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Nonlocal composite media in calculations of the Casimir force
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The Casimir force between two inhomogeneous metal-dielectric composite slabs with spatial dispersion is
investigated theoretically. The equivalent permittivity and permeability of the nonlocal metallic nanosphere is
originally derived based on full-wave nonlocal Mie theory. We then adopt two nonlocal effective medium models
to study the effective permittivity and permeability of the composite slabs and calculate the Casimir force with
Casimir-Lifshitz theory. Due to the excitation of the longitudinal modes, the attractive Casimir force between
nonlocal composite materials is much weaker than that of the local composites, and numerical results show
that the relative errors between local and nonlocal calculations of Casimir force can be on the order of 25%.
Moreover, the nonlocal effects on the Casimir force are strongly dependent on the microstructures, and they
become significant near the percolation threshold of the composite media. The study may be of great interest
for making a precise comparison between theoretical and experimental results on the Casimir force between
inhomogeneous composite materials.
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I. INTRODUCTION

The Casimir force [1] results from the spatial redistribution
of the fluctuations of the electromagnetic field in comparison
with that of free space because of the presence of two parallel
uncharged conductors. Actually, it demonstrates the reality
of zero-point field fluctuations. During past decades, the
Casimir force received much attention due to its potential
applications in nanoscience [2,3] such as in micro- and
nanoelectromechanical systems (MNEMS).

Recently, the Casimir force between two parallel slabs
containing homogeneous electromagnetic materials was inves-
tigated with the Casimir-Lifshitz theory [4–7]. The behavior
of the Casimir force is found to be largely dependent on the
permittivity and permeability of the electromagnetic materials
[8–10]. With the development of artificial metamaterials, it
is expected to obtain the repulsive and restoring Casimir
force between two metamaterials’ slabs [11–13]. In addition,
the Casimir force between inhomogeneous materials provides
additional issues in the evaluation of the Casimir force. For
instance, the magnitude of the Casimir force in aerogels
(the two-phase composite materials in which air bubbles
are embedded in the SiO2 host medium) was reduced [14].
Physical restrictions on the Casimir interaction of metal-
dielectric metamaterials with the aid of the effective medium
theory were investigated [15]. Later, a multilayered effective
medium model was proposed to evaluate the contribution of
surface roughness to the Casimir force [16]. Much effort was
devoted to the discussion on the divergence of Casimir force
within the Casimir theory for the case of inhomogeneous media
[17–20]. Esquivel-Sirvent et al. found that the use of com-
posite materials to modify the Casimir force required careful
investigation of the effective electromagnetic properties of the
composites, and the magnitude of the force was very sensitive
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to the choices of effective medium theories [21]. We predicted
that it is possible to enhance the Casimir force by taking
into account the particles’ shape in inhomogeneous composite
media [22].

On the other hand, with the significant development of
science and technology, the size scale of composite materials
or films can be down to a few nanometers (about 10 nm).
In this regard, the nonlocal effect should be taken into
account. The nonlocality or spatial dispersion means that the
permittivity (or the permeability) of the material is dependent
not only on the incident frequency ω, but also on the wave
vector k. Some scientists investigated the spatial dispersion
or nonlocal effect in the study of the Casimir force between
two homogeneous slabs [23–27]. For the homogeneous slabs,
a surface impedance approach including the nonlocality was
introduced to study the reflection coefficients and, hence, the
Casimir force. Numerical results show that the difference
between local and nonlocal calculations of the Casimir force is
of the order of a few tenths of a percent [26,27]. Incidentally,
the Casimir interaction and the Hamaker coefficients between
two Au nanospheres or nanorods with spatial dispersion were
calculated [28]. Due to the interaction between the nonlocality
and the inhomogeneity, one expects that the nonlocal effects on
the Casimir force between inhomogeneous slabs may become
strong. However, the spatial dispersion on the Casimir force
between inhomogeneous composite materials has not been
considered [21,22].

