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Complex Kohn approach to molecular ionization by high-energy electrons: Application to H2O
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The complex Kohn variational method, which has been extensively applied to low-energy molecule scattering,
is extended to treat molecular ionization by fast electrons under the assumption that the incident and scattered
electrons can be described by plane waves. The formulation reduces to the computation of the continuum
generalized oscillation strength, which amounts to a generalization of the molecular photoionization problem to
which the Kohn method has been successfully applied. To illustrate the approach, we present fully differential
cross sections for the case of water, where good experimental data is available for comparison.
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I. INTRODUCTION

Electron-impact ionization of atoms and molecules is a
fundamental collisional process which is important in a broad
range of problems, from plasma physics to radiation damage in
biological environments to the study of planetary atmospheres.
The calculation of fully differential cross sections at low im-
pact energies using first-principles methods is computationally
challenging even for simple atomic targets. The additional
complexity with molecules introduced by the multicenter
nature of the problem has severely limited progress. To date,
ab initio calculations on molecular targets using advanced
nonperturbative methods have been limited to the diatomics
H+

2 [1,2], H2 [3], and Li2 [4] under the restriction that only
two active electrons are explicitly treated. Calculations of
differential ionization cross sections for more complex targets
have all been limited to perturbative treatments where the
incident, scattered, and ejected electrons are all described
by distorted Coulomb or plane waves [5–7], often with
simplifying assumptions aimed at making the calculations
tractable [8].

In the present paper, we formulate an approach to electron-
impact ionization of molecules that has been applied with
some success to atomic problems [9,10]. We assume the
incident electron is fast, so that extreme unequal energy-
sharing collisions dominate and both the incident and scattered
electrons can be treated perturbatively. However, in contrast to
other perturbative treatments, we make no such assumption for
the ejected electron. The interaction between the slow ejected
electron and the residual molecular ion is treated by a close-
coupling method and for that we employ the complex Kohn
variational method [11,12], which has been very successful
in previous applications to low-energy electron- molecule and
electron-molecular ion scattering. The essential point we make
here is that the use of a correct electron-ion scattering wave
function as the final state for the ejected electron enables us to
treat high-energy electron-impact ionization of molecules at
the same level of sophistication achieved for atomic targets.

The theoretical formulation is presented in the following
section. Section III describes our initial calculations on
electron-impact ionization of water with comparisons to
available experiment and the results of theoretical calculations.
We conclude with a brief discussion. Atomic units are used
throughout.

II. THEORETICAL FORMULATION

We treat the collision of a “fast” ionizing electron, with
initial and final momenta ki and kf and a neutral molecule
with fixed nuclei described by a bound electronic wave
function ψ0(r1, . . . ,rN ). The final state consists of a “slow”
ejected electron with momentum ks and a molecular ion
in state �0 and is described by a continuum wave function
ψ−

ks ,�0
(r1, . . . ,rN ). E = k2

s /2 + k2
f /2 is the energy shared by

the scattered and ejected electrons and is conserved. We ignore
exchange between the fast electron and the target and ejected
electrons and treat only the direct interaction between the
incident and target electrons. We further simplify the problem
by using plane waves rather than distorted waves to describe
the fast electron, i.e., we treat the fast electron in the first-Born
approximation. With these assumptions, the initial and final
wave functions can be written as

�i(r,r1, . . . ,rN ) = 1

(2π )3/2
exp(iki · r)ψ0(r1, . . . ,rN ), (1)

�f (r,r1, . . . ,rN ) = 1

(2π )3/2
exp(ikf · r)ψ−

ks ,�0
(r1, . . . ,rN ).

