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All-order relativistic many-body theory of low-energy electron-atom scattering
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A generalization of the box-variational method is developed to describe particle scattering with the
Dirac equation. The method is applied to extract phase shifts from all-order single + double relativistic
many-body perturbation theory calculations of the electron-helium, electron-neon, and electron-krypton systems.
Comparisons with experimental elastic and momentum transfer cross sections are made. Agreement at the 1%
to 2% level is achieved for helium and neon. The scattering length for krypton is 4% smaller in magnitude than
experimental estimates derived from swarm experiments.
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I. INTRODUCTION

The box-variational method [1,2] is a very simple method
for solving the Schrödinger equation for scattering systems.
In this approach, the system is placed in an infinite wall
cavity of radius R and the wave function will satisfy the
conditions ψ(0) = ψ(R) = 0. The energies in the cavity En

for s-wave scattering can be used to determine the phase shifts
δ through the relation sin(knR + δn) = 0, where kn = √

2En.
This leads to the identity δn = nπ − R

√
2En. This approach

can be generalized to higher � partial waves with the general
boundary condition j�(knR) − tan(δn)n�(knR) = 0, where j�

and n� are spherical Bessel functions. The box-variational
method has been applied intermittently to solve the continuum
Schrödinger equation in a variety of contexts [3–8].

The increasing usage of B-spline methods as a numerical
workhorse for solving the Schrödinger and Dirac equations in
atomic physics [9–12] is interesting since B-spline boundary
conditions are compatible with the application of the box-
variational method. In this manuscript the ideas of the box-
variational method are applied to the description of low-energy
electron-atom scattering using the all-order single-double
implementation of relativistic many-body perturbation theory
(MBPT) [13,14]. In this method, all possible single and
double excitations from the Dirac-Fock (DF) wave function are
iterated to all orders of perturbation theory. Triple excitations
are included perturbatively. The radial parts of the single
electron states used in the calculation are represented by a
B-spline basis that is effectively complete. This gives a model
of electron-atom scattering that is underpinned by state of the
art atomic structure theory.

The major difference from previous applications of the box
variational method lies in the specification of the boundary
conditions. The natural boundary condition to choose for the
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Schrödinger equation is the condition ψ(R) = 0. However, this
boundary condition is not widely used for the Dirac equation.
Instead, one typically uses the boundary conditions of the
MIT bag model [9,15] which result in the large, P (r), and
small, Q(r), components being set equal at the boundary, i.e.,
P (R) = Q(R).

In this paper, detailed results for low-energy electron
scattering from three atoms, namely, helium, neon, and krypton
are presented. The calculations for helium were done as
a validation of the method while those on neon are in
excellent agreement with existing experimental cross sections.
The MBPT calculation underestimates experimental values
of the scattering length for krypton, obtained from swarm
experiments, by about 4%.

II. FORMALISM

A. Box calculations

The MIT–Notre Dame boundary conditions impose the
condition P (R) = Q(R). The conditions are applied to the
asymptotic form of the scattering wave functions. These are
written in the relativistic case [16] as

P (r) = krj�(kr) − tan(δ)krn�(kr) (1)

and

Q(r) = ck[krj�−1(kr) − tan(δ)krn�−1(kr)]

E + 2mec2
, κ = �,

= − ck[krj�+1(kr) − tan(δ)krn�+1(kr)]

E + 2mec2
, (2)

κ = −� − 1,

where j� and n� are spherical Bessel functions of the first and
second kind and where the total energy and wave number k

are related by

(E + mec
2)2 = p2c2 + m2

ec
4,

(3)
k = p =

√
E(E + 2mec2)/c.
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Applying the boundary conditions to a state with energy E

in a cavity of radius R leads to the relations

krj�(kR) − tan(δ)krn�(kR)

= −kc[kRj�−1(kR) − tan(δ)kRnl−1(kR)]

E + 2mec2
, κ > 0,

= kc[Rrj�+1(kR) − tan(δ)kRn�+1(kR)]

E + 2mec2
, κ < 0. (4)

Expressions for the tangent of the phase shift can then be
written as

tan(δ) = −kcj�−1(kR) − (E + 2mec
2)j�(kR)

−kcnl−1(kR) − (E + 2mec2)n�(kR)
, κ > 0,

= −kcj�+1(kR) + (E + 2mec
2)j�(kR)

−kcn�+1(kR) + (E + 2mec2)n�(kR)
, κ < 0.

(5)

Application of these results only gives the phase shift at
the cavity radius R. A correction was added to this phase
shift to estimate the r → ∞ phase shift. This correction was
determined by integrating the Dirac equation from r = R to
r = 10R in a −αd/(2r4) potential field, where αd is the static
dipole polarizability [17]. The correction was typically very
small, only altering the phase shift in the fifth significant digit.

