge-exchange cross sections
for both neutral atoms and multicharged ions.
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I. PAIR PRODUCTION AND ANNIHILATION

In a plasma with a large number of high-energy photons
one would expect significant pair production. It is well
known—see, for example, Ref. [1]—that for a photon collision
with a nucleus that the pair-production cross section will
be a slowly increasing function of photon energy, while the
competing Compton cross section will be a rapidly decreasing
function with the former dominating at high energies. The
mechanism which is thought most likely to be responsible
for pair production in the plasmas which are of current
experimental interest was proposed by Bethe and Heitler
[2]. In the first step of this process, high-energy electrons
scatter off ions and produce bremsstrahlung radiation; the
high-energy bremsstrahlung photons then interact with the ions
and electrons in the plasma to produce electron-positron pairs.
The Feynman diagram for this process is shown in Fig. 1.
For an electron-positron pair to be created by a high-energy
photon, its energy must be at least 1.022 MeV, since for an
electron (positron) at rest E = mc2 = 511 keV. Also, we will
need a third particle in order to conserve momentum; working
in the rest frame of the e+,e− pair they are moving back to
back with equal energies, so we need something to carry away
the initial photon momentum. This would be easiest for an ion
because of its very large mass. For a photon collision with a

free electron,

hν + e− → 2e− + e+, (1)

the threshold energy will be 4mc2, rather than 2mc2, if we are
to conserve both energy and momentum (see the discussion in
the Appendix below).

The two step Bethe-Heitler mechanism is not the only
potential source of electron-positron pairs. It has long been
realized [3,4] that in Coulombic interactions at sufficiently
high energies and field strengths pair production can occur.
This process has been studied in relativistic heavy-ion col-
lisions [5,6], and it can occur in highly energetic collisions
between electrons and nuclei [7,8]. It is even possible to
induce pair production by multi photon-photon interactions
(γ -γ ′) [9,10]. Recently, Chen and her collaborators [11,12]
succeeded in generating a dense beam of positrons by
firing ultraintense, short laser pulses at a thin gold target.
These authors attributed the pair production they observed
to be primarily due to the Bethe-Heitler mechanism. Very
recently, positrons have been observed in experiments by firing
wakefield accelerated electrons into solid targets [13]. In this
paper we are not concerned with the very important questions
as to the mechanisms of positron creation but rather with a
method to reliably estimate the behavior of the positrons once
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FIG. 1. Space-time diagram for the Bethe-Heitler process.

in a gas or plasma and in particular with the possibility of
positronium formation and subsequent annihilation.

Given that high-density beams of positrons can now be
generated, one could envisage probing a gas or plasma by
firing the beam into the plasma and observing the 511-keV
annihilation line and its broadening. The positrons, once
created, will not immediately annihilate with the electrons
in the plasma. The Dirac formula for the annihilation cross
section [2,14], σa , is such that

σa ∝ 1

v
, (2)

where v is the relative speed of the positron with respect to
the electron. Dirac [14] has shown that the dominant type
of annihilation occurs when the positron-electron pair has
zero relative total angular momentum. In this case if one
photon is linearly polarized in one plane, the other photon
is then linearly polarized in the perpendicular plane. Thus
a coincidence measurement seeing two photons of 511 keV,
at approximately 180◦ apart, polarized perpendicular to each
other would be a clear signal of pair production [15]. However,
for positrons passing through a gas at all but the lowest
temperatures annihilation may not occur, rather some positrons
can capture an electron to form the positronium atom, Ps.

In Fig. 2, we show a comparison between the cross sections’
positron-free electron annihilation calculated in both the
Heitler plane wave and Coulomb wave approximations [2] and
the very accurate quantum calculations for charge-exchange
formation in a collision between a positron and a hydrogen

FIG. 2. (Color online) Comparison of cross sections for positron-
free electron annihilation in both the Heitler plane wave (dotted line)
and the Coulomb wave (dashed line) approximations [2], compared
with the cross section for positronium formation in e+,H collisions
[17].

atom in its ground state [16,17],

e+ + H(1s) → Ps + H+. (3)

We remark that both the positron-free electron annihilation
and positronium formation cross sections are calculated in
the center-of-mass frame of the projectile and target, e+,e−
in one case and e+,H in the other, but calculating both in
the laboratory frame would in no way affect the enormous
difference in the cross sections. At very low impact energies
radiative recombination will further contribute to positronium
formation; however, at all but the lowest energies charge
exchange with the atoms in the plasma would be the dominant
mechanism [18]. We thus expect that for a neutral gas the
positrons will be more likely to escape or form positronium.