(2)

The ionization amplitude can then be written as

f (ks ,Q) = 〈�f |V (r,r1, . . . ,rN )|�i〉

= 1

(2π )3

〈
ψ−

ks ,�0

∣∣V (r,r1, . . . ,rN )|eiQ·rψ0〉, (3)

where Q = ki − kf is the momentum-transfer vector. The
triple differential cross section (TDCS) is given by

dσ

d�f d�sdEs

= (2π )4 kf ks

ki

|〈�f |V (r,r1, . . . ,rN )|�i〉|2. (4)

In the first-Born approximation, the ionization amplitude
only depends on the ejected electron momentum and the
momentum transferred from incident to scattered electron, so
for a given value of ks , all collisions described by combinations
of ki and kf that give equivalent values of Q are described by
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the same amplitude. The interaction potential V is given by

V (r,r1, . . . ,rN ) =
∑
nuc

−Znuc

|r − Rnuc| +
∑

i=1,...,N

1

|r − ri | , (5)

and the sum of the nuclear charges balances the total number
of target electrons, ∑

nuc

Znuc = N. (6)

By making use of Bethe’s integral,∫
d3r′ eiQ·r′

|r − r′| = 4π

Q2
eiQ·r, (7)

we obtain the following expression for the ionization
amplitude:

f (ks ,Q) = 1

2π2Q2

〈
ψ−

ks ,�0
(r1, . . . ,rN )

∣∣
×

∑
i=1,...,N

(eiQ·ri − B) |ψi(r1, . . . ,rN )〉 , (8)

where B is the complex constant

B =
∑
nuc

−Znuc

N
eiQ·Rnuc . (9)

We thus obtain the well-known result that, in the Born
approximation, the ionization amplitude reduces to a matrix
element of a one-body operator between the initial bound
state of the target and the final continuum state of ejected
electron plus residual ion. Equation (8) is a generalization of
the amplitude for photoionization, with the Bethe operator,∑

i=1,...,N (eiQ·ri − B), taking the place of the dipole operator.
Ionization amplitudes with the present formalism could thus be
calculated by carrying out suitable modifications to our molec-
ular photoionization codes [13], the principal complication
being that the momentum-transfer vector depends explicitly
on the orientation of the molecule in the laboratory frame.

To construct an amplitude that represents an ionization
process for specific values of momentum transfer and ejected
electron momentum, with Q and ks measured in the molecular

body frame, we expand ψ−
ks ,�0

in partial waves:
ψ−

k,�0
(r1, . . . ,rN )

=
∑
l0m0

il0 exp(−iδl0 )Y ∗
l0m0

(k̂)ψ−
k,�0l0m0

(r1, . . . ,rN ), (10)

with the Coulomb phase shift δl0 defined as

δl0 = arg �(l0 + 1 − iZ/k). (11)

Equation (8) can then be written

f (ks ,Q) = 1

2π2Q2

∑
l0m0

il0 exp
( − iδl0

)
Y ∗

l0m0
(k̂s)

〈
ψ−

ks ,�0l0m0

∣∣

×
∑

i=1,...,N

(eiQ·ri − B)|ψ0〉. (12)

In order to compare with experimental measurements of the
TDCS in which the orientation of the target molecule in the
laboratory frame is not determined, the computed fixed-nuclei
cross sections must be averaged over all orientations of the
target in the laboratory frame, keeping the angle between
the ejected electron momentum and the scattered electron
momentum (or equivalently, the momentum-transfer vector
Q) fixed. The averaged cross section, which is differential
in the solid angles of detection for the scattered and ejected
electrons, can be written

dσ av

d�kf
d�ks

dEs

= (2π )4 kf ks

ki

∫
dα d cos β dγ

8π2
|f (ks(α,β,γ ),Q(α,β,γ ))|2

= (2π )4 kf ks

ki

|f (ks(α,β,γ ),Q(α,β,γ ))|2av, (13)

where α, β, and γ are the three Euler angles required to
orient the molecule in the laboratory frame. The average
was carried out by numerical quadrature by evaluating the
ionization amplitudes for discrete values of the Euler angles
[14]. Starting with an initial value for the laboratory-frame
vector ks0 (or Q0), its value in the body frame for any target
orientation is given by [15]

ks(α,β,γ )[Q(α,β,γ )] =

⎛
⎜⎝

cos α cos β cos γ − sin α sin γ −cos α cos β sin γ − sin α cos γ cos α sin β

sin α cos β cos γ + cos α sin γ −sin α cos β sin γ + cos α cos γ sin α sin β

−sin β cos γ sin β sin γ cos β

⎞
⎟⎠ ks0 (Q0).