B. The all-order many-body calculations

The energies of the electron + atom system were evaluated
using the single-double all-order version of relativistic MBPT
[13,14,18]. In this linearized coupled-cluster approach, all the
single and double (SD) excitations from the Dirac-Fock (DF)
wave function are iterated to all orders of perturbation theory.
The MBPT-SD wave function |�v〉 of the electron state v is
represented by the expansion

|�v〉 =
[

1 +
∑
ma

ρmaa
†
maa + 1

2

∑
mnab

ρmnaba
†
ma†

nabaa

+
∑
m�=v

ρmva
†
mav +

∑
mna

ρmnvaa
†
ma†

naaav

] ∣∣�(0)
v

〉
, (6)

where |�(0)
v 〉 is the lowest-order atomic state vector. The

quantities ρma and ρmv are single-excitation coefficients for the
core and “valence” electrons and ρmnab and ρmnva are double-
excitation coefficients for the core and valence electrons,
respectively; the indices m and n range over all possible
virtual states while the indices a and b range over all occupied
core states. The valence electron in this case is the scattering
electron. The equations for the correlation energy and the
excitation coefficients are solved iteratively for each electron
state needed for the current project, which is equivalent
to summing dominant many-body perturbation terms to all
orders. To ensure high numerical stability of the data for
different states, the iteration process was continued until the
relative change in the valence energy was less than 10−8.

This method was originally developed for the calculation of
the properties of alkali-metal atoms and other similar systems
with one valence electron. In the current implementation,
the single-particle wave functions are constructed for the

corresponding noble-gas atom. The radial parts of the single-
particle wave functions are expanded in terms of a large B-
spline basis and for all practical purposes this basis constituted
a complete set. Large basis sets are needed to ensure high
numerical accuracy. The size of the B-spline basis depended
on the cavity radius, with basis dimensions ranging from 50 to
100. The order of the B-spline basis was k = 13. All all-order
calculations were carried out with Lmax = 6 partial waves. To
evaluate the contribution of the higher partial waves, second-
order energy calculations were carried out with Lmax = 6 and
Lmax = 10 partial waves. The difference was added to all final
values. The size of the contribution from L > 10 partial waves
was estimated by extrapolating second-order results and was
found to be negligible.

We used two approaches that allowed us to incorporate
important triple excitations into the calculations. First, we
added the terms resulting from the triple excitations that
appear in the third-order perturbation theory. Such terms are
calculated using separated third-order energy code and are
added to the MBPT-SD results, the corresponding values are
labeled SDextra. In a second, more sophisticated approach [14],
the valence triple-excitation term

1

6

∑
mnrab

ρmnrvaba
†
ma†

na
†
r abaaav

∣∣�(0)
v

〉
(7)

is added to the expansion (6). Then the correlation energy and
single-excitation ρmv equations are modified perturbatively to
account for certain classes of triple excitations. This procedure
makes the SD energy complete in the third order and also
includes triple-excitation terms appearing in the fourth and
higher orders. This approach with its perturbative treatment of
triple excitations is termed the MBPT-SDpT method.

C. Interpolation of the phase shifts

Application of the box conditions only gives the phase
shifts at certain discrete energies in the continuum. The desired
outcome of any scattering calculation should be the determi-
nation of the phase shifts and the cross sections at any energy.
The approach adopted was to simply develop interpolating
functions that can give the phase shifts at any energy of interest.

The phase shifts themselves are not directly interpolated.
Rather the function used for the interpolations incorporates
information on the expected variation of the phase shifts
using modified effective range theory (MERT) [19–21]. This
approach has previously been utilized when creating an
interpolating function to give a usable representation of high
precision Kohn variational calculations of electron-helium
scattering [22,23].

As an example, consider the s-wave phase shift. A MERT
expansion for this phase shift can be written as

tan(δ) = −Ascatk

(
1 + 4

3
αdk

2 ln(k/D)

)
+ π

3
αdk

2 − Ek4,

(8)

where Ascat is the scattering length. Upon rearrangement, one
can define the function

w(k,δ) = − tan(δ) − Ek4 + π
3 αdk

2

k
[
1 + 4

3αdk2 ln(k/D)
] . (9)
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TABLE I. Interpolating functions w(δ,k) for the phase shifts for
each L value. Here αd gives the dipole polarizability. The w0 column
gives the value of w(δ,k) for the SDpT calculation in the k = 0 limit.
The p-wave interpolating function for krypton is defined differently
for j = 1/2 and j = 3/2.

L w(δ,k) w0 D E

e−-He αd = 1.383 760 79 a.u.

0 − tan(δ) − Ek4 + π

3 αdk
2

k
[
1 + 4

3 αdk2 ln(k/D)
] 1.189 0.780 0.400

1
arctan

(
π

15 αdk
2
) − δ

k3
0.039

2
tan(δ)

k2
0.0402

e−-Ne αd = 2.670 a.u.

0 − tan(δ) − Ek4 + π

3 αdk
2

k
[
1 + 4

3 αdk2 ln(k/D)
] 0.224 5.0 −2.8

1
arctan

(
π

15 αdk
2
) − δ

k3
2.55

2
tan(δ)

k2
0.0752

e−-Kr αd = 16.766 a.u.

0 − tan(δ) − Ek4 + π

3 αdk
2

k
[
1 + 4

3 αdk2 ln(k/D)
] −3.23 0.122 −15.0

1 (j =1/2)
arctan

(
π

15 αdk
2
) − δ

k3
17.6

1 (j =3/2)
arctan

(
π

15 αdk
2
) − δ

k3
18.4

2
arctan

(
π

105 αdk
2
) − δ

k3
0.600

3
tan(δ)

k2
0.156

This function varies less rapidly with k than the phase shift and
therefore is easier to interpolate. The interpolation was done
using natural cubic splines. The values of D and E are chosen
manually to make w(k,δ) roughly constant at the smallest
values of k. The phase shift can then be easily computed at
any k once a representation of w(k,δ) has been constructed.
A complete representation of the phase shift at all k depends
weakly on an estimate of the limiting form of the phase shift
as k → 0. The limiting value of w(k,δ) at k = 0 could be
estimated to a precision of better than 0.5% by examination of
w(k,δ) for the smallest values of k.