In this paper, we study the Casimir force between inho-
mogeneous composite materials by taking into account the
spatial dispersion or nonlocal effect. The composite systems
consist of nonlocal metallic nanospheres with volume fraction
f , and dielectric particles with volume fraction 1 − f . In
order to take into account the spatial dispersion, we derive
the equivalent permittivity εequiv and permeability μequiv of
the metallic nanosphere with spatially dispersive permittivity
ε(ω,k) by considering the scattering problem [29] of the
nonlocal metallic sphere in an equivalent medium [30]. Then,
we adopt two common effective medium theories, the Brugge-
man effective medium theory and Maxwell-Garnett theory, to
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estimate the effective permittivity εe and permeability μe of
the inhomogeneous composite materials. One can take one
step forward to investigate the nonlocal effect on the Casimir
force between two inhomogeneous composite materials with
the aid of Casimir-Lifshitz theory.

The paper is organized as follows. In Sec. II, we first outline
the Casimir-Lifshitz theory for the Casimir force between
two infinite slabs made of metal-dielectric nanocomposite
materials with spatial dispersion, and Bruggeman effective
medium theory and Maxwell-Garnett theory are briefly intro-
duced to investigate the effective magnetoelectric properties
of the infinite composites slabs. In particular, we establish
the equivalent theory for the equivalent local permittivity and
permeability of the nonlocal metallic nanosphere. In Sec. III,
numerical results about nonlocal effects on the Casimir forces
are shown. Our conclusions and discussion are presented in
Sec. IV.

II. MODEL AND THEORY

Let us consider the Casimir force between two semi-infinite
composite slabs separated by a distance d with Casimir-
Lifshitz theory. Each composite slab is composed of the
spherical metallic particles with nonlocal permittivity ε(ω,k)
and the volume fraction f , and the dielectric component with
local permittivity ε2 and the volume fractions 1 − f . Without
loss of generality, both metal and dielectric components
are assumed to be nonmagnetic with μi = 1 (i = 1,2). The
Casimir-Lifshitz theory for the Casimir force is valid for the
given temperature, which includes the term for the zero-point
fluctuations (or the term at zero temperature) and the finite-
temperature (or thermal-force) term [4,6]. Generally, when the
separation distance between two slabs d (in our calculations,
d ∼ 100–500 nm) is much smaller than a typical length
�c/kBT (�c/kBT ∼ 7 μm for T = 300 K), the temperature
corrections can usually be negligible [31,32]. In addition, we
aim at the effect of spatial dispersion on the Casimir force.
In what follows, we concentrate on the Casimir force at zero
temperature only.

A. The Casimir force at zero temperature

Based on the stress tensor method, the Casimir force per
unit area at zero temperature between two parallel, infinite
slabs can be written as [5–7]

FC(d) = �

2π2

∫ ∞

0
dξ

∫ ∞

0
kdk

√
ξ 2

c2
+ k2

×
∑

N=TE,TM

r2
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ξ2

c2 +k2
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√
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c2 +k2
, (1)

where k is the transverse wave vector parallel to the slab
surface, and rN is the reflection coefficient of each slab for the
transverse electric (N = TE) and transverse magnetic (N =
TM) polarization waves. For simplicity, we have introduced
the imaginary frequency ξ with ω = iξ . In addition, the
reflection coefficients for the infinite slab in Eq. (1) are

expressed as
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√

k2 + ξ 2
/c2 −

√
k2 + εe(iξ )μe(iξ )ξ 2

/c2

εe(iξ )
√

k2 + ξ 2
/c2 +

√
k2 + εe(iξ )μe(iξ )ξ 2
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where εe and μe are, respectively, the permittivity and perme-
ability of the infinite slab. In our situation, since the infinite
slab is not a homogenous material but an inhomogeneous
composite one, εe and μe should be the effective permittivity
and permeability of the composite system at the imaginary
frequency. After performing the polar coordinates transfor-
mation ξ/c = x cos φ, k = x sin φ, we obtain the normalized
force η(d), defined as the ratio of the force to the Casimir force
between two perfectly conducting plates F0 (=π2

�c/240d4)
[5],

η(d) = 120d4

π4

∫ ∞

0
dx x3

∫ π
2

0
sin φdφ

×
∑
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r2
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(x,φ)e−2dx