II. POSITRONIUM

Positronium is an “exotic atom” made up of a positron and
an electron; for a review of its properties see Ref. [19]. The
orbit of the two particles and the set of energy levels are similar
to those of the hydrogen atom (electron and proton). The
spectroscopic differences between positronium and hydrogen
are due not only to the particle-antiparticle nature of Ps
and the reduced mass but also to the magnitudes of the
positron magnetic moment as compared to the proton magnetic
moment. The magnetic moment of the positron (electron) is
approximately 657 times the magnetic moment of the proton,
eliminating the clear distinction between fine structure and
hyperfine structure. The general selection rule for annihilation
of Ps from a state of orbital angular momentum L and total
spin S [19] is

(−1)L+S = (−1)N, (4)

where N is the number of photons. Thus a spin singlet S

state will decay to an even number of photons, while the
spin triplet S state must decay to an odd number. However,
the measured branching ratios show that the two-photon
(singlet) and three-photon (triplet) decays are vastly more
probable than any other decay mechanisms. The lowest-lying
states are 1S spin singlet and spin triplet: the spin-singlet
state 1S0 (termed parapositronium) has a lifetime of 125 ps
and will decay into two photons; the spin triplet state 3S1

(termed orthopositronium) will produce three photons and has
a lifetime of 145 ns. The first excited state 2S is metastable
with a lifetime of 1.1 μs. It will cascade down to the “ground
state” which will then annihilate as described above.

Since the reduced mass of Ps is half that of H , the
atomic-energy-level transition wavelengths are twice the
corresponding H series; for example, Ps Lyman α has a
wavelength of 2431 Å and Ps Balmer α has a wavelength of
1.313 μm. The “fine structure” wavelengths are well known
but, because of the difference between the magnetic moments
of the positron and proton, are not so simply deduced from
the hydrogen values (see Ref. [19]). Note that the annihilation
rate depends upon the overlap of the electron-positron wave
functions and thus decreases for the more highly excited states
of the atom. For 2S-ortho-Ps the lifetime is 1 μs and for
non-S states it is even longer. Wheeler [15] has shown that the
annihilation lifetimes of excited S-states scale like n3. Because
of the reduced mass the radiative lifetimes are almost exactly
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FIG. 3. (Color online) Annihilation lifetimes of the spin singlet
and triplet states and radiative lifetimes for different Ps principal
quantum numbers.

twice those of hydrogen which are well known. In Ref. [20]
there is a universal formula for hydrogenic systems which we
have used to calculate the positronium radiative lifetimes. The
radiative and annihilation lifetimes can be very different. In
Fig. 3 we compare the radiative and annihilation lifetimes for
the different principal quantum numbers.

Highly accurate, fully quantal coupled pseudostate calcu-
lations have been performed for positronium formation in
collisions between positrons and hydrogen as well as ground
state alkali-metal targets [16,17,21]. Performing equivalent
close-coupling calculations would be entirely impractical for
the large number of different targets and ion states that are
characteristic of systems of current interest. Our ambition
here is to find a relatively simple way of estimating the
cross section which we can eventually incorporate into plasma
simulations. Ideal for our purposes would be a method that
can be evaluated rapidly and that returns cross sections of at
least moderate accuracy. As a first attempt we have chosen the
well-known classical trajectory Monte Carlo (CTMC) method.
We found that it gave reasonable results for positron-hydrogen
and positron-cesium collisions, but as is explained below we
fear that it is probably less reliable for multicharged ions. As
an alternative we propose a simple scaling rule which when
combined with accurate hydrogen data gives us a simple and
modestly reliable way of finding the cross sections needed.

III. OUTLINE OF THE CTMC METHOD FOR
PROJECTILE-HYDROGEN COLLISIONS

The CTMC approach is in essence a computer experiment.
In this method exact classical dynamics are performed on
trajectories whose initial conditions are chosen from a classical
ensemble. The initial energy of the target atom is fixed
from known quantum mechanical energies, e.g., E0 = −0.5
atomic units (a.u.) for hydrogen. It is assumed that the initial
coordinates and momenta are uniformly distributed in phase
space on this energy shell; this condition effectively defines the
classical microcanonical distribution. Remarkably, Fock [22]

FIG. 4. (Color online) Our CTMC total charge-exchange cross
section calculations (x’s with statistical error shown) for proton on
hydrogen compared with the experimental data of Ref. [23] (solid
circles). Neither theory nor experiment gives information about which
n level the electron is captured into.

showed that the quantum mechanical probability distribution
in momentum space for the nth level of the hydrogen atom is
given, in atomic units, by

ρn(p) =
∑
ml

ψ ∗nlm (p)ψnlm(p)

and is equal to

= 8p5
n

π2

1(
p2

n + p2
)4 , (5)

where p2
n = 2|En|, and the identical distribution follows from

the classical microcanonical distribution [24].
In Fig. 4 we show the total cross section calculated using

the CTMC method for the process

H+ + H(n = 1) → H + H+, (6)

where the final principal number of the captured electron is not
specified. These results are in agreement both with experiment
and other CTMC calculations [25] and encourage us in the use
of the method for the positron charge-exchange process:

e+ + H(n = 1) → Ps + H+. (7)