(14)

We found that well-converged results for the numerical average could be obtained with 10, 5, and 10 points for α, cos β, and γ ,
respectively.

A doubly differential cross section can be obtained from Eqs. (12) and (13) by integrating over the angles of ks and using the
orthogonality of the spherical harmonics to obtain

dσ av

d�kf
dEs

= 4

Q4

kf ks

ki

∑
l0m0

∣∣∣∣∣
〈
ψ−

ks ,�0l0m0

∣∣ ∑
i=1,...,N

(eiQ·ri − B)|ψ0〉
∣∣∣∣∣
2

av

. (15)

The average over target orientations renders the right-hand
side of Eq. (15) a function of the magnitude of Q, but

not its direction. Therefore, to obtain the singly differential,
or energy-sharing, cross section, we need only integrate
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over the polar angle of kf , integration over its azimuthal
angle providing a factor of 2π . We can thus write d�kf

=
2πQdQ/k0kf to get

dσ av

dEs

= 8πks

k2
0Q

3

∑
l0m0

∫ k0+kf

k0−kf

dQ

∣∣∣∣∣
〈
ψ−

ks ,�0l0m0

∣∣

×
∑

i=1,...,N

(eiQ·ri − B)|ψ0〉
∣∣∣∣∣
2

av

. (16)

The total cross section is obtained by numerically integrating
the singly differential ionization cross section (SDCS) from
Es = 0 to Es = E/2 to partially account for the indistin-
guishability of ejected and scattered electrons [Rudge and
Seaton’s Born (b) approximation [16]].

It is worth noting that if the spatial distribution of the nuclei
is neglected in the interaction potential, i.e., the electron-
nuclear attraction in Eq. (5) is approximated as −N/r ,
then the Bethe operator becomes

∑
i=1,...,N (eiQ·ri − 1). This

approximation to B has been made in most recent perturbative
treatments of molecular ionization. The constant B is often
dropped entirely, on the assumption that the initial bound
and final continuum states are orthogonal, which is formally
correct since they are both, in principle, eigenfunctions of
the same Hamiltonian. However, orthogonality will generally
depend on the approximations made in their respective
computation. We can always ensure orthogonality by replacing
ψ−

k,�0
with ψ−

k,�0
− 〈ψ0|ψ−

k,�0
〉ψ0 [17,18].

The Bethe surface, which plots the generalized oscillator
strength differential (GOS) in the ejected electron energy E

as a function of ln Q2 and E, offers a useful means for
displaying electron-molecule collision data within the first
Born approximation over a broad range of kinematics [19].
The differential GOS, in units of inverse Rydbergs, is defined
as

d(GOS)/dE = E + I

Q2

∑
l0m0

∣∣∣∣∣
〈
ψ−

E,�0l0m0

∣∣

×
N∑

i=1

exp(iQ · ri)|ψ0〉
∣∣∣∣∣
2

av

, (17)

where I is the binding energy of the electron being ionized
and ψ−

E,�0l0m0
= √

kψ−
k,�0l0m0

.
We use the complex Kohn variational method to calcu-

late �−
f . Since the method does not rely on single-center

expansions to compute the required electron-molecular ion
continuum wave functions, it is well suited to applications
involving polyatomic targets. The details of the Kohn method
have been previously described in the literature, so only a brief
outline is given here. In the Kohn method, the wave function
ψ−

k,�0l0m0
is expressed as

ψ−
k,�0l0m0

=
∑
�,l,m

Â(χ�F−
�lm,�0l0m0

) +
∑

i

d
�0
i i

≡ P� + Q�, (18)

where the first sum runs over energetically open ionic states
described by (N − 1)-electron wave functions χ� and the sec-
ond sum runs over N -electron configuration-state functions i

representing penetration and correlation terms. The operator Â

ensures antisymmetrization of the wave function. In the Kohn
method, the momentum normalized functions F−