1 − r2
N

(x,φ)e−2dx
. (4)

B. Effective medium theories

To calculate the effective permittivity and permeability of
composite slabs including the spatial dispersion, we adopt two
popular effective medium models: one is for the symmetrical
microgeometry, in which both the spherical metallic nanopar-
ticles and dielectric nanoparticles are randomly distributed,
and the other describes the asymmetrical microgeometry, in
which the nanometallic particles are randomly embedded in
the dielectric host. For the former, the effective permittivity and
permeability of the composite system are given by Bruggeman
effective medium theory,

f

(
εequiv − εe

εequiv + 2εe

)
+ (1 − f )

(
ε2 − εe

ε2 + 2εe

)
= 0 and

(5)

f

(
μequiv − μe

μequiv + 2μe

)
+ (1 − f )

(
1 − μe

1 + 2μe

)
= 0,

where εequiv and μequiv are the equivalent permittivity and
permeability of the nonlocal metallic particles and are derived
in the next sections.

For the latter model, the effective permittivity and per-
meability of the composite system can be described within
Maxwell-Garnett theory,

εe − ε2

εe + 2ε2
= f

εequiv − ε2

εequiv + 2ε2
and

μe − 1

μe + 2
= f

μequiv − 1

μequiv + 2
.

(6)

C. Equivalent physical parameters
for nonlocal metal nanoparticles

We are now in a position to investigate the equivalent
permittivity εequiv and equivalent permeability μequiv for the
nonlocal metallic nanoparticles. For this purpose, we consider
the scattering problem of a nonlocal metallic nanosphere with
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nonlocal permittivity ε(ω,k) and the radius a in an effective
medium with the permittivity εequiv and permeability μequiv

[30,33].
For the nonlocal sphere, we assume the hydrodynamic

model to describe its longitudinal permittivity [24,34],

εL(ω,k) = εg − ω2
p

ω2 + iωγ − β2k2
, (7)

where εg is the background permittivity of the metals due
to interband transitions, ωp is the plasma frequency, γ is
the damping constant, and β = √

3/5υF with υF being the
Fermi velocity of electrons in a metal. In addition, we have the
transverse permittivity εT (ω) = ε(ω,0). Both longitudinal and

transverse waves can be propagated in the nonlocal system,
and the wave vector of a longitudinal electromagnetic wave
kL propagating in the nonlocal nanosphere is determined

by the equation kL(ω) =
√

(ω2 + iωγ − ω2
p/εg)/β2, while

the transverse electromagnetic mode satisfies the dispersion
relation k2

T (ω) = ω2/c2εT (ω) [29]. For the local case, β should
be zero and Eq. (7) is nothing but the Drude permittivity for
the metal.

For the plane electromagnetic wave, after neglecting the
common parts of the fields E0e

−iωt
∑∞

l=1 il 2l+1
l(l+1) , the incident

EI and scattering ER electric fields, the transverse ET and the
longitudinal EL electric fields inside the nanoparticle can be
written as [29,35,36]

EI = ∇ × [
rjl(kequivr)P (1)

l (cos θ ) sin φ
] − i
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∇ × ∇ × [
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l (cos θ ) cos φ

]
,
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l (cos θ ) sin φ

] − bR
l

i
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(1)
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]
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(8)
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l ∇ × [

rjl(kT r)P (1)
l (cos θ ) sin φ

] − bT
l

i

kT

∇ × ∇ × [
rjl(kT r)P (1)

l (cos θ ) cos φ
]
,

EL = bL
l

kL

∇[
jl(kLr)P (1)

l (cos θ ) cos φ
]
,

where jl(· · ·) [or hl(· · ·)] represents spherical Bessel (or Hankel) functions, and kequiv = ω
√

εequiv
√

μequiv/c. Moreover, the
corresponding magnetic fields can be obtained from the Maxwell equation H = (∇ × E)/iωμ. Note that there is no corresponding
longitudinal magnetic field inside the nonlocal sphere.