The classical nature of the CTMC approach means that there is
capture into all states of the positronium. The accuracy we can
expect from the CTMC method is open to dispute; certainly at
low-impact energies near threshold one would expect that the
electron will tunnel through the potential barrier it encounters.
This is a quantum mechanical process, and therefore entirely
absent from the CTMC. At the other extreme of very high
energies all classical calculations have the wrong asymptotic
behavior [5].
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Error estimate

There are three main sources of error inherent in the
CTMC method that are associated with the calculation of cross
sections for charge transfer: (i) the error due to beginning
and ending each simulated scattering event (or “run”) with
the incident particle and the target at a finite distance from
each other, (ii) the error due to the nonzero step-length in
the numerical Runge-Kutta integration of the equations of
motion, and (iii) the statistical error, which decreases with
the total number of runs evaluated. Errors (i) and (ii) can
be controlled explicitly by two parameters in the input of
the CTMC program, called γ and ε in Refs. [26,27], while
error (iii) can only be reduced by increasing the number of
runs that our program cycles through for each incident energy.
As in Refs. [26,27], our CTMC program calculates the error
associated with the choice of γ and ε after each run, and
these data are included in the output. The associated errors are
calculated by evaluation of the difference between the initial
and final total energies of the system and so are a measure of
how badly each run violates conservation of energy as a result
of either γ or ε. Once these errors are less than the statistical
error, we work with these choices of γ and ε.

The statistical error associated with the cross sections is
deduced from a binomial distribution and is calculated by the
CTMC program [26,27]. Let us denote a particular event (such
as charge transfer) by q and the number of occurrences of that
event by nq , then if n is the total number of runs the statistical
error associated with the cross section for q is given by

σq

(
n − nq

nqn

) 1
2

, (8)

where σq is an estimate of the cross section for q, and is defined
by

σq = nq

n
πb2

max, (9)

where bmax is the impact parameter beyond which event q no
longer occurs. The maximum statistical error is then

1

2
√

n
πb2

max (10)

and occurs when nq = 1
2n. Given the statistical nature of the

CTMC it is appropriate to include error bars corresponding to
the statistical errors when presenting calculations.

IV. HYDROGENIC TARGETS

Because of its classical nature the CTMC does not readily
yield information as to which quantum state of the positronium
the electron is captured into. To estimate this we follow the
method outlined in Ref. [28]. We calculate the binding energy
U = −E and assign a “classical principal quantum number,”
nc, according to

U = 1

2n2
c

a.u. (11)

The classical values are then “quantized” to a specific n level
if [

(n − 1)
(
n − 1

2

)
n
] 1

3 � nc �
[
(n + 1)

(
n + 1

2

)
n
] 1

3 . (12)

FIG. 5. (Color online) Our CTMC total charge-exchange cross
section calculations, for positron on ground-state hydrogen (open
squares, showing statistical error), compared with the experimental
data of Ref. [29] (filled circles) and the coupled pseudostate
calculation of Refs. [16,17] (dashed line).

In Fig. 5 we show our CTMC calculations compared with
the experiment of Zhou et al. [29]. As we approach threshold
the CTMC begins to fail, as it does not recognize the sharp
quantum threshold and has no way of including tunneling
effects. Below 10 eV our errors became unacceptably large
and we do not present results below this energy. Almost all
the cross section is found to come from capture to the ground
state, n = 1.

Scaling rules

For capture from hydrogen in the nth state, the CTMC
satisfies a simple scaling rule [26]:

σn(E) = n4σ1

(
E

n2

)
. (13)

We thus relate the capture cross section for a positron with
an impact energy E acting on a hydrogen atom with principal
quantum number n to the cross section for a positron with an
energy E

n2 acting on a ground-state hydrogen atom, which is
exactly n4 times the equivalent n = 1 cross section.

In Fig. 6 we show our CTMC calculations for the first
few hydrogenic ions. As might be expected, the cross section
falls precipitously as we increase the nuclear charge Z. Jiao
et al. [30] have performed perturbative calculations on the
hydrogenic sequence with 1 � Z � 9 and found over a quite
wide range that

σZ(E) = 1

Z7
σH (Z2E). (14)

The same scaling formula was found by Fojón et al. [31].
Our CTMC calculations fall off like Z−4. Unfortunately,
experience has shown that the CTMC gives a poor result for
protons on He+ and Li2+ [5]; consequently, we are inclined
to the view that most likely the CTMC will not give a good
estimate for high energies and high Z. This discourages us
from using the CTMC for positronium formation in positron
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FIG. 6. (Color online) Our CTMC total charge-exchange cross
section calculations, with statistical errors, for positron on ground-
state hydrogenic ions: filled circles, neutral hydrogen; +, He+; ×,
Li2+; open circles, Be3+.

collisions from other than neutrals and we must look elsewhere
for a source of modestly accurate cross sections which one
could include in plasma simulation codes. Our idea is to look
for scaling rules which will allow us to use the cross sections
for hydrogen, where there is excellent agreement between
theory and experiment, to estimate the cross section for a
range of atoms and ions.