Table I gives details of the functions used to create
continuous functions of the phase shift as a function of
energy. These functions are reliant on values of the dipole
polarizability which were sourced from Ref. [17]. There were
no obvious problems arising from the use of interpolation and
the behavior of the interpolated phase shifts as a function of
energy was typically very smooth.

D. Cross sections

The total elastic, σT, and momentum transfer, σMT, cross
sections are calculated using formulas from Ref. [24],

namely,

σT = 4π

k2

∑
�=0

[(� + 1) sin2(δ+
� ) + � sin2(δ−

� )], (10)

σMT = 4π

k2

∑
�=0

(
(� + 1)(� + 2)

(2� + 3)
sin2(δ+

� − δ+
�+1)

+ �(� + 1)

(2� + 1)
sin2(δ−

� − δ−
�+1)

+ (� + 1)

(2� + 1)(2� + 3)
sin2(δ+

� − δ−
�+1)

)
. (11)

In these equations, δ+
� refers to the phase shift with j = � + 1

2
and δ−

� refers to the phase shift with j = � − 1
2 .

The low-� phase shifts were obtained by explicit MBPT-
SDpT calculations. Higher-� phase shifts are given by the
MERT formula [19–21]:

tan(δ�) = παdk
2

(2� − 1)(2� + 1)(2� + 3)
. (12)

III. HELIUM

The first calculation performed was a test calculation on the
electron-helium system. Previous calculations include those
using the R-matrix [25], multiconfiguration Hartree-Fock
(MCHF) [26] and Kohn-variational approaches [22]. The Kohn
variational (KV) calculations of Nesbet have been accepted as
giving a benchmark set of theoretical phase shifts that are
compatible with experimental data [27,28].

There have been numerous experiments on the electron-
helium system at energies below the first excitation threshold.
Most of the experimental elastic cross-section data referenced
in the present manuscript are taken from transmission experi-
ments which measure the attenuation of an electron beam as it
passes through a gas cell [29–31]. Electron swarm experiments
that measure the drift velocity generate a momentum transfer
cross section by an analysis involving the solution of the
Boltzmann equation [32,33].

The MBPT-SDpT calculations were performed in a cavity
of radius 32.741 081 a0. The long-range correction to the phase
shift made by integrating the −αd/(2r4) polarization potential
outwards from R was always less than 0.0001 rad with the
correction being largest at the smallest energies.

Figure 1 plots δ/k vs k for the s-wave phase-shift and
compares the results with the KV phase shifts [22]. The KV
phase shift curve was computed from the spline function
presented in Ref. [22] which was based on the explicitly
calculated KV phase shifts given at intervals of 0.10 a−1

0 . The
s-wave phase shifts are also detailed at momentum intervals
of 0.10 a−1

0 in Table II. For all practical purposes, the s-wave
MBPT-SDpT phase shifts are identical with the KV phase
shifts, with the one exception occurring at k = 0.30 a−1

0 , where
the KV phase shift is 0.0015 rad different from the SDpT phase
shift. The KV phase shift shown in Fig. 1 appears to have an
irregularity at k = 0.30 a−1

0 . This irregularity is also evident in
the coefficients of the spline representation used to construct
a continuous presentation of the KV phase shift [22]. There
is another irregularity in the KV phase shift at k = 0.60 a−1

0 .
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FIG. 1. (Color online) The ratio of the s-wave phase shift (in units
of rad) divided by k (in units of a−1

0 ) for e−-He scattering. Phase shifts
from a KV calculation [22] are also shown.

But, taken as a whole, the comparisons for the s-wave helium
phase shift validate the methodology used to extract the phase
shifts from the MBPT energies.

The low-energy s, p, and d wave shifts are presented in
Table II. The SDpT calculations actually give slightly different
phase shifts for the two different members of the spin-orbit
doublet. However, the largest difference between the p1/2

and p3/2 phase shifts was only 0.00002 rad. So the approach
adopted here was to simply average the phase shifts of the
spin-orbit doublets. The MBPT-SDpT p-wave phase shifts
are about 1%–4% smaller than the KV phase shifts, with the
differences being largest at the lowest energies. These minor
differences in the p-wave phase shifts have minimal impact
on the cross section. The elastic cross section is dominated by
s-wave scattering and even at k = 1.0 a−1

0 the s-wave cross
section makes up 85% of the cross section. The SDpT phase
shifts are tabulated on a momentum grid with a spacing of
0.01 a−1

0 in the Supplemental Material [34].
The momentum transfer cross section σMT for helium is

plotted in Fig. 2. The experimental momentum transfer cross
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FIG. 2. (Color online) The momentum transfer cross section (in
units of πa2

0 ) as a function of momentum (in units of a−1
0 ) for

low-energy electron-He scattering. The MBPT-SDpT and KV cross
sections are almost indistinguishable at the scale at which the graph
is drawn.

section is that of the Australian National University (ANU)
group [32] and was obtained by analyzing drift velocity
measurements. The present momentum transfer cross section
shown in Fig. 2 is barely different from the KV and the ANU
σMT. At the lowest energies, the SDpT cross section is about
1%–2% larger than the ANU and KV σMT.