In above equations, five unknown coefficients aR
l , bR

l , aT
l , bT

l , and bL
l should be determined by the boundary conditions on

the spherical surface. In general, the continuity conditions of the tangential components of the electric and magnetic fields would
be matched on the interface between the metallic nanosphere and the outer effective medium at r = a. In addition, due to the
excitation of the longitudinal mode inside the nonlocal sphere, an additional boundary condition should be required [37,38].
Here, without loss of generality, we adopt the additional boundary condition in Ref. [38]. After some tedious calculations, the
solutions for the coefficients aR

l and bR
l of the scattered wave are

aR
l = − jl(kT a)[kequivajl(kequiva)]′ − μequivjl(kequiva)[kT ajl(kT a)]′

jl(kT a)[kequivahl(kequiva)]′ − μequivhl(kequiva)[kT ajl(kT a)]′
(9)

bR
l = − εT jl(kT a)[kequivajl(kequiva)]′ − εequivjl(kequiva)[kT ajl(kT a)]′ + Qljl(kequiva)

εT jl(kT a)[kequivahl(kequiva)]′ − εequivhl(kequiva)[kT ajl(kT a)]′ + Qlhl(kequiva)
(10)

with Ql = εequivl(l + 1)(εg − εT )jl(kT a)jl(kLa)/[εgkLajl
′(kLa)].

The total scattering cross section is written as σsca = 2π/k2
equiv

∑∞
l=1(2l + 1)(|aR

l |2 + |bR
l |2). In the case of kequiva � 1, σsca

is dominated by the dipole terms aR
1 and bR

1 . For a scattering nonlocal particle inside a homogenous background medium with
constitutive parameters εequiv and μequiv, if σsca tends to be zero (or a1 and b1 are zero), the electromagnetic field outside the
nonlocal sphere will be undisturbed. Then one can judge that εequiv and μequiv are the equivalent constitutive parameters for the
nonlocal particle. Therefore, we can set the conditions for the equivalent medium as aR

1 = 0 and bR
1 = 0 [30,39] and obtain

εequiv = 2εgj1(kT a)j1
′(kLa)

εg[kT aj1(kT a)]′j1
′(kLa) − 2(εg − εT )j1(kT a)j1(kLa)/(kLa)

εT , (11)

μequiv = 2j1(kT a)

[kT aj1(kT a)]′
. (12)

In deriving the above equations, we approximate the functions
j1(x) ∼= x/3 and h1(x) ∼= x/3 − i/x2 as x � 1. Equations
(11) and (12) are our original formulas for the equivalent
permittivity and permeability of the nonlocal metallic sphere

with spatial dispersion. The equivalent theory is derived based
on the generalized Mie theory of nonlocal spheres and, hence,
is beyond the electrostatic approximation. If one neglects the
spatial dispersion of the metal, the nanosphere cannot support
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longitudinal polarization waves and the imaginary part of kL

becomes infinitely large [29]. Substituting Im(kL) → ∞ into
Eqs. (11) and (12) results in

εequiv = εT

2j1(kT a)

[kT aj1(kT a)]′
and μequiv = 2j1(kT a)

[kT aj1(kT a)]′
,

(13)

which are just the same as those within local descriptions
[30,40]. Furthermore, if we consider the electrostatic limit
kT a � 1, εequiv and μequiv will, respectively, tend to be εT and
1, as expected. Equations (11) and (12) indicate that equivalent
physical parameters are dependent on the radius of the nonlocal
nanosphere. This is quite similar to the case of differential
effective medium theory developed for the graded particles,
in which the local permittivity varies continuously in space
[41,42].