�lm,�0l0m0
are

further expanded as

F−
�lm,�0l0m0

=
∑

i

c
��0
i φi(r) +

∑
lm

√
2

π
[fl(k�,r)δll0δmm0δ��0

+ T
��0
ll0mm0

h−
l (k�,r)]Ylm(r̂)/(k�r), (19)

where T
��0
ll0mm0

are elements of the T matrix, φi is a set
of orthonormal (Cartesian-Gaussian) functions, and fl and
h−

l are partial-wave continuum radial functions, behaving
asymptotically as regular and incoming Coulomb functions:

fl(k�,r → ∞) −→ sin

(
k�r + Z

k�

ln 2k�r − πl

2
+ δl

)
,

h−
l (k�,r → ∞)

−→ exp

[
−i

(
k�r + Z

k�

ln 2k�r − πl

2
+ δl

)]
. (20)

By construction, the functions φi are chosen to be orthog-
onal to the molecular orbitals used to expand the initial target
state �i , as are the continuum functions fl and h−

l . This
strong orthogonality constraint can be relaxed, if necessary,
by the inclusion of appropriate penetration terms in the set
i . It is worth noting that all matrix elements of the one-body
Bethe operator between Gaussian functions can be evaluated
analytically [20]. Matrix elements of the Bethe operator
between Gaussian and continuum functions are evaluated
numerically using adaptive three-dimensional quadrature [12].

The present formalism provides a general framework for
computing molecular ionization amplitudes in the framework
of the first Born approximation for a fast incident electron.
Since correlation can be included in the initial and final
states, the formulation is quite general in terms of the types
of collisions that can be treated, including processes such
as excitation ionization, on the assumption that the incident
electron energy is sufficiently high for a plane-wave treatment
to be reasonable.

III. ELECTRON-IMPACT IONIZATION OF WATER

To illustrate the previously described formalism, we
consider the example of electron-impact ionization of the
water molecule. Ionization cross sections for water are of
fundamental interest and are widely used in the modeling of ra-
diation damage in biological systems. Moreover, experimental
measurements of the TDCS for this molecule have been carried
out for an incident electron energy of 250 eV. In addition, there
are other theoretical calculations using a variety of perturbative
techniques available for comparison.

For this initial study, we used single-configuration wave
functions to describe both the neutral target molecule and the
final molecular ion states. We describe the water molecule with
a self-consistent field (SCF) wave function computed in a basis
of contracted Gaussian functions whose parameters are listed
in Table I. For the electron-H2O+ scattering calculations, the
expansion basis also included numerical continuum functions
up to l,|m| = 4. Neutral water in its ground state has the
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TABLE I. Contracted Cartesian Gaussian basis used in SCF and
scattering14 calculations. Underlines separate contracted functions.

Center Type Exponent Coefficient

Oxygen s 7816.5400 0.002031
Oxygen s 1175.8200 0.015436
Oxygen s 273.1880 0.073771
Oxygen s 81.1696 0.247606
Oxygen s 27.1836 0.611832
Oxygen s 9.5322 1.0
Oxygen s 3.4136 1.0
Oxygen s 0.9398 1.0
Oxygen s 0.2846 1.0
Oxygen s 0.095 1.0
Oxygen p 35.1832 0.019580
Oxygen p 7.9040 0.124189
Oxygen p 2.3051 1.0
Oxygen p 0.7171 1.0
Oxygen p 0.2137 1.0
Oxygen p 0.0737 1.0
Oxygen d 2.0 1.0
Oxygen d 0.85 1.0
Oxygen d 0.32 1.0
Oxygen d 0.128 1.0
Hydrogen s 74.69 0.073771
Hydrogen s 11.23 0.247606
Hydrogen s 2.546 0.852933
Hydrogen s 0.7130 1.0
Hydrogen s 0.2249 1.0
Hydrogen s 0.75 1.0