The SDpT momentum transfer cross section was used as
input into a program to solve the Boltzmann equation in the
two-term approximation and subsequently to compute the
drift velocities for an electron swarm in helium gas. The
drift velocities were then compared with the 77 K values
from the ANU group [32]. The root-mean-square difference
for values of E/N (the electric field to atom density ratio)
ranging from 0.008 Townsend (Td) to 1.70 Td was 1.0% with a
maximum discrepancy at any single E/N value not exceeding
2.0%. All of the discrepancies exceeding 1.0% occurred for

TABLE II. The MBPT-SDpT phase shifts (in units of rad) and cross sections (in units of πa2
0 ) for e−-He scattering. Phase shifts from a

Kohn variational (KV) calculation [22] and the phase shifts for d-wave scattering calculated with MERT formula are also listed. The first row
for the δ0 column gives the scattering length (in units of a0).

δ0 δ1 δ2

k SDpT KV SDpT KV MERT SDpT MERT σT σMT

0.00 1.189 1.1835 5.6549 5.6549
0.05 −0.062 45 −0.062 07 0.000 727 0.000 746 0.000 724 0.000 100 0.000 104 6.2350 6.3792
0.10 −0.1286 −0.1282 0.002 96 0.003 08 0.002 90 0.000 40 0.000 414 6.5882 6.8867
0.20 −0.2657 −0.2655 0.012 47 0.013 11 0.011 59 0.001 59 0.001 66 6.9425 7.5613
0.30 −0.4037 −0.4021 0.029 29 0.030 63 0.026 08 0.003 55 0.003 73 6.9797 7.8834
0.40 −0.5387 −0.5388 0.053 51 0.055 19 0.046 34 0.006 32 0.006 62 6.8093 7.9032
0.50 −0.6684 −0.6684 0.084 22 0.086 05 0.072 32 0.009 93 0.010 35 6.5077 7.6555
0.60 −0.7913 −0.7930 0.1196 0.1209 0.1040 0.014 41 0.014 90 6.1279 7.1839
0.70 −0.9064 −0.9067 0.1572 0.1588 0.1411 0.019 79 0.020 28 5.7043 6.5486
0.80 −1.0133 −1.0155 0.1947 0.1960 0.1834 0.026 06 0.026 49 5.2603 5.8212
0.90 −1.1117 −1.1163 0.2300 0.2305 0.2306 0.03319 0.033 52 4.8124 5.0694
1.00 −1.2015 −1.2056 0.2620 0.2626 0.2821 0.04115 0.041 38 4.3752 4.3482
1.10 −1.2817 −1.2848 0.2903 0.2932 0.3373 0.04992 0.050 05 3.9604 3.6929

012701-4



ALL-ORDER RELATIVISTIC MANY-BODY THEORY OF . . . PHYSICAL REVIEW A 89, 012701 (2014)

TABLE III. Various estimates of the scattering length, Ascat (in
units of a0) for e−-He scattering. A MERT analysis to extrapolate
from finite energies was common to all experimental estimates of the
phase shifts.

Ascat (units of a0)

HF 1.4825
DF 1.4824
MBPT-SD 1.184
MBPT-SDfinal 1.187
MBPT-SDpT 1.189
KV [22] 1.1835
MCHF [26] 1.1784
R-matrix [25] 1.189
Polarized orbital [35] 1.1575
Expt. (Time of flight, ANU) σT [29] 1.16
Expt. (Drift velocity, ANU) σMT [32] 1.18(2)
Expt. (Angular distribution, Kaiserslautern) [36] 1.172
Expt. (Time of flight, Bielefeld) σT [31] 1.195

E/N < 0.05 Td where the mean energy of the swarm was
smaller than 0.038 eV.

Scattering lengths from various sources are listed in
Table III. Almost all of these values used a MERT analysis
to estimate the scattering length from data at finite energies.
The one exception was the MCHF calculation which was an
explicit calculation at zero energy [26]. The most accurate
experimental scattering lengths are expected to be those
obtained by the analysis of swarm experiments that measure
the drift velocity. Such experiments involve electron swarms
at mean electron energies [32,33] lower than those of any
other experiment. The value attributed to the drift velocity
experiment in Table III, namely, 1.18(2) a0 was taken from
a fit of a MERT expansion to the momentum transfer cross
section for energies below 0.20 eV [32]. The present SDpT
scattering length was 1.189 a0 and we have already noted that
it is slightly larger than the experimental σMT at the lowest
energies. The unimportance of relativistic effects for this
system is demonstrated by the very small difference between
the scattering lengths obtained in the DF and Hartree-Fock
(HF) approximations.

An estimate of the overall uncertainty can be deduced from
the k = 0.20 a−1

0 s-wave phase shift of −0.2650 rad obtained
from the confined variational method [37]. This phase shift is
0.0005 rad larger than the KV phase shift and 0.000 65 rad
larger than the MBPT-SDpT phase shift. It was taken from a
variational calculation with correlated basis functions and is
the most accurate phase so far obtained from an e−-helium
system.