We will assume that Eq. (14) is valid for all hydrogenic ions
and from it we can relate the cross section for positronium
formation arising from a positron with an impact energy E

acting on a hydrogenic ion with nuclear charge Z, giving rise
to a cross section of Z−7 times the equivalent neutral cross
section for an impact energy of Z2E. Combining Eqs. (13)
and (14), we have, for a hydrogenic ion of nuclear charge Z in
the nth level,

σA(E) = n4

Z7
σH

(
Z2

n2
E

)
. (15)

We can write Eq. (15) in an equivalent form. For an electron
in the nth level of a hydrogenic ion, its binding energy is (in
atomic units)

Ebinding = −1

2

Z2

n2
.

Let us introduce the dimensionless scaling parameter

εA = IH

Ebinding
= n2

Z2
, (16)

where IH is the binding energy of an electron in the ground
state of the hydrogen atom, with a numerical value of
−0.5 a.u. (13.5984 eV); then we can rewrite Eq. (15) as

σA(E) = ε2
A

s(Z)3
σH

(
E

εA

)
. (17)

The advantage of the form (17) is that the dimensionless
scaling factor εA depends on the binding energy of the target
atom: there is a great deal of physics of the atom implicitly

FIG. 7. (Color online) The charge-exchange cross section for e+

on neutral cesium calculated using Eq. (17) (dashed line) and CTMC
(solid squares with error bars) compared with the coupled pseudostate
calculations of Kernoghan et al. [21] (solid line).

contained in that number. The function s in Eq. (17) is defined
to be

s(Z) =
{

1, if neutral atom,
Z, if ion of charge Z.

V. RESULTS

A. Cesium

In this section we present results using both our CTMC and
scaling method for a number of systems. There is considerable
current interest in the possibility of generating beams of long-
lived positronium atoms [32,33] by means of positron impact
on cesium. In Fig. 7 we show our scaled results compared
with both the CTMC and the coupled pseudostate calculation
of Ref. [21]. Agreement between the three approaches is
adequate. In the CTMC calculation we treated the Cs as a
hydrogenlike atom with an experimentally determined binding
energy of 3.8939 eV and a nuclear charge of 2.2 as deduced
from the Slater rules [34]. We used our CTMC code to
determine the contribution that capture into the nPs makes
to the total capture cross section.

For proton-hydrogen and positron-hydrogen collisions, our
analysis shows that capture is predominantly into the n = 1
state. However, for a ground-state cesium target we found at
an impact energy of 6 eV that 60% of the cross section came
from capture into the n = 2 state, while nearly 13% came
from capture into n states with n � 4. Kernoghan et al. [21]
estimated that 20% of the cross section came from n � 4.
As can be seen from Fig. 3, the triplet positronium has an
annihilation lifetime of the order of 10−6 s for n = 4 and
greater than 10−4 s for n � 10. Cassidy et al. [33] have
successfully demonstrated that Ps atoms in the 2 3P state can
be successfully pumped into rydberg states with 10 � n �
25, thus dramatically increasing their lifetime. Our analysis
suggests that this process could be facilitated by creating the
positronium by firing positrons through a cesium vapor.
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FIG. 8. (Color online) The charge-exchange cross section for e+ on neutral noble gases calculated using Eq. (17), compared with the
experimental data of Refs. [35,36]; the calculations have been multiplied by a factor to give the best visual fit to experiment (0.4 for neon, 1.2
for argon, 1.5 for krypton, and 2.5 for xenon).

B. Argon

In a plasma where there are free electrons and ions in
different charge states, an injected positron can only do one of
three things: annihilate with a free or bound electron; capture
an electron to form positronium, which eventually annihilates;
or escape the plasma. The study of an argon plasma in all
stages of ionization is relevant to the planning for the LIFE
project at the Lawrence Livermore National Laboratory [37].
It would be an ideal candidate to try out our idea of using an
intense positron beam as a probe of plasma conditions. For
annihilation with a free electron the resulting 511-keV line
would be Gaussian. However, the shape of the line resulting
from the decay of both singlet and triplet Ps will depend
on the charge-exchange cross section and thus implicitly on
which state of which ion the electron was initially in [38–40].
For positronium formation in e+ collisions with neutral argon
we are fortunate to have high-quality experimental data with
which to compare our scaling formula (17). Our results are
shown in Fig. 8. The scaled cross section lies about 20%
below experiment at its maximum and is less broad. This is
well within the acceptable tolerance of the plasma simulation
codes. We have used the scaling method to calculate the cross

sections for neon, krypton, and xenon and found that, despite
its simplicity, the method always returns the correct order of
magnitude and indeed tends to give the correction position for
the maximum.