According to our theory, the electromagnetic properties of
metal particles with spatial dispersion can be well described
by the equivalent physical parameters εequiv and μequiv. For
the calculation of the Casimir force between the composite
slabs containing nonlocal metal nanoparticles, the equivalent
permittivity εequiv and permeability μequiv should be calculated
from the real-imaginary frequency transformation ω = iξ with
Eqs. (11) and (12). Then the effective permittivity εe and
permeability μe of the composite slab are evaluated with
Eqs. (5) and (6). For brevity, we name them nonlocal effective
medium theory (NEMT) and nonlocal Maxwell-Garnett theory
(NMGT), in contrast to local effective medium theory (EMT)
and Maxwell-Garnett theory (MGT), respectively. For EMT
and MGT, we still are beyond the electrostatic approximation
and substitute Eq. (13) into Eqs. (5) and (6). We should remark
that an alternative nonlocal effective medium theory for the
symmetric composite system can be derived based on the
self-consistent approach [43], and it might be a better treatment
to model the effective constitutive parameters of the composite
slab with symmetric microstructures. However, it is found to
give almost the same results as our NEMT (not shown here).
Then the Casimir force between the composite slabs including
the nonlocal effect can be determined with Casimir-Lifshitz
theory. The substitution of the equivalent physical parameters
of nonlocal nanosphere into the effective medium theories
was adopted in a similar way in Ref. [44] to investigate the
Goos-Hanchen shift at an interface of composite materials
containing nonlocal metallic nanoparticles.

III. NUMERICAL RESULTS

In what follows, we calculate the Casimir force be-
tween two infinite Au-SiO2 composite slabs containing metal
nanoparticles with spatial dispersion. For this purpose, the
relevant parameters for Au with spatial dispersion are the
plasma frequency ωp = 9.0 eV, the damping coefficient γ =
0.035 eV, and the Fermi velocity υF = 1.36 × 106 m/s [37];
the permittivity of SiO2 in the imaginary frequency is given in
Ref. [21].

In Fig. 1, the effective permittivity εe and permeability
μe of the inhomogeneous composite materials containing
nonlocal spheres with symmetric microstructures [Eq. (5)]
and asymmetric microstructures [Eq. (6)] are plotted as a

(a) (b)

FIG. 1. (Color online) (a) The effective permittivity εe and
(b) the permeability μe plotted as a function of the normalized
imaginary frequency ξ/ωp for a = 10 nm and f = 0.25.

function of the normalized imaginary frequency ξ/ωp. The
results for local cases are also shown for comparison. At first,
we aim at the effective permittivity [see Fig. 1(a)]. It is seen
that the permittivity of Au is quite large for low frequencies
from the Drude form for the permittivity. Physically, the
large permittivity results from the pole at zero frequency
in the Drude permittivity, which is responsible for the dc
conductivity [21]. Therefore, in the low-frequency region, the
permittivity of Au will dominate the behavior of the com-
posites, resulting in large effective permittivity. Furthermore,
the Bruggeman effective medium theory predicts much larger
effective permittivity than Maxwell-Garnett theory. On the
contrary, for high frequencies, the permittivity of Au decreases
and is comparable to that of dielectric components. As a
consequence, one observes small effective permittivity and
both theories give very similar results. Second, when the
nonlocality is taken into account, one finds that the effective
permittivities with nonlocal theories are smaller than that
with local theories, and the difference becomes significant
for the composite materials with symmetric microstructure
especially in the low-frequency region [see Fig. 1(a)]. As
far as the effective permeability is concerned [see Fig. 1(b)],
because our method is beyond the electrostatic approximation,
the equivalent permeability will not be 1 for both local and
nonlocal theories. This indicates that the composite material
will exhibit magnetic properties, characterized by μe �= 1,
although its components are nonmagnetic with μ = 1.

To understand the dependence of the Casimir force on
the spatial dispersion, we study the behavior of the reflection
coefficients for TE and TM polarization waves in Fig. 2. Here,
the characteristic wave number k is taken to be 5 × 105 for
illustration [26]. For both TE and TM polarization waves, it is
evident that the magnitude of the refraction coefficient |rTE| for
NEMT is less than that for EMT, whereas NMGT and MGT
give very similar results. Qualitatively, when the nonlocality
is included, it needs additional electromagnetic energies to
excite the confined longitudinal modes, in addition to exciting
the transverse electromagnetic modes. As a consequence,
one expects small refractivity for the composite materials
containing nonlocal metallic nanoparticles. Note that, above
the frequency ξ = 10ωp, both rTE and rTM are close to zero
and, hence, few virtual photons exist in the cavity between two
inhomogeneous composite materials. Therefore, to perform
the integral for the calculations of the Casimir force, one
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(a) (b)

FIG. 2. (Color online) The reflection coefficients (a) rTE and
(b) rTM of the composite material plotted as a function of the
imaginary frequency ξ for k = 5 × 105. Other parameters are the
same as those in Fig. 1.

adopts the cutoff frequency, above which there is almost no
contribution to the Casimir force [10,21].