Calculations of the total elastic cross section σT are
compared with experimental measurements in Fig. 3. There
have been many experimental investigations of the low-energy
helium cross section and we have been selective about which
measurements to depict. At low energies, determination of the
electron energy is best done by the time of flight technique
(TOF) so cross sections from the ANU [29] and Bielefeld [31]
groups are shown. The transmission experiment of the Indiana
group [30] is also plotted in Fig. 3. There is a tendency for the
experimental cross sections to be too small by a few percent
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FIG. 3. (Color online) The elastic cross section (in units of πa2
0 )

as a function of momentum (in units of a−1
0 ) for low-energy electron-

He scattering. The MBPT-SDpT and KV cross sections are almost
indistinguishable at the scale at which the graph is drawn.

for k > 0.40 a−1
0 . However, the experimental uncertainties

associated with these measurements are typically between
2% and 5%, and there is effectively no discrepancy between
theory and experiment once these uncertainties are taken into
consideration.

To summarize, the MBPT-SDpT cross sections are consis-
tent at a 1%–2% level of agreement with the high-accuracy KV
calculations and with the most accurate experimental elastic
and momentum transfer sections.

IV. NEON

This electron-neon system is an 11-electron system that
can be expected to be influenced by many-body effects.
There have been a number of calculations [38,41,51–53] and
experiments [31,40,47,49,50,54,55]. The MCHF calculation
was a completely ab initio calculation focused on describing
low-energy elastic scattering [38,53]. The B-spline R-matrix
(BSR) calculation [41,42] was also ab initio and used a
very large channel space, but was not optimized to describe
low-energy scattering. The polarized orbital calculation used
an ab initio polarization potential which was scaled so that it
was consistent with the correct dipole polarizability at long
distances from the nucleus [44,52].

The radius of the cavity was 48.0 a0. The lowest momentum
for any of the box states was approximately 0.066 a−1

0 . Phase
shifts were explicitly calculated for the s, p1/2,3/2, and d3/2,5/2

partial waves. The phase shifts for � � 3 were computed using
Eq. (12). Spin-orbit splitting of the phase shifts was generally
small; at k = 0.7 a−1

0 it was 1.5% for the p wave and 0.15%
for the d wave.

Table IV reports estimates of the scattering lengths resulting
from various calculations and experiments. The difference
between a relativistic and a nonrelativistic calculation of the
scattering length in the DF and HF approximations was only
0.001 a0. The inclusion of projectile-target correlations signif-
icantly reduced the scattering length. The positive scattering
length indicates an s-wave interaction that is repulsive. The
most accurate estimate of the scattering length, 0.214(5) a0, is
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TABLE IV. The scattering length (in units of a0) for e−-Ne
scattering. Apart from a few exceptions [38,39], the scattering lengths
used a MERT analysis to convert finite-energy data to zero energy.

Ascat (units of a0)

HF 1.0641
DF 1.0630
MBPT-SD 0.252
MBPT-SDextra 0.251
MBPT-SDpT 0.224
MCHF [38] 0.2218
Model potential fit to expt. σMT [39] 0.249
Phase shift analysis [43] 0.22
Polarized orbital [44] 0.201
Expt. (condctivity ratio, Sashkatchewan) σMT [45] 0.20
Expt. (drift velocity, ANU) σMT [40] 0.24
Expt. (microwave absorptivity, Paris) σMT [46] 0.24
Expt. (beam attenuation, Lockheed) σT [47] 0.30
Expt. (drift velocity, ANU) σMT [48] 0.214(5)
Expt. (time of flight, ANU) σT [49] 0.212
Expt. (time of flight, Bielefeld) σT [50] 0.217(6)

that deduced [48] from the drift velocity data of the ANU group
[40]. MERT analyses of elastic cross-section data obtained
from the time of flight method, namely, 0.212 a0 [49] and
0.217 a0 [34,44,50], are compatible with this drift velocity
estimate. The MBPT-SDpT scattering length of 0.224 a0 lies
within 0.01 a0 of these estimates and is about 0.002 a0 larger
than the MCHF scattering length. No scattering length was
reported for the BSR calculation.

Phases shifts and the elastic and momentum transfer cross
sections are listed in Table V. The phase shifts are tabulated on
a denser momentum grid in the Supplemental Material [34].
The largest momentum for which data are given is at k = 0.86
a−1

0 as this is just below the energy for which stable energies
could be determined for the s wave. The MCHF s-wave phase
shifts [38,53] are slightly less negative than the SDpT phase
shifts.
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FIG. 4. (Color online) The momentum transfer cross section (in
units of πa2

0 ) as a function of momentum (in units of a−1
0 ) for low-

energy electron-Ne scattering.

Figure 4 shows the momentum transfer cross section. The
presentation of data from other sources has been selective
to avoid cluttering the graph. The ANU experimental σMT

[40,48] was derived from drift velocity measurements that
were accurate to better than 1%. The σMT from the University
of Rikkyo was derived using drift velocity and characteristic
energy measurements [55]. There are noticeable irregularities
in the energy dependence of the Rikkyo σMT. The MCHF
and BSR σMT are also depicted in Fig. 4. The MBPT-SDpT
cross section is almost indistinguishable from the MCHF
σMT over much of the momentum range shown in Fig. 4.
Both MCHF and MBPT-SDpT cross sections are in close
agreement with the experimental ANU σMT for almost all
momenta. The only visible difference occurs for k > 0.5 a−1

0 ,
where the MCHF σMT is slightly smaller than the present and
experimental σMT. The Rikkyo cross section is significantly
larger than the ANU σMT over a couple of momentum ranges.
The BSR calculation does not have the same level of agreement
with the experimental ANU σMT. The MCHF calculation was
specifically designed to address low-energy scattering while

TABLE V. The MBPT-SDpT phase shifts (in units of rad) and cross sections (in units of πa2
0 ) for e−-Ne scattering. Phase shifts from an

MCHF calculation [38,53] are also listed. The first row for the δ0 column gives the scattering length (in units of a0).