configuration 1a2
12a2

11b2
23a2

11b2
1. All calculations were per-

formed at the equilibrium geometry of H2O. To avoid working
with nonorthogonal functions, we use a single set of molecular
orbitals to construct both the initial neutral and final ion states,
i.e., the final continuum states are computed in the so-called
separated-channel static-exchange approximation in which the
molecular ion states are described with neutral SCF orbitals
by creating a single vacancy in one of the occupied orbitals. In
this approximation, the sum over � in Eq. (18) is truncated to
one term for each of the considered ionization channels and χ�

is the ion state created by singly occupying one of the neutral
target orbitals. The strong orthogonality constraint between the
continuum function and the relevant singly occupied molecular
orbital can be relaxed by including a single penetration
term in Q�, which in this case is just the neutral target
state configuration. But in this frozen-core approximation,
Brillouin’s theorem shows that there is no nonzero matrix
element connecting P� and Q�, since they only differ
by single excitations. Therefore, orthogonality between the
initial target and final continuum states is guaranteed in this
approximation and there is consequently no contribution from
B [Eq. (9)] in the Bethe operator.

It has been customary, in most first-Born perturbative
treatments of molecular ionization, to make use of a partial-
wave expansion of e(iQ·r) when computing the ionization cross
section,

e(iQ·r) =
∑
l,m

4πiljl(Qr)Y ∗
lm(Q̂)Ylm(r̂). (21)

We take a different approach. Since the bound initial target
state as well as the square-integrable portion of the ejected
electron continuum state are being expanded here in Cartesian
Gaussian functions, we make use of the fact that the required
bound-bound matrix elements of e(iQ·r) can be evaluated
analytically [20]. The bound-free elements, on the other hand,
we evaluate using three-dimensional adaptive quadrature.

We begin with plots of the computed Bethe surfaces for
1b1, 3a1, 1b2, and 2a1 ionization, which are shown in Fig. 1.
The limiting value of d(GOS)/dE for Q → 0 gives the optical
oscillator strength per unit energy E, which is proportional to
the photoionization cross section for photon energy E. The
other limiting case of interest for d(GOS)/dE is where E

is much greater than the ionization threshold energy, which
corresponds the scattering of two free electrons with the
residual molecular ion acting as a spectator. For the case
of free electron-electron collisions, energy and momentum
conservation only allow the occurrence of the collision at
E = Q2/2. The peak in the Bethe surface that appears around
the curve E = Q2/2 forms the so-called Bethe ridge. The
width of the peak along the Bethe ridge is seen to increase
with decreasing ejected electron energies. The present work is
focused on the kinematics of lnQ2 between ∼0.2 and ∼0.25,
and energies E between ∼0.83 and ∼1.6, where the electron
scattering is sensitive to the electronic structure of molecular
target.

Milne-Brownlie et al. [21] have measured TDCS for the
water molecule at an asymmetric coplanar geometry for an
incident electron energy of 250 eV. TDCS were measured for
ionization of the 1b1, 3a1, and 1b2 valence molecular orbitals
as well as the atomiclike 2a1 (carbon 2s) orbital, whose binding
energies are 12.6, 14.7, 18.5, and 32.2 eV, respectively [21].
Measurements were reported for scattered electrons detected
at 15◦ with respect to the incident electron beam. The ejected
electron signals were recorded in coincidence in the binary
and recoil angular regions at a fixed energy of 10 eV for all
but the 3a1 channel, for which the ejected electron energy
was ∼8 eV. Milne-Brownlie et al. explain that the peaks in
the binding energy spectrum arising from the 1b1 and 3a1

channels could not be entirely resolved and that data for
the separate channels could only be obtained in the binary
region. The experimental results were reported on an arbitrary
scale and are not internormalized from channel to channel.
Milne-Brownlie et al. also point out that the normalization
between the binary and recoil regions was determined in a
separate experiment and that the error in the binary and recoil
regions ranges from 30% to 40%. We have thus normalized
the experimental data to our absolute ab initio results to obtain
the best visual fit in the binary region.