The primary focus of this work is the study of positronium
formation in plasmas where there are a large number of atoms,
ions, and free electrons. We have been at pains to demonstrate
that the annihilation collisions between free electrons and
positrons would have a much smaller cross section than those
corresponding to electron capture by a positron from a neutral
atom or ion in the plasma. As well as capturing an electron,
a positron impacting an atom could also annihilate with a
bound electron. Gribakin and Ludlow [41] have considered
the 2γ annihilation rate on atomic targets near the positronium
formation threshold and have shown that close to this threshold
the positron annihilation cross section is essentially identical
to the para-Ps formation cross section. However the region
where this would be valid is exceedingly small (of the order of
meV’s) and as we move away from threshold the positronium
formation cross section rises steeply and would quickly swamp
any threshold annihilation signal, e.g., for hydrogen at 0.2 eV
above threshold both theory [17] and experiment [29] find the
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FIG. 9. (Color online) Charge-exchange cross sections from
Eq. (17) for neutral argon and several different ionization states of
argon, compared with the plane wave (dotted line) and Coulomb
(dashed line) estimate for the in-flight annihilation cross section.

positronium formation cross section is 5 orders of magnitude
bigger than the threshold cross sections given by Ref. [41]. The
subhreshold annihilation signal is almost certainly beyond the
limit of current experimental capabilities to measure and will
certainly not be of significance in any plasma measurement.

For a plasma such as would be common in astrophysical
conditions containing only hydrogen and helium, we can be
confident that direct annihilation of the positron with a free
or bound electron will be small compared with annihilation
resulting from positronium formation. However, in the labo-
ratory plasma of interest there will be a range of charge states
and the higher the charge state the more positronium formation
and annihilation with a bound electron will be suppressed as
the positron will be discouraged by Coulomb repulsion from
approaching the positively charged ion. Even so, Fig. 9 shows
that positronium is expected to remain dominant over positron
annihilation with a free electron [42]. It is reasonable also
to assume that positron annihilation with a bound electron
remains negligible compared with positronium formation as it
is in hydrogen and helium.

It is worth noting that the charge-exchange cross section is
appreciable only in a relatively narrow energy range, whose
threshold and size will depend on the charge on the ion.
Since the charge-exchange cross section will enter into any
calculation of the γ -ray spectrum, the shape of the 511-keV
line will implicitly depend on Z.

VI. CONCLUSIONS

Our work has been focused on finding a way to give a
reasonable estimate of charge-exchange cross sections for
positron collisions with atoms and ions. We have shown
that the CTMC method works passably well for hydrogen
and neutral cesium. We were able to deduce from our
calculations that for hydrogen the electron is captured almost
exclusively into the ground state, but for cesium much of
the charge-exchange cross section is coming from capture

into longer-lived states. Despite its successes, the CTMC
method is difficult to employ for multielectron atoms and
most probably has the wrong asymptotic behavior for ions;
consequently we have looked for an alternative and introduced
a simple scaling rule which appears to give a very good first
estimate for both open and closed shell atoms. We applied it
to positronium formation in positron-argon ion collisions and
predicted that for all ionic states of the atom there would be
a range of impact energies for which positronium formation
would dominate over in-flight annihilation. This range would
be of relatively narrow width with a sharp threshold, where
both of these parameters would be Z dependent. This opens
up the possibility of using positrons as a probe of ionized
matter.
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APPENDIX: A REMARK ON THE CONSERVATION LAWS
IN PAIR PRODUCTION

We consider two cases:
(i) photon induced,

hν + A → Ā + 2A, (A1)

(ii) particle induced,

A + A → Ā + 3A, (A2)

where A denotes a particle and Ā its antiparticle, both of rest
mass m0. We wish to determine the threshold energy for both
Eqs. (A1) and (A2). The most convenient way to do this is
to work with four-vectors [43]. We use a formally Euclidean
metric gμ,ν = δμ,ν with an imaginary fourth component; e.g.,
the energy momentum vector for a particle with spatial
momentum p and energy E is

←→p =
(

p,i
E

c

)
. (A3)

Note that the same equation holds for a photon moving in the
direction of the unit vector, e, whose four-vector is

←→pν = hν

c
(e,i), (A4)

where this vector has zero norm, i.e., ←→pν · ←→pν = 0 in the
Minkowski space. Let us first consider the photon-induced
process, Eq. (A1). In the laboratory frame we assume that A is

initially at rest so its four-vector will be
←→
PA = (0,im0c), while

for the photon entering along the z axis we have

←→pν = E

c
(k̂,i).
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The total four-momentum before the collision is

←→
Ptotal =

(
E

c
k̂,i

(
m0c + E

c

))
.