δ0 δ1 δ2

k Present MCHF p 1
2

p 3
2

MCHF d 3
2

d 5
2

MCHF MERT σT σMT

0 0.224 0.2218 0.201 0.201
0.05 −0.017 43 0.001 09 0.001 09 0.000 189 0.000 189 0.000 200 0.4924 0.5514
0.1 −0.044 69 −0.0448 0.003 27 0.003 26 0.0034 0.000 759 0.000 759 0.0008 0.000 799 0.8116 0.9215
0.2 −0.1187 −0.1175 0.005 65 0.005 52 0.0065 0.003 08 0.003 08 0.0030 0.003 20 1.424 1.538
0.3 −0.2096 −0.2086 −0.001 39 −0.001 73 0.0004 0.007 18 0.007 18 0.0070 0.007 19 1.955 1.905
0.4 −0.3101 −0.3082 −0.021 50 −0.022 17 −0.0177 0.013 49 0.013 50 0.0130 0.012 78 2.422 2.089
0.5 −0.4162 −0.4118 −0.054 24 −0.055 28 −0.0482 0.022 65 0.022 67 0.0215 0.019 97 2.854 2.201
0.6 −0.5247 −0.096 93 −0.098 36 0.035 33 0.035 37 0.028 75 3.254 2.310
0.7 −0.6337 −0.6259 −0.1464 −0.1482 −0.1358 0.052 10 0.052 18 0.0486 0.039 12 3.608 2.443
0.8 −0.7427 −0.7327 −0.1982 −0.2006 −0.1872 0.073 40 0.073 50 0.0683 0.5109 3.903 2.603
0.86 −0.7850 −0.2133 −0.2218 0.088 68 0.088 65 0.059 01 3.839 2.576
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FIG. 5. (Color online) The elastic cross section (in units of πa2
0 )

as a function of momentum (in units of a−1
0 ) for low-energy electron-

neon scattering. The MCHF and MBPT-SDpT cross sections are
practically identical on the scale of the diagram. The cross sections
attributed to the Bielefeld group have not been published by that
group but they have previously been embedded in graphs compar-
ing experimental cross sections with polarized orbital calculations
[34,44,50].

the BSR calculation aimed to describe scattering over a much
larger energy range.

The largest discrepancy between the MBPT-SDpT and
ANU σMT [40] was only 4.5% and occurred at k = 0.0717
a−1

0 . However, a close examination of the ANU σMT revealed
a slight dip in the shape of their σMT near this momentum
that is most likely a consequence of the method used to
construct the σMT, i.e., manual adjustment of individual
cross-section values. A better test of the MBPT-SDpT σMT

was to compute the drift velocities for an electron swarm
in neon gas. The Boltzmann equation was solved using
the two-term approximation. The drift velocities were then
compared with the 77 K values from the ANU group [40]. The
root-mean-square difference for values of E/N ranging from
0.002 to 1.70 Td was 1.2% with a maximum discrepancy at any
single E/N value not exceeding 2.0%. All of the discrepancies
exceeding 1.0% occurred for E/N < 0.005 Td where the
mean energy of the swarm was smaller than 0.070 eV.

The elastic cross section is shown in Fig. 5. It is very
difficult to distinguish between the MCHF and MBPT-SDpT
σT cross sections. The MBPT-SDpT σT tracks the TOF cross
sections very closely but is marginally larger (≈5% or less)
for k < 0.30 a−1

0 . The experimental uncertainties for the TOF
cross sections are typically 4%–5%. Data from the Bielefeld
group [34,44,50] are only available for k < 0.30 a−1

0 , but are
in almost perfect agreement with the ANU TOF experiment
[49]. That the MBPT-SDpT cross section is marginally larger
than the ANU and Bielefeld σT at the lowest momentum is
consistent with the scattering lengths given in Table IV.

The overall summary for low-energy neon scattering is
that there are two calculations, MBPT-SDpT and MCHF,
and three experiments, the drift velocity at ANU and the
TOF experiments at ANU and Bielefeld that give a set of
cross sections that are generally consistent at a 1%–2% level
of agreement once experimental uncertainties are taken into
account.

TABLE VI. The scattering length (in units of a0) for e−-Kr
scattering. Apart from a few exceptions [64,72], the scattering lengths
were determined by a MERT analysis to an experimental or theoretical
data set.

Method Ascat (units of a0)

HF 1.592
DF 1.500
MBPT-SD −4.18
MBPT-SDextra −3.84
MBPT-SDpT −3.23
BSR [42,72] −3.72
Polarized orbital [71] −3.10
Expt. (attenuation, KEK) σT [61] −3.06(2)
Expt. (TOF, ANU) σT [21,62] −3.28
Expt. (drift velocity, Westinghouse) σMT [75] −3.32
Expt. (drift velocity, ANU) σMT [64,67] −3.353
Expt. (drift velocity, ORNL) σMT [73] −3.36(3)
Expt. (drift velocity, ANU) σMT [64] −3.434
Expt. (angular distribution, Kaiserslautern) σT [57] −3.478

V. KRYPTON

Krypton is an atom with 36 electrons and the electron
collision dynamics will be influenced by direct and indirect
relativistic effects. Direct effects include modifications to the
scattering wave function due to relativistic effects resulting
from the effective interaction between the target and scattering
electrons. Indirect effects include a target wave function that is
different due to relativistic effects. There have been a number
of experimental determinations of the elastic cross section
[34,50,56–62] and the momentum transfer cross section [63–
67]. Of the many calculations of the electron-krypton system
[56,68–72], the BSR calculation [42,72] is the most complete
ab initio calculation. The BSR calculation was explicitly
relativistic, being based on the Dirac equation. The BSR
calculation employed a very large channel space, but was not
optimized to describe low-energy scattering.

