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Dual-kinetic-balance approach to the Dirac equation for axially symmetric systems:
Application to static and time-dependent fields
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The dual-kinetic-balance (DKB) technique was previously developed to eliminate spurious states in the
finite-basis-set-based solution of the Dirac equation in central fields. In the present paper, it is extended to the
Dirac equation for systems with axial symmetry. The efficiency of the method is demonstrated by the calculation
of the energy spectra of hydrogenlike ions in the presence of static uniform electric or magnetic fields. In addition,
the DKB basis set is implemented to solve the time-dependent Dirac equation making use of the split-operator
technique. The excitation and ionization probabilities for the hydrogenlike argon and tin ions exposed to laser
pulses are evaluated.
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I. INTRODUCTION

The finite-basis-set methods are widely used in atomic,
molecular, and solid state physics. These methods generally
possess a high level of numerical efficiency that includes
fast growth of the accuracy with increasing the number of
basis functions. It is known, however, that the straightforward
application of this kind of method to the Dirac equation leads
to appearance of so-called spurious states (see Refs. [1–10] and
references therein). As is shown in Refs. [7,8], the spurious
states originate from the restriction of the basis set to a finite
number of functions. Several methods have been developed to
solve this problem in the case of spherical symmetry. Among
them is the well-known kinetic balance method [11–16] that
implies the construction of the lower-component basis func-
tions by applying the nonrelativistic limit of the radial Dirac
operator to the upper component basis functions. Namely, for
a given number of the one-component radial basis functions
πi(r), the kinetically balanced radial Dirac basis set is formed
by the two-component functions (πi,0) and (0,D†πi), where
D = (1/2mc)(−d/dr + κ/r) and κ is the Dirac angular
quantum number. The completeness of such a basis is
studied in Ref. [16]. In Refs. [17,18], the basis is composed
of the Gaussian spinors satisfying the boundary conditions
for the case of the finite nucleus. The Gaussian spinors obey
the kinetic-balance condition (except for the nonrelativistic
limit). The advantage of these approaches is a high accuracy
in calculating the bound-state energies. However, since the ki-
netic balance method violates the symmetry in the treatment of
the positive- and negative-energy states, the application of this
technique can be rather problematic if the contribution of the
negative-energy continuum is significant. In particular, it takes
place in calculations of the QED effects (e.g., for precise calcu-
lations of the g factor). An effective and easily implementable
method to get rid of the spurious states keeping the symmetry
between the electron and the positron states is proposed in
Ref. [7]. In this method, which is called the dual-kinetic-
balance (DKB) approach, the radial Dirac basis set is formed
by the two-component functions (πi,D

†πi) and (−Dπi,πi).
The efficiency of the DKB method has been proven by the
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calculations of various relativistic and QED effects in atomic
systems [19–28]. In the present work, the DKB method is gen-
eralized to the Dirac equation for systems with axial symmetry.

At first, the finite-basis-set method is developed for a
stationary Dirac equation with axially symmetric potential.
The basis set is constructed from the one-component basis
functions of radial and angular variables and transformed to the
DKB form. To test the procedure, the spectra of hydrogenlike
ions are obtained with making no use of the spherical symme-
try of these ions. It is shown that the DKB approach allows
one to get rid of the spurious states while retaining the proper
energy spectrum. To demonstrate the efficiency of the method,
the spectra of hydrogenlike ions in strong uniform electric and
magnetic fields are calculated. The DKB approach does elim-
inate the spurious solutions in these cases as well. The results
for the Zeeman and Stark shifts of the levels with n = 1 for Z =
1, 18, 50, and 92 are compared with those of the independent
relativistic calculations based on the perturbation theory.

The developed method has a wide range of possible
applications. In particular, it can be used for calculations of
the Zeeman effect, including linear (g factor) and nonlinear
contributions in magnetic fields. The latter appears to be
important for middle-Z boronlike ions at the present level
of experimental accuracy [29]. In this respect, the DKB
method represents a competitive alternative to the traditionally
employed perturbation theory.