Now the quantity

(
←→
Ptotal)

2 = ←→p 2
ν + ←→

P 2
A + 2

←→
PA · ←→pν

= −(m0c)2 − 2m0E (A5)

is Lorentz invariant and conserved; so after the collision it must
be the same in the center-of-mass frame of the three particles.
At threshold all three particles must be at rest in the center-
of-mass frame. This minimizes the energy and is consistent
with the requirement that the total spatial momentum must be
zero in the center-of-mass frame. The square of the energy
momentum four-vector is thus

(0,0,0,3(im0c))2 = −9m2
0c

2. (A6)

Then, combining Eq. (A6) with Eq. (A5), we have

− (m0c)2 − 2m0E
photon
threshold = −9(m0c)2

⇒ E
photon
threshold = 4(m0c

2). (A7)

Thus the photon needs to have a minimum energy of
2.044 MeV to create an electron-positron pair and a minimum
energy of 3.76 GeV to create a proton-antiproton pair. For our
second case we can repeat the analysis to find

E
particle
threshold = 6m0c

2. (A8)

Thus the kinetic energy of an incoming electron needs to be
greater than 3.066 MeV to create an electron-positron pair and

we need a minimum proton impact energy of 5.64 GeV to
create a proton-antiproton pair. Note that while the threshold
energy for the particle case is greater, the cross section will
also be greater once this energy is exceeded. The difference
between a real photon and a virtual photon is a factor c2 in
the cross section. Finally if we consider pair production from
a massive particle, such as a gold nucleus, assumed initially
at rest, because of its massive size we may assume that its
velocity in the laboratory will be very much less than c [43],
so

γMc2 ≈ 1

2
MV 2,

hν = 2mc2 + Mc(γ − 1)

≈ 2m0c
2 + 1

2
MV 2,

hν

c
= MV,

hence

hν = 2m0c
2 + 1

2

h2ν2

Mc2
. (A9)

For Mc2 � 1 we can neglect the second term on the right-hand
side of Eq. (A9) and the threshold energy for pair production
off a massive particle is approximately 2m0c

2. Further, the
excess energy over threshold will be carried off as the kinetic
energies of the electron and positron.
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Phys. Rev. A 67, 052711 (2003).

[9] G. Breit and J. A. Wheeler, Phys. Rev. 46, 1087 (1934).
[10] C. P. Ridgers, C. S. Brady, R. Duclous, J. G. Kirk, K. Bennett,

T. D. Arber, A. P. L. Robinson, and A. R. Bell, Phys. Rev. Lett.
108, 165006 (2012).

[11] H. Chen, S. C. Wilks, J. D. Bonlie, E. P. Liang, J. Myatt, D. F.
Price, D. D. Meyerhofer, and P. Beiersdorfer, Phys. Rev. Lett.
102, 105001 (2009).

[12] Hui Chen et al., Rev. Sci. Instrum. 83, 10E113 (2012).
[13] G. Sarri et al., arXiv:1312.0211 [physics.plasm-ph] (2013).
[14] P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 361

(1930).

[15] J. A. Wheeler, Ann. N. Y. Acad. Sci. 48, 219 (1946).
[16] H. R. J. Walters, in New Directions in Atomic Physics, edited by

C. T Whelan et al. (Plenum, New York, 1999), p. 104.
[17] A. A. Kernoghan et al., J. Phys. B 29, 2089 (1996).
[18] S. C. Ellis and J. Bland Hawthorn, Astrophys. J. 707, 457

(2009).
[19] S. Berko and H. N. Pendlelton, Annu. Rev. Nucl. Part. Sci. 30,

543 (1980).
[20] Edward S. Chang, Phys. Rev. A 31, 495 (1985).
[21] A. A. Kernoghan et al., J. Phys. B 29, 3971 (1996).
[22] V. Fock, Bull. Acad. Sci. USSR 2, 169 (1935).
[23] G. W. McClure, Phys. Rev. 148, 47 (1966).
[24] R. Abrines and I. C. Percival, Proc. Phys. Soc. 88, 861 (1966).
[25] R. E. Olson and A. Salop, Phys. Rev. A 16, 531 (1977).
[26] R. Abrines and I. C. Percival, Proc. Phys. Soc. 88, 873 (1966).
[27] D. Banks et al., Comput. Phys. Commun. 13, 251 (1977).
[28] R. E. Olson, Phys. Rev. A 24, 1726 (1981).
[29] S. Zhou, H. Li, W. E. Kauppila, C. K. Kwan, and T. S. Stein,

Phys. Rev. A 55, 361 (1997).
[30] L. Jiao, Y. Wang, and Y. Xhou, J. Phys. B 45, 085204

(2012).
[31] O. A. Fojón et al., J. Phys. B 30, 21999 (1997).
[32] E. A. Hessels, D. M. Homan, and M. J. Cavagnero, Phys. Rev.