The cavity radius chosen for the MBPT calculations was
60.0 a0. The lowest-energy state for this atom was at a
momentum of k ≈ 0.050 a−1

0 .
Scattering lengths are presented in Table VI. Once again,

an indication of the impact of a relativistic Hamiltonian
can be gained from a comparison between the DF and HF
scattering lengths. The difference was 0.10 a0. The polarization
interaction leads to the effective electron-krypton interaction
becoming significantly more attractive. The three different
MBPT calculations gave values between −3.23 and −4.18 a0,
with the SDpT value being −3.23 a0.

On the experimental side, scattering lengths have been
estimated by MERT analysis of the total elastic and momentum
transfer cross sections. There have been two analyses where
MERT parameters were used to fit drift velocities for Kr-H2

mixtures measured at ANU [66,67]. The most complete
analysis using ANU data [67] gave −3.353 a0 for the scattering
length. An analysis of drift velocity measurements for pure Kr
from Oak Ridge National Laboratory (ORNL) gave −3.36(3)
a0 [73]. The functional form of the MERT expressions used to
extract the scattering length is important and expressions better
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FIG. 6. (Color online) The elastic cross section (in units of πa2
0 )

as a function of momentum (in units of a−1
0 ) for low-energy electron-

krypton scattering. The cross sections attributed to the Bielefeld group
have not been published by that group but they have previously
been embedded in graphs comparing experimental cross sections
with polarized orbital calculations [34,50,56].

able to reproduce the behavior of short-range interactions are
integral to performing the MERT analysis [21]. For example,
the scattering length changed from −3.19 a0 to −3.28 a0

when the MERT expression for the p wave was modified
to include two (rather than one) adjustable parameters in an
analysis of the ANU σT [21,62]. The scattering length obtained
from the phase shift analysis of low-energy Kr differential
cross sections [57] used a MERT expression that was not
accurate over the energy range over which it was applied
[21]. A scattering length of −3.06(2) a0 was obtained from
the σT experiment at the High Energy Accelerator Research
Organization located in Tsukuba, Japan (KEK) [61]. The KEK
experiment produces electrons with energies as low as 14 meV
by using a synchrotron to photoionize argon atoms. The
scattering length from this experiment is smaller in magnitude
than that of any other experiment and can be regarded as an
outlier. It is worth noting that the electron-argon cross section
has also been measured at KEK and the KEK scattering length
was also lower in magnitude than most values derived from
experiment [61].

The electron-krypton σT shown in Fig. 6 varies rapidly at
the low energies below the deep Ramsauer-Townsend (RT)
minimum. Besides the SDpT σT, cross sections from the BSR
calculation [42,74] are also displayed. The BSR calculation is
fully ab initio and used a very large channel space, but was not
optimized to describe low-energy scattering.

The BSR calculation tends to overestimate the elastic cross
section at energies below the RT minimum while the SDpT
cross section tends to underestimate the elastic cross section
at these energies. The shape of the KEK σT at the lowest
energies is quite unusual. The KEK σT is in good agreement
with the MBPT-SDpT σT for k ∈ [0.05,0.12] a−1

0 but falls
below the MBPT-SDpT σT for k < 0.05 a−1

0 and is larger than
the MBPT-SDpT σT for k ∈ [0.15,0.22] a−1

0 . The constraints
imposed by effective range theory on the energy dependence
of the low-energy phase shifts suggest that the KEK σT should
be treated with caution.
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FIG. 7. (Color online) The momentum transfer cross section (in
units of πa2

0 ) as a function of momentum (in units of a−1
0 ) for low-

energy electron-krypton scattering.

The SDpT calculation gives the Ramsauer minimum at an
energy lower than that of any of the cross sections shown in
Fig. 6. This is consistent with the SDpT calculation having
a scattering length that is smaller in magnitude. There is
a tendency for differences between the BSR and SDpT σT

to vanish at energies above the Ramsauer minimum. This
cancellation of differences was also apparent in comparisons of
the SDpT, SD, and SDextra σT cross sections. At k = 0.5 a−1

0 ,
the elastic cross sections are 11.06, 11.16, and 10.93 πa2

0 ,
respectively, a variation of only 2%. The variation amongst
these cross sections at the E = 0 threshold is about 40%.

Comparisons with the momentum transfer cross section in
Fig. 7 show that the SDpT σMT tends to underestimate the
experimental data from the ANU group [67] while the BSR
σMT tends to overestimate the experimental data at energies
below the RT minimum. However, the BSR and SDpT σMT

tend to be in close agreement at energies above the RT
minimum. The BSR and SDpT σMT are also in close agreement
with the experimental values from the ANU and ORNL groups
above the RT minimum.

Phase shifts for the individual partial waves are tabulated
in Table VII. The s-wave and p-wave phase shifts both go
through zero for momentum between 0.2 and 0.3 a−1

0 , and
this contributes to the depth of the Ramsauer minimum. The
phase shifts are tabulated on a denser momentum grid in the
Supplemental Material [34].