The time-dependent problems have been drawing much
more attention during the past few years due to the rapid devel-
opment of laser technologies. There are several state-of-the-art
laser facilities operating nowadays (see, e.g., Ref. [30]) that
provide extremely high intensities or frequencies of radiation.
Thus the processes involving the strong-field ionization and
excitation are of great interest [31–36]. Highly charged ions are
among the most interesting objects that can be experimentally
studied with these lasers. The theoretical treatment of highly
charged ions exposed to strong laser fields requires fully
relativistic consideration. Thus the time-dependent Dirac
equation is to be solved. Within the mostly relevant dipole
approximation and for the linearly polarized laser fields, these
problems possess axial symmetry and the solution can be
based on the approach developed in the present paper for
the stationary Dirac equation. The particular scheme of the
solution of the time-dependent Dirac equation is based on the
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split-operator technique and requires some transformations of
the matrices. The developed technique is applied to calculate
the excitation probabilities for hydrogenlike argon ions and
the ionization probabilities for hydrogenlike tin ions exposed
to various intense laser pulses. Some of the obtained results
for the excitation probabilities are compared with those of the
independent calculation (based on the first-order nonstationary
perturbation theory). The results for the ionization probability
dependence on the laser wavelength are compared with the
corresponding data from Ref. [36].

Throughout the paper we assume � = 1.

II. STATIONARY DIRAC EQUATION

We consider the stationary Dirac equation

H�(r) = E�(r), (1)

where

H = c(α · p) + mc2β + V, (2)

V = Vnucl(r) + Vext(r,θ ). (3)

Here Vnucl(r) is the nuclear potential. The stationary external
field potential Vext(r,θ ), being dependent on the radial and
angular variables (r and θ ), takes different forms for the electric
and magnetic fields. In the case of the external electric field, it
is given in the length gauge by

Vext = −(E · d) = −e (E · r) , (4)

where e is the electron charge and d is the dipole moment
operator: d = er. For the external magnetic field, we have

Vext = −e (α · A) , (5)

which can be rewritten in a particular gauge, A = 1
2 [H × r], as

Vext = − e

2
([r × α] · H) . (6)

Here and below the external field is assumed to be directed
along the z axis: E,H � ez; r , θ , and ϕ are the corresponding
spherical coordinates. In the case of an axially symmetric
field, V (r,θ ), the total angular momentum J is not conserved.
At the same time, the z projection of the total angular
momentum m

J
is conserved because the corresponding

operator Jz commutes with the Hamiltonian:

[Jz,H ] = 0. (7)

Consequently, H and Jz have a common set of eigenfunctions
with explicit dependence on the azimuthal angle ϕ, and thus
the Dirac four-component wave function (bispinor) can be
represented in the spherical coordinates as follows:

�(r) = 1

r

⎛
⎜⎜⎜⎝

G1(r,θ )ei(m
J
− 1

2 )ϕ

G2(r,θ )ei(m
J
+ 1

2 )ϕ

ı̇F1(r,θ )ei(m
J
− 1

2 )ϕ

ı̇F2(r,θ )ei(m
J
+ 1

2 )ϕ

⎞
⎟⎟⎟⎠ . (8)

Substitution of the form (8) into the Dirac equation, Eq. (1),
yields the equation

Hm
J
� = E� (9)

for the function

�(r,θ ) =

⎛
⎜⎝

G1(r,θ )
G2(r,θ )
F1(r,θ )
F2(r,θ )

⎞
⎟⎠ . (10)

In the case of the external electric field, the operator Hm
J

takes the following form:

Hm
J

=
(

mc2 + V cDm
J

−cDm
J

−mc2 + V

)
, (11)

where V is given by Eqs. (3) and (4),

Dm
J

= (σz cos θ + σx sin θ )