A 57, 1668 (1998).
[33] D. B. Cassidy, T. H. Hisakado, H. W. K. Tom, and A. P. Mills,

Jr., Phys. Rev. Lett. 108, 043401 (2012).

012708-8

http://dx.doi.org/10.1063/1.555629
http://dx.doi.org/10.1063/1.555629
http://dx.doi.org/10.1063/1.555629
http://dx.doi.org/10.1063/1.555629
http://dx.doi.org/10.1103/PhysRev.45.729
http://dx.doi.org/10.1103/PhysRev.45.729
http://dx.doi.org/10.1103/PhysRev.45.729
http://dx.doi.org/10.1103/PhysRev.45.729
http://dx.doi.org/10.1007/BF01333110
http://dx.doi.org/10.1007/BF01333110
http://dx.doi.org/10.1007/BF01333110
http://dx.doi.org/10.1007/BF01333110
http://dx.doi.org/10.1103/PhysRevD.39.1330
http://dx.doi.org/10.1103/PhysRevD.39.1330
http://dx.doi.org/10.1103/PhysRevD.39.1330
http://dx.doi.org/10.1103/PhysRevD.39.1330
http://dx.doi.org/10.1103/PhysRevA.67.052711
http://dx.doi.org/10.1103/PhysRevA.67.052711
http://dx.doi.org/10.1103/PhysRevA.67.052711
http://dx.doi.org/10.1103/PhysRevA.67.052711
http://dx.doi.org/10.1103/PhysRev.46.1087
http://dx.doi.org/10.1103/PhysRev.46.1087
http://dx.doi.org/10.1103/PhysRev.46.1087
http://dx.doi.org/10.1103/PhysRev.46.1087
http://dx.doi.org/10.1103/PhysRevLett.108.165006
http://dx.doi.org/10.1103/PhysRevLett.108.165006
http://dx.doi.org/10.1103/PhysRevLett.108.165006
http://dx.doi.org/10.1103/PhysRevLett.108.165006
http://dx.doi.org/10.1103/PhysRevLett.102.105001
http://dx.doi.org/10.1103/PhysRevLett.102.105001
http://dx.doi.org/10.1103/PhysRevLett.102.105001
http://dx.doi.org/10.1103/PhysRevLett.102.105001
http://arxiv.org/abs/arXiv:1312.0211
http://dx.doi.org/10.1017/S0305004100016091
http://dx.doi.org/10.1017/S0305004100016091
http://dx.doi.org/10.1017/S0305004100016091
http://dx.doi.org/10.1017/S0305004100016091
http://dx.doi.org/10.1111/j.1749-6632.1946.tb31764.x
http://dx.doi.org/10.1111/j.1749-6632.1946.tb31764.x
http://dx.doi.org/10.1111/j.1749-6632.1946.tb31764.x
http://dx.doi.org/10.1111/j.1749-6632.1946.tb31764.x
http://dx.doi.org/10.1088/0953-4075/29/10/017
http://dx.doi.org/10.1088/0953-4075/29/10/017
http://dx.doi.org/10.1088/0953-4075/29/10/017
http://dx.doi.org/10.1088/0953-4075/29/10/017
http://dx.doi.org/10.1088/0004-637X/707/1/457
http://dx.doi.org/10.1088/0004-637X/707/1/457
http://dx.doi.org/10.1088/0004-637X/707/1/457
http://dx.doi.org/10.1088/0004-637X/707/1/457
http://dx.doi.org/10.1146/annurev.ns.30.120180.002551
http://dx.doi.org/10.1146/annurev.ns.30.120180.002551
http://dx.doi.org/10.1146/annurev.ns.30.120180.002551
http://dx.doi.org/10.1146/annurev.ns.30.120180.002551
http://dx.doi.org/10.1103/PhysRevA.31.495
http://dx.doi.org/10.1103/PhysRevA.31.495
http://dx.doi.org/10.1103/PhysRevA.31.495
http://dx.doi.org/10.1103/PhysRevA.31.495
http://dx.doi.org/10.1088/0953-4075/29/17/018
http://dx.doi.org/10.1088/0953-4075/29/17/018
http://dx.doi.org/10.1088/0953-4075/29/17/018
http://dx.doi.org/10.1088/0953-4075/29/17/018
http://dx.doi.org/10.1103/PhysRev.148.47
http://dx.doi.org/10.1103/PhysRev.148.47
http://dx.doi.org/10.1103/PhysRev.148.47
http://dx.doi.org/10.1103/PhysRev.148.47
http://dx.doi.org/10.1088/0370-1328/88/4/306
http://dx.doi.org/10.1088/0370-1328/88/4/306
http://dx.doi.org/10.1088/0370-1328/88/4/306
http://dx.doi.org/10.1088/0370-1328/88/4/306
http://dx.doi.org/10.1103/PhysRevA.16.531
http://dx.doi.org/10.1103/PhysRevA.16.531
http://dx.doi.org/10.1103/PhysRevA.16.531
http://dx.doi.org/10.1103/PhysRevA.16.531
http://dx.doi.org/10.1088/0370-1328/88/4/307
http://dx.doi.org/10.1088/0370-1328/88/4/307
http://dx.doi.org/10.1088/0370-1328/88/4/307
http://dx.doi.org/10.1088/0370-1328/88/4/307
http://dx.doi.org/10.1016/0010-4655(77)90004-2
http://dx.doi.org/10.1016/0010-4655(77)90004-2
http://dx.doi.org/10.1016/0010-4655(77)90004-2
http://dx.doi.org/10.1016/0010-4655(77)90004-2
http://dx.doi.org/10.1103/PhysRevA.24.1726
http://dx.doi.org/10.1103/PhysRevA.24.1726
http://dx.doi.org/10.1103/PhysRevA.24.1726
http://dx.doi.org/10.1103/PhysRevA.24.1726
http://dx.doi.org/10.1103/PhysRevA.55.361
http://dx.doi.org/10.1103/PhysRevA.55.361
http://dx.doi.org/10.1103/PhysRevA.55.361
http://dx.doi.org/10.1103/PhysRevA.55.361
http://dx.doi.org/10.1088/0953-4075/45/8/085204
http://dx.doi.org/10.1088/0953-4075/45/8/085204
http://dx.doi.org/10.1088/0953-4075/45/8/085204
http://dx.doi.org/10.1088/0953-4075/45/8/085204
http://dx.doi.org/10.1103/PhysRevA.57.1668
http://dx.doi.org/10.1103/PhysRevA.57.1668
http://dx.doi.org/10.1103/PhysRevA.57.1668
http://dx.doi.org/10.1103/PhysRevA.57.1668
http://dx.doi.org/10.1103/PhysRevLett.108.043401
http://dx.doi.org/10.1103/PhysRevLett.108.043401
http://dx.doi.org/10.1103/PhysRevLett.108.043401
http://dx.doi.org/10.1103/PhysRevLett.108.043401