There have been several other theoretical studies—all
perturbative—that compare with the Milne-Brownlie et al.
measurements, notably the results of Champion and co-
workers [6,21] and Sahlaoui and Bouamoud [22]. Unfortu-
nately, all the published results are presented in arbitrary units.
It turns out to be quite easy to modify the present complex
Kohn formalism to reproduce these other Coulomb-Born (or
1CW) results. Referring to Eq. (19), which expresses the
complex Kohn continuum function for the ejected electron,
it is clear that by dropping all but the first term in the
second sum over l and m, we are replacing the full Kohn
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FIG. 1. (Color online) Bethe surfaces: density of differential generalized oscillator strengths, in units of Ry−1. 1 Ry = 13.6 eV.

wave function with an atomic Coulomb function. To compare
with earlier calculations, we include results where the Bethe
operator is taken to be

∑
i=1,...,N eiQ·ri , as was done in the

original calculations reported in Refs. [5] and [21], as well
as the choice

∑
i=1,...,N (eiQ·ri − 1), which incorporates the

spatially averaged electron-nuclear attraction and was used
in Refs. [6] and [22]. Finally, we show results in which the
atomic Coulomb function is orthogonalized to the occupied
target orbital being ionized. We emphasize again that the full
Kohn wave function in the separated-channel static-exchange
approximation we are using is orthogonal to the target wave
function.

Our calculated TDCS for the previously described kine-
matic conditions are shown in Fig. 2. The TDCS for 1b1, 3a1,
and 1b2 ionization are all characterized by a double peaked
structure in the binary region with local minima corresponding
to the direction of the momentum transfer at 72.3◦, 71.8◦, and
69.6◦, respectively. The three valence target orbitals all have
significant oxygen 2p character. The TDCS for 2a1 orbital
ionization, on the other hand, which has predominantly atomic
2s character, shows a single binary peak at 63.2◦, as well as
a shoulder between the binary and recoil regions which is
consistent with experiment. The recoil region for 1b1 shows a
single broad peak, while the 3a1 and 1b2 channels both show
shallow minima in the recoil peak. This structure is also evident
in the experimental data for 1b2 ionization. The calculated
binary to recoil peak ratio agrees very well with experiment

for the 2a1 channel, while our complex Kohn calculations
give ratios for the 1b2 and 1b1 + 3a1 cases that are somewhat
smaller than the measured values.

Our Coulomb-Born results show no recoil peaks when
the spatially averaged electron-nuclear attraction term is not
included. This behavior had already been seen in the original
1CW results reported in Ref. [21]. The recoil peaks do appear
in the 1CW results when the electron-nuclear interaction is
included, as found in the results reported in Refs. [6] and [22].
The orthogonalized Coulomb-Born results also show recoil
peaks in all channels, but they are significantly smaller than
those found in the other calculations. We note that all the
perturbative treatments give vanishingly small recoil peaks
for 2a1 ionization. Moreover, all the perturbative results for
this case had to be scaled by 0.25 to bring the magnitude
of the binary peak into agreement with the complex Kohn
results.