(
∂

∂r
− 1

r

)

+1

r
(σx cos θ − σz sin θ )

∂

∂θ

+ 1

r sin θ

(
im

J
σy + 1

2
σx

)
. (12)

Here σx , σy, and σz are the Pauli matrices.
In the case of the external magnetic field, the Hamiltonian

Hm
J

has the following form:

Hm
J

=
(

mc2 + Vnucl c(Dm
J

+ D̃)

−c(Dm
J

+ D̃) −mc2 + Vnucl

)
, (13)

where

D̃ = − e

2c
Hr sin θ ı̇σy. (14)

We note that Dm
J

and D̃ are anti-Hermitian operators:

D†
m

J
= −Dm

J
, (15)

D̃† = −D̃ . (16)

The scalar product in the space of the functions � is
defined by

〈�a|�b〉 =
∫ ∞

0
dr

∫ π

0
dθ sin θ

(
Ga

1G
b
1 + Ga

2G
b
2

+Fa
1 Fb

1 + Fa
2 Fb

2

)
. (17)

Setting the boundary conditions,

�(r,θ )|r=0 = lim
r→∞ �(r,θ ) = 0, (18)

leads Eq. (9) to be equivalent to the variational principle δS =
0 for the functional

S = 〈�|Hm
J
|�〉 − E〈�|�〉, (19)

where the undefined Lagrange factor E has the physical
meaning of energy.

Implementation of any kind of method based on finite basis
sets starts with an approximate representation of the unknown
function � as a finite linear combination of the basis functions.
Let N be the number of the four-component basis functions de-
pending on the radial and angular variables (r and θ ). We intro-
duce a set of functions, {Wi(r,θ )}|Ni=1, where r ∈ [0,rmax] and
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θ ∈ [0,π ]. Then the function � can be expanded as follows:

�(r,θ ) ∼=
N∑

i=1

CiWi(r,θ ), (20)

where Ci are the expansion coefficients.
By substitution of the expansion (20) into the variational

principle δS = 0, the latter can be represented as a set of
algebraic equations for the coefficients Ci :

dS

dCi

= 0. (21)

This system leads to the following generalized eigenvalue
problem:

HijCj = ESijCj , (22)

where the summation over the repeated indices is implied,

Hij =
∫ ∞

0
dr

∫ π

0
dθ sin θ [Wi(r,θ )]†Hm

J
Wj (r,θ ), (23)

Sij =
∫ ∞

0
dr

∫ π

0
dθ sin θ [Wi(r,θ )]†Wj (r,θ ), (24)

wand the Hamiltonian Hm
J

is defined by Eq. (11) or by
Eq. (13).

Consider the construction of the basis set. Let Nr and Nθ be
the numbers of the one-component basis functions depending
on the r and θ variables, respectively. We denote these sets
of functions as {Bir (r)}Nr

ir=1 and {Qiθ (θ )}Nθ

iθ=1. The indices
ir = 1, . . . ,Nr , iθ = 1, . . . ,Nθ , and u = 1, . . . ,4 compose a
single index i = 1, . . . ,N introduced before (N = 4NrNθ ) as
follows:

i = (u − 1)NrNθ + (iθ − 1)Nθ + ir . (25)

Using these one-component single-variable function sets, we
can construct the set of four-component functions Wi(r,θ ) =
W

(u)
ir iθ

(r,θ ) of two variables. Then the expansion (20) will take
the form

�(r,θ ) ∼=
4∑

u=1

Nr∑
ir=1

Nθ∑
iθ=1

Cu
ir iθ

W
(u)
ir iθ

(r,θ ), (26)

and indices i and j in Eqs. (21)–(24) should be replaced with
{ir ,iθ ,u} and {jr ,jθ ,v}, respectively.

A straightforward way to construct the four-component
basis functions depending on two variables (r and θ ) is

W
(u)
ir iθ

(r,θ ) = Bir (r)Qiθ (θ )eu, (27)

where

e1 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ , e2 =

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ , e3 =

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠ , e4 =

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠ .

(28)

Our calculations with various finite-basis-set techniques,
including the B-splines-based spectral approach [4–6] and the
generalized pseudospectral method [37], show that the basis
(27) leads to the appearance of the spurious states.

TABLE I. Energy spectrum (in relativistic units) of H-like tin ions
(Z = 50, Rnucl = 4.655 fm).

n DKB off DKB on Exact values

1 0.931 063 240 90 0.931 063 240 90 0.931 063 240 86
0.970 722 241 16

2 0.982 613 724 23 0.982 613 724 23 0.982 613 724 23
0.982 614 249 69 0.982 614 249 69 0.982 614 249 69
0.983 218 136 38 0.983 218 136 38 0.983 218 136 38
0.986 596 701 13

3 0.992 340 873 51 0.992 340 873 51 0.992 340 873 51
0.992 341 029 38 0.992 341 029 38 0.992 341 029 37
0.992 520 428 06 0.992 520 428 06 0.992 520 428 06
0.992 520 428 06 0.992 520 428 06 0.992 520 428 06
0.992 576 423 86 0.992 576 423 86 0.992 576 423 86
0.993 025 226 47

Following the idea of the DKB method, we should impose
specific relations between the upper and lower components
of the Dirac bispinor. These relations are derived from
the nonrelativistic limit of the Dirac equation and give the
following basis functions in the case of axial symmetry:

W
(u)
ir iθ

(r,θ ) = �Bir (r)Qiθ (θ )eu, u = 1, . . . ,4, (29)

where

� =
⎛
⎝ 1 − 1

2mc
Dm

J

− 1
2mc

Dm
J

1

⎞
⎠. (30)

It should be noted that, as in the case of central fields [7], the
DKB approach for axially symmetric systems can be used for
the extended charge nucleus only. The pointlike nucleus case
can be accessed by the extrapolation of the extended-nucleus
results to vanishing nuclear size.

The discussion above is given for arbitrary basis sets
{Bir (r)}Nr

ir=1 and {Qiθ (θ )}Nθ

iθ=1. In the present work, the particular
choice of the one-component basis functions is made as
follows. The B splines of some order k form the set of
the one-component r-dependent basis functions, {Bir (r)}Nr

ir=1.

The Legendre polynomials {Pl( 2
π
θ − 1)}Nθ−1

l=0 of degrees l =
0, . . . Nθ − 1 form the set of the one-component θ -dependent
basis functions, so that in the previous notations Qiθ (θ ) ≡
Piθ −1( 2

π
θ − 1).

To demonstrate the absence of the spurious states in
calculations based on the DKB method, in Table I we present
the energy spectrum of hydrogenlike tin ions (Z = 50),
evaluated for the extended nucleus case (the model of the
uniformly charged sphere is employed) with the plain basis
set (27) and with the DKB basis set (29). The calculations are
performed for the projection of the total angular momentum
m

J
= −1/2, making no use of the spherical symmetry of the

ions. For comparison, the exact values (within the indicated
digits, see Table I) obtained by the numerical solution of
the radial Dirac equation using the finite difference method
are presented as well. It can be seen that the DKB method
eliminates the spurious states, maintaining the same level of
accuracy for the energies.
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TABLE II. Binding energy (in a.u.) of the ground state (m
J

=
−1/2) of hydrogen atoms in a uniform magnetic field H = 0.1 a.u.
(≈2.35 × 104 T). For comparison, the value obtained in Refs. [38,39]
(they both coincide to all the presented digits) is given. The complete
PT result 
EPT and the individual contributions are listed as well.
The terms missing in the breakdown (the odd orders >3 and the even
orders >12) are zero to all the presented digits.