Our overall summation for krypton is that the SDpT
calculation tends to underestimate the scattering length by
about 4%. The 25% differences between the SD, SDextra, and
SDpT scattering lengths indicate that triple excitations have a
significant impact on the scattering length. Comparisons with
the BSR cross sections and experimental cross sections suggest
a high degree of consistency for energies from 1 to 7 eV, with
the outlier being the ANU TOF cross sections that are about
25% smaller than most other cross sections.

VI. PERSPECTIVES AND CONCLUSIONS

The low-energy phase shifts for electron scattering from
helium, neon, and krypton have been computed with the all-
order single-double implementation of relativistic many-body
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TABLE VII. The MBPT-SDpT phase shifts (in units of rad) and cross sections (in units of πa2
0 ) for e−-Kr scattering. The first row for the

δ0 column gives the scattering length (in units of a0).

δ0 δ1 δ2 δ3

k s p 1
2

p 3
2

d 3
2

d 5
2

f 5
2

f 7
2

MERT σT σMT

0 −3.23 41.73 41.73
0.05 0.1082 0.067 23 0.066 15 0.001 20 0.001 20 0.000 390 0.000 390 0.000 418 18.90 16.55
0.1 0.1251 0.019 91 0.019 06 0.004 73 0.004 73 0.001 56 0.001 56 0.001 67 6.743 4.643
0.2 0.019 93 0.032 96 0.027 56 0.020 24 0.020 29 0.006 25 0.006 25 0.006 69 0.5898 0.0931
0.3 −0.1548 −0.027 65 −0.015 65 0.052 13 0.052 45 0.014 22 0.014 22 0.015 05 1.877 1.481
0.4 −0.3500 −0.086 58 −0.1073 0.1124 0.1135 0.025 82 0.025 84 0.026 75 5.635 4.371
0.5 −0.5501 −0.2012 −0.2290 0.2196 0.2220 0.041 84 0.041 91 0.041 80 11.06 9.081
0.6 −0.7503 −0.3321 −0.3655 0.3936 0.3972 0.063 69 0.063 87 0.060 20 18.27 15.58
0.64 −0.8272 −0.3816 −0.4176 0.4828 0.4863 0.074 46 0.074 67 0.068 49 21.43 18.17

perturbation theory. This represents the application of an
approach to the description of atomic structure that has
been very successful in describing single-electron atoms and
ions. These phase shifts were computed without a single
modification of the program that has been used to compute
wave functions and expectation values for a number of atoms
and ions [14]. The electron-atom scattering problem is more
challenging, one reason being that the polarizabilities of the
targets are all larger than the polarizabilities of corresponding
isoelectronic alkali-metal ions. Consequently, correlation ef-
fects are stronger for the electron-atom scattering problem
than for the corresponding electron-ion structure problem.
However, the low-energy MBPT-SDpT cross sections are in
good agreement with experiment. The scattering lengths for the
electron-helium and electron-neon systems lie within 0.01 a0

of the scattering lengths derived from the analysis of swarm
experiments. The same level of agreement is not achieved for
krypton, but here the difference from experiment is still only
4%. Previously, the most sophisticated ab initio calculation,
the BSR calculation [42,72], gave a scattering length that was
10% larger than experiment.

Examination of the higher-� phase shifts reveals some
interesting features. At the lowest energies for the higher-�
partial waves, one expects calculated phase shifts to converge
to the MERT formula. However, this does not occur. For
helium, the SDpT d-wave phase shifts are slightly smaller
than the MERT phase shifts. The same principle applies for
d-wave phase shifts for k � 0.3 a−1

0 for neon. A similar
result occurs for the f -wave phase shifts for krypton. At k =
0.3a−1

0 , the SDpT phase shift is 0.0142 rad while the MERT
expression gives 0.0150 rad. These low-energy limitations in
the higher-� SDpT phase shifts do not have much impact on
the cross sections. But they do indicate that a theoretical
methodology that includes triple excitations perturbatively
does not capture 100% of the electron-atom polarization
interaction.

While the present approach is restricted to energies below
the first ionization threshold, this is possibly the most interest-
ing energy region since the electron-atom cross section is most
sensitive to the fine details of the electron-atom interaction
at these energies. The scattering length of course is a very
useful parameter with which to characterise the electron-atom
interaction. The extension of the method to other rare gas
systems, such as Ar, Xe, and Rn would be straightforward. The
very-low-energy scattering of electrons from the alkali metals
in the energy region between the ns and np thresholds would
also be straightforward using the recently developed config-
uration interaction plus MBPT or configuration interaction
plus all-order methods [76–78]. Application to energy regions
where inelastic events are possible would need modifications
of the underlying atomic structure program.

The present calculations to some extent sit outside the
mainstream of the most recent electron scattering research.
There has been more activity in developing theories that do
a reasonable job of modeling excitation and ionization cross
sections over a large energy range. The emphasis had been
more on describing the excitations (including ionization) than
purely elastic scattering. However, the very-low-energy region
is the energy region that is the most sensitive to the fine details
of the electron-atom interaction. An interesting challenge for
the future will be the development of a fully ab initio computa-
tional procedure that is demonstrably converged with respect to
numerical (e.g., basis set) aspects and is capable of predicting
the scattering lengths for the rare gases to a precision of 1%.
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