It is obvious that the momentum-transfer vector depends on
the angle between the incident and scattered electron momenta.
The previous calculations adopt the same kinematic conditions
as the experiments with the ejected electron angle fixed at
15◦. This choice results in momentum-transfer vectors of
magnitude ∼1.1 a.u. for each orbital channel. In Fig. 3, we
plot the TDCS, for incident and ejected electron energies fixed
at 250 and 10 eV, respectively, over a wide range (0.6–2.0) of
Q. For the 1b1 channel, the critical value of Q which marks
the onset of a splitting in the TDCS in the binary region occurs
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FIG. 2. (Color online) TDCS for electron-impact ionization of water. See text for description of kinematic conditions. The calculations
using the complex Kohn method (solid lines) are compared with the experimental results of Milne-Brownlie et al. (solid circles) [21].
Unnormalized experimental data has been scaled to Kohn results to obtain the best visual fit in the binary region. Also shown are Coulomb-Born
results with (dotted lines) and without (dashed lines) inclusion of electron-nuclear attraction term (see text), and Coulomb-Born results with
orthogonalization to bound ionized orbital (dashed-dot lines). All theoretical data in atomic units, where 1 a.u. = 1 bohr2/(sr2 hartree) =
1.028 × 10−18 cm2/(sr2eV). For 2a1 ionization, all Coulomb-Born results have been multiplied by 0.25.

near Q = 0.7 a.u., which is associated with a scattering angle
of 9.2◦. We also note that the ratio of binary to recoil peak
decreases from ∼2 to ∼1 as Q increases from 0.7 to 1.8. For
the 3a1 and 1b2 channels, the TDCS show split binary peaks

over the entire range of Q plotted. The 3a1 and 1b2 channels
are also characterized by a split recoil peak, which for the
1b2 channel disappears for values of Q less than 0.8. The
binary and recoil regions in the case of 2a1 ionization show no
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FIG. 3. (Color online) TDCS for electron-impact ionization of water as a function of ejected electron angle and Q. The incident and ejected
electron energies are fixed at 250 and 10 eV, respectively. Results are plotted, clockwise from upper left, for 1b1, 3a1, 1b2, and 2a1 channels.
Cross-section units as in Fig. 2.

splitting, but there are minor peaks on both sides of the recoil
region for that case.

We have used our calculated Born amplitudes in Eq. (16) to
evaluate singly differential ionization cross sections (SDCS) at
250, 500, and 1000 eV. Contributions from the 1b1, 3a1, 1b2,
and 2a1 ionization channels were included in computing
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FIG. 4. (Color online) SDCS for electron-impact ionization of
water. Curves with circles: calculated results; experimental results
(triangles) are from Ref. [23].

the SDCS. Our results are compared with experimental data
[23] in Fig. 4. Agreement is good. Finally, our SDCS were
numerically integrated to obtain total cross sections. The
results are given in Table II, along with data from several
experimental studies [23–25].

IV. DISCUSSION

We have outlined a procedure for calculating molecular
ionization cross sections by fast electron impact using the
complex Kohn formalism. “Fast” in the present context
means that the incident and scattered electrons are sufficiently
energetic for the Born approximation to be applicable. It
is difficult to give a precise definition of fast since it will
generally depend on the target and the process considered,

TABLE II. Total ionization cross sections (in units of 10−16 cm2).

Energy Calculated Experiment

250 2.16 2.1a 2.571b 1.73c

500 1.33 1.3a 1.713b 1.16c

1000 0.754 0.78a 1.026b 0.705c

aBolorizadeh and Rudd (Ref. [23]).
bRao, Iga, and Srivastava (Ref. [24]).
cItikawa and Mason (Ref. [25]).
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but it is reasonable to assume that a collision energy of
250 eV represents something of a lower limit of validity.
The formalism was illustrated with calculations on the water
molecule, where we find reasonably good agreement with
existing experiment. For these initial illustrative studies, we
have used a single-configuration SCF target wave function
and the separated-channel static-exchange approximation for
the final continuum channels. However, it is clear that coupled-
channel calculations with correlated initial target and final ion
wave functions can be accommodated using the complex Kohn

formalism and we intend to examine such effects in future
studies.
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