This work Refs. [38,39] PT order PT

−0.547 532 408 −0.547 532 408 (Up to 12) −0.547 532 410
(1) −0.049 999 114
(2) 0.002 499 823
(3) 0.000 000 018
(4) −0.000 027 603
(6) 0.000 001 211
(8) −0.000 000 098

(10) 0.000 000 012
(12) −0.000 000 002

In order to prove the applicability of the present method
to the case of axially symmetric fields, we have calculated
the energy spectra of hydrogenlike ions in the presence of
static uniform electric or magnetic fields. Tables II and III
present Zeeman-shifted levels in hydrogen atoms exposed
to different magnetic fields. They are compared with the
corresponding results from Refs. [38–40] and with the results
of our independent perturbation theory (PT) calculations.
Table IV presents the Zeeman shifts of the energy levels
for hydrogenlike argon, tin, and uranium ions in different
magnetic fields. For comparison, we have also evaluated these
shifts within the PT, where the zero-order approximation
corresponds to the Dirac equation with the nuclear potential,
and the interaction with the external magnetic field, given
by Eq. (6), is treated perturbatively. It has been implemented
numerically as an iterative procedure, where the energies and
the wave functions of the nth order are computed from the
energies and the wave functions of the (n − 1)th order. The
summations over the spectrum have been performed with the
help of the DKB finite-basis-set method for the spherically
symmetric case [7]. The data in Table II show that our method
reproduces as many orders of the PT as needed up to its own
numerical accuracy.

Tables V and VI display the Stark shifts for hydrogen
atom and hydrogenlike argon ion in uniform electric fields.

TABLE III. Binding energies (in a.u.) of the ground (m
J

= −1/2)
state and the lowest m

J
= −3/2 state of hydrogen atoms in a uniform

magnetic field H.

H (a.u.) m
J

This work Refs. [38–40]

1 −1/2 −0.831 172 5 −0.831 173 2a,b,c

−3/2 −0.456 592 −0.456 597a,c

2 −1/2 −1.022 216 −1.022 218a,b

3 −1/2 −1.164 528 −1.164 537a,b

aReference [38].
bReference [39].
cReference [40].

TABLE IV. Zeeman shifts (in a.u.) of the ground states of H-like
ions. 
EPT are the PT values. The contributions of the orders >4 are
zero to all the presented digits.

m
J


EDKB PT order 
EPT

Z = 18 Rnucl = 3.427 fm H = 6 × 105 T
+1/2 1.273 853 76 (Up to 4) 1.273 853 71
−1/2 −1.264 029 73 (Up to 4) −1.264 029 67
±1/2 (1) ±1.268 942 60
±1/2 (2) 0.004 912 36
±1/2 (3) ∓0.000 000 91
±1/2 (4) −0.000 000 34

Z = 50 Rnucl = 4.655 fm H = 6 × 106 T
+1/2 12.230 355 6 (Up to 4) 12.230 355 1
−1/2 −12.122 720 0 (Up to 4) −12.122 719 5
±1/2 (1) ±12.176 641 5
±1/2 (2) 0.053 824 3
±1/2 (3) ∓0.000 104 2
±1/2 (4) −0.000 006 5

Z = 92 Rnucl = 5.8569 fm H = 6 × 107 T
+1/2 106.5190 (Up to 4) 106.5188
−1/2 −104.8140 (Up to 4) −104.8138
±1/2 (1) ±105.6865
±1/2 (2) 0.8534
±1/2 (3) ∓0.0202
±1/2 (4) −0.0009

We have calculated the Stark effect within the perturbation
theory as well. The results for the expansion coefficients are in
agreement with those obtained in Refs. [42,43]. Furthermore,
our values are obtained within the relativistic treatment and
are valid to all orders in αZ in any order of the field strength.
Tables V and VI show that the present DKB approach fully
reproduces the PT results. In this case, however, one should
keep in mind that, strictly speaking, there are no discrete energy
levels for atoms in a uniform electric field. Instead, we have the
quasistationary states. It happens due to the tunneling effect
for the initially localized electron state.