ESTIMATING POSITRONIUM FORMATION FOR PLASMA . . . PHYSICAL REVIEW A 89, 012708 (2014)

[34] J. C. Slater, Phys. Rev. 36, 57 (1930).
[35] G. Laricchia et al., J. Phys. B 35, 2525 (2002).
[36] G. Laricchia et al., in Fragmentation Processes, edited by C. T.

Whelan (Cambridge University Press, Cambridge, UK, 2013),
p. 116.

[37] https://lasers.llnl.gov/about/missions/energy_for_the_future/
life/.

[38] Carol Jo Crannell et al., Astrophys. J. 210, 582 (1976).
[39] R. J. Murphy et al., Astrophys. J., Suppl. Ser. 161, 495 (2005).

[40] R. W. Bussard, R. Ramaty, and R. J. Drachman, Astrophys. J.
228, 928 (1979).

[41] G. F. Gribakin and J. Ludlow, Phys. Rev. Lett. 88, 163202
(2002).

[42] We assume that we are not in a threshold region where the
positronium cross section will be small or at high energies where
both positronium formation and direct annihilation will be small.

[43] D. Kleppner and R. J. Kolenkow, An Introduction to Mechanics
(Cambridge University Press, Cambridge, UK, 2000).

012708-9

http://dx.doi.org/10.1103/PhysRev.36.57
http://dx.doi.org/10.1103/PhysRev.36.57
http://dx.doi.org/10.1103/PhysRev.36.57
http://dx.doi.org/10.1103/PhysRev.36.57
http://dx.doi.org/10.1088/0953-4075/35/11/311
http://dx.doi.org/10.1088/0953-4075/35/11/311
http://dx.doi.org/10.1088/0953-4075/35/11/311
http://dx.doi.org/10.1088/0953-4075/35/11/311
https://lasers.llnl.gov/about/missions/energy_for_the_future/life/
http://dx.doi.org/10.1086/154863
http://dx.doi.org/10.1086/154863
http://dx.doi.org/10.1086/154863
http://dx.doi.org/10.1086/154863
http://dx.doi.org/10.1086/452634
http://dx.doi.org/10.1086/452634
http://dx.doi.org/10.1086/452634
http://dx.doi.org/10.1086/452634
http://dx.doi.org/10.1086/156920
http://dx.doi.org/10.1086/156920
http://dx.doi.org/10.1086/156920
http://dx.doi.org/10.1086/156920
http://dx.doi.org/10.1103/PhysRevLett.88.163202
http://dx.doi.org/10.1103/PhysRevLett.88.163202
http://dx.doi.org/10.1103/PhysRevLett.88.163202
http://dx.doi.org/10.1103/PhysRevLett.88.163202