TABLE V. Stark shifts (in a.u.) of the ground state of hydrogen
atoms and H-like argon ions. 
EPT and 
Enr

PT are the relativistic and
nonrelativistic PT values. The contributions beyond the shown ones
are zero to all the presented digits.

E (V/m) 
EDKB × 106 PT order 
EPT × 106 
Enr
PT × 106

Z = 1
5 × 108 −2.1271 (2) −2.1272 −2.1273
1 × 109 −8.509 44 (Up to 4) −8.509 42 −8.509 89

(2) −8.508 63 −8.509 10
(4) −0.000 79 −0.000 79

2 × 109 −34.0472 (Up to 4) −34.0472 −34.0491
(2) −34.0345 −34.0364
(4) −0.0127 −0.0127

Z = 18 Rnucl = 3.427 fm
5 × 1011 −19.9026 (2) −19.9027 −20.2644
1 × 1012 −79.6105 (2) −79.6108 −81.0578
2 × 1012 −318.4454 (2) −318.4460 −324.2338
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TABLE VI. Stark shifts (in a.u.) of the n = 2 energy levels of
H-like argon ions (Z = 18, Rnucl = 3.427 fm). 
EPTD values are
calculated according to the approximate formulas from Ref. [41]
derived within PT for degenerate levels.

E (V/m) Level 
EDKB 
EPTD

2s 0.0288 0.0292
2 × 1011 2p1/2 − 0.0441 − 0.0444

2p3/2 0.0150 0.0152

2s 0.0467 0.0477
5 × 1011 2p1/2 − 0.1267 − 0.1268

2p3/2 0.0778 0.0791

The basis set of 78 radial B splines of order k = 9 and 17
Legendre polynomials (of orders from 0 to 16) is enough to
obtain all the results presented in Tables I–VI.

III. TIME-DEPENDENT DIRAC EQUATION

We consider the time-dependent Dirac equation:

ı̇
∂

∂t
�(r,t) = H (t)�(r,t), (31)

where

H (t) = H0 + V(t), (32)

H0 = c(α · p) + mc2β + Vnucl(r), (33)

and V(r,t) describes the interaction with an external time-
dependent field. In the following, we restrict our consideration
to the time-dependent electric field within the dipole approxi-
mation:

V(r,t) = −F (t) · d, (34)

where F is the strength of the external electric field and d is
the operator of the dipole moment: d = er. We assume F to
be linearly polarized along the z axis:

F (t) = F(t)ez. (35)

Let 
t be a small time step. Given the initial wave function
�(r,0), the approximate solution of the time-dependent Dirac
equation can be found by iterations:

�(r,t + 
t) ≈ exp [−ı̇
tH (r,t + 
t/2)] �(r,t). (36)

For the function � defined in the previous section, this equation
can be written as

�(r,θ ; t + 
t) ≈ exp
[−ı̇
tHm

J
(r,θ ; t + 
t/2)

]
�(r,θ ; t) .

(37)

The direct application of these equations within the finite-
basis-set approach would be extremely time-consuming. For
this reason, one needs to use special methods to reduce
the efforts. We use the split-operator technique [44]. The
implementation of this technique in the framework of the
finite-basis-set method described above requires, however,
some modifications that are presented below.

In the split-operator method, the propagator is factorized as
follows:

�(r,t + 
t) ≈ exp

(
−ı̇


t

2
H0

)
exp

[
−ı̇
t V

(
r,t + 
t

2

)]

× exp

(
−ı̇


t

2
H0

)
�(r,t). (38)

The exponential of the unperturbed Hamiltonian H0 is time
independent and thus can be calculated only once by the
spectral expansion:

exp

(
−ı̇


t

2
H0

)
=

∑
k

exp

(
−ı̇


t

2
Ek

)
|�k〉〈�k|, (39)

where

H0�k = Ek�k. (40)

In order to calculate the spectral expansion (39), we introduce
the matrix and eigenvectors:

HL
0 = S−1/2H0S

−1/2, �CL = S1/2 �C, (41)

so that, instead of the generalized eigenvalue problem (22), we
get the ordinary one:

HL
0

�CL = E �CL. (42)

In order to get the highest possible efficiency, the time-
dependent part V(r,t + 
t

2 ) should be represented by a
diagonal matrix. According to Eqs. (34) and (35), we can
represent the matrix V as

V(t) = F(t)V, (43)

where the matrix elements of V are given by

V uv
ir iθ jr jθ

=
∫ ∞

0
dr

∫ π

0
dθ sin θ

[
W

(u)
ir iθ

(r,θ )
]†

× (r cos θ )W (v)
jr jθ

(r,θ ). (44)

Let us consider the eigenvalue problem for the matrix V L =
S−1/2V S−1/2,

V L �υk = uL
k �υk, (45)

and construct the matrix of the eigenvectors,

υ = (�υ1 �υ2 �υ3 · · · �υN ) . (46)

Since the matrix V L is Hermitian, the matrix υ is unitary
(υ† = υ−1) and the matrix

V LV = υ†V Lυ (47)

is diagonal. Let us also denote

HLV
0 = υ†HL

0 υ, �CLV = υ† �CL. (48)

With H0 and S substituted from Eqs. (23) and (24), respec-
tively, the time-dependent Dirac equation (31) takes the form

ı̇S
d

dt
�C(t) = [H0 + F(t)V ] �C(t). (49)

Multiplying Eq. (49) by υ†S−1/2, we get

ı̇
d

dt
υ†S1/2 �C(t) = υ†S−1/2 [H0 + F(t)V ]

×S−1/2υυ†S1/2 �C(t) (50)
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or, using the notations (47) and (48),

ı̇
d

dt
�CLV (t) = [

HLV
0 + F(t)V LV

] �CLV (t). (51)

This equation is suitable for the split-operator method. The
short-term propagation can be performed as

�CLV (t + 
t) = exp

[
−ı̇


t

2
HLV

0

]

× exp

[
−ı̇
tF

(
t + 
t

2

)
V LV

]

× exp

[
−ı̇


t

2
HLV

0

]
�CLV (t), (52)

where the exponential of HLV
0 is obtained by the spectral

expansion,

exp

[
−ı̇


t

2
HLV

0

]
=

∑
k

exp

(
−ı̇


t

2
Ek

)
�CLV

k

( �CLV
k

)†
,

(53)
and the matrix{

exp

[
−ı̇
tF

(
t + 
t

2

)
V LV

]}
ij

= δij exp

[
−ı̇
tF

(
t + 
t

2

)
uL

i

]
(54)

is diagonal (see Eqs. (45)–(47)).
In order to calculate the transition and ionization probabili-

ties, we have to project the propagated state onto the vector or
the subspace of interest. For instance, to calculate the survival
probability in the initial state �i , we have to calculate the
scalar product:

|〈�(t)|�i〉|2 = | �C†(t)S �Ci |2
= | �C†(t)(S1/2)†υυ†S1/2 �Ci |2
= |(υ†S1/2 �C(t))†(υ†S1/2 �Ci)|2
= |( �CLV (t))† �CLV

i |2. (55)

The developed methods have been applied to solve two
representative problems. First, the transition probabilities in

FIG. 1. (Color online) The energy spectrum of the Gaussian-
shaped laser pulse used in our calculations. Vertical lines indicate
the photon energies necessary for one-photon (red lines on the right)
and two-photon (blue lines on the left) transitions.

FIG. 2. Electric-dipole transition probabilities from the 1s state to
the excited states for a one-electron argon ion exposed to a Gaussian-
shaped laser pulse.

the hydrogenlike argon ions (Z = 18) exposed to a short
Gaussian-shaped laser pulse are calculated. The form of the
pulse is given by the following:

F (t) = ezF0 exp

(
− t2

2τ 2

)
sin (ωt) , (56)

where ω = 4.4 as−1, τ = 0.63 as, and the peak intensity is
I = 6.8×1019 W/cm2. Figure 1 shows the energy spectrum
(i.e., the Fourier transform) of this pulse. We note that the
spectrum is broad enough that we get not only one-photon
transitions but two-photon ones as well. In Fig. 2, we present
the transition probabilities from the ground 1s state to the
excited states due to the interaction with the laser pulse. For
comparison, the corresponding results of the first-order time-
dependent PT are shown in the same figure. The initial 1s state
survival probability is P1s = 0.996 66.

Another example is the calculation of the ionization
probabilities in the hydrogenlike tin ion (Z = 50) exposed
to a short sin2-shaped laser pulse. In this calculation, the pulse

FIG. 3. (Color online) Total ionization probability for a tin ion
as a function of the laser pulse wavelength. The open red squares
connected with the dashed red line are the results of our calculations;
the shaded black points connected with the solid black line are data
taken from Ref. [36].
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is chosen in the form

F (t) = ezF0 sin2

(
πt

T

)
sin (ωt) , t ∈ [0,T ], (57)

where the wavelength λ and the pulse duration T can be
expressed through the carrier frequency as λ = 2πc/ω and
T = 2πN/ω. The calculations are performed for N = 20 and
the peak intensity I = 5 × 1022 W/cm2.

Figure 3 displays the full ionization probability as a function
of the laser wavelength for all the other parameters of the
system kept constant. This plot is in a good agreement with
the corresponding data from Ref. [36].

IV. CONCLUSION

The efficient and easily implementable DKB approach
solves the problem of the spurious states related to the use of
the finite basis sets for the Dirac equation. In the present paper,
this method is generalized for the case of axial symmetry. The
generalized DKB method proved to be accurate and stable
in this case. It opens a new way for the fully relativistic
theoretical treatment of both stationary and time-dependent
axially symmetric problems, e.g., of ions and atoms exposed
to external fields. The efficiency of the method is demonstrated
by calculating the energies of hydrogenlike ions with a
nonperturbative account for static uniform external electric
or magnetic fields. The Zeeman and Stark energy shifts are
compared with the PT calculations. It is shown that the higher

orders of the perturbation theory expansion can be reproduced
by the methods developed in the present paper.

For the purpose of solving the time-dependent problem, the
finite-basis-set technique (not regarding the particular choice
of the basis set) was adapted to take advantage of the split-
operator method by the transformation of the matrix of the
external potential into the diagonal representation. With this
technique, the transition and ionization probabilities for the
ions exposed to the laser pulses are evaluated. The results are
compared with the corresponding data from other papers or
with the independently obtained values. The solution of the
time-dependent Dirac equation with the set of the discussed
approaches is shown to be correct, accurate, and numerically
efficient.
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and J. L. Sanz-Vicario are gratefully acknowledged. This
work was supported in part by RFBR (Grants No. 12-02-
31803 and No. 13-02-00630), by the Ministry of Education
and Science of the Russian Federation (Project No. 8420),
by the FAIR-Russia Research Center, and by the nonprofit
“Dynasty” Foundation. We also acknowledge the support of
St. Petersburg State University (Grants No. 11.38.269.2014
and No. 11.38.654.2013).

[1] V. F. Bratzev, G. B. Deyneka, and I. I. Tupitsyn, Izv. Akad. Nauk
SSSR (in Russian), Ser. Fiz. 41, 2655 (1977) [Bull. Acad. Sci.
USSR: Phys. Ser. 41, 173 (1977)].

[2] G. W. F. Drake and S. P. Goldman, Phys. Rev. A 23, 2093 (1981).
[3] W. Kutzelnigg, Int. J. Quantum Chem. 25, 107 (1984).
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