Next, we aim at the effect of the volume fraction f on
the normalized Casimir force η between two inhomogeneous
composite slabs with spatial dispersion in Fig. 3. For com-
parison, the results for EMT and MGT are also shown. The
value of η is increased monotonically as the volume fraction
increases for all the cases, which is quite similar to those
reported for the local composite systems [21,22]. For the
asymmetrical microstructures, it is shown that the Casimir
force with NMGT is practically identical to that with MGT,
and the difference between two cases is quite small. However,
for the symmetrical microstructures, the nonlocality plays an
important role in the Casimir force, and the difference between
NEMT and EMT is quite large, especially for large volume
fractions. We understand this as follows: for the symmetrical
microstructures, both NEMT and EMT predict the percolation
threshold at fc = 1/3, above which the metal nanoparticles
easily form infinite connected clusters throughout the whole
composite, resulting in the metallic property of the composite
slab [22,40]. In this connection, the nonlocal effect becomes
very important. However, for asymmetrical microstructures,
the metal nanoparticles are always surrounded by the dielectric
host medium and no percolation takes place. Thus, the

FIG. 3. (Color online) η vs f for d = 200 nm.

FIG. 4. (Color online) η as a function of f for symmetrical
microstructures for d = 200 nm.

nonlocality on the Casimir force is relatively weak. Therefore,
we conclude that, for inhomogeneous composite slabs, the
nonlocal effects on the Casimir force are sensitively dependent
on the microgeometrical structures of the composite media,
and the suitable choice of the effective medium approximations
is very important to predict the Casimir force accurately.

Here, we would like to add some possible explanations
on the point that the introduction of spatial dispersion leads
to the decrease of the Casimir force. As shown in Fig. 2,
the reflections of electromagnetic radiation at the interface
between the composite slabs and vacuum for the nonlocal case
are fewer than those for the local case; hence, the density of
electromagnetic energy confined in the vacuum cavity will be
diminished. As a consequence, we predict small Casimir force
between the composite slabs containing nonlocal metallic
nanoparticles in comparison with that for the local case.

In order to quantify nonlocal effects on the Casimir
force between the composite materials with symmetrical
microstructures, we calculate the relative error between the
local Casimir force ηEMT and the nonlocal one ηNEMT by
using η = |ηNEMT − ηEMT|/ηEMT in Fig. 4. It is evident that,
for given sizes a = 10 and 20 nm, there is a critical volume
fraction near which the relative error η is maximal. Actually,
this critical volume fraction is just the percolation threshold
fc = 1/3, independent of the size of metallic nanoparticles.
Therefore, the relative error achieves the maximum and the
nonlocal effect is strongest at the percolation threshold. Note
that the relative error between the local and the nonlocal cases
can be of the order of 25% at fc, in contrast to a quite small
difference between nonlocal and local calculations on the
Casimir force between homogeneous slabs [27]. In addition,
the relative error increases with decreasing the radius a, and
the nonlocal effect on the Casimir force becomes more and
more important for small size a, as expected.

In the end, we plot the normalized Casimir force between
the composite slabs with symmetric microstructures and the
relative error as a function of the distance d in Fig. 5. Both EMT
and NEMT predict that the Casimir force exhibits monotonic
increase with increasing d [see Fig. 5(a)]. Actually, it is known
that the main contribution to the Casimir force results from
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(a) (b)

FIG. 5. (Color online) η and η vs d for symmetrical microstruc-
tures for a = 10 nm.

the frequencies ξ < c/d [45,46]. For small (or large) d, the
weight of the contribution from the high-frequency (or low-
frequency) region in the Casimir force will increase. Since
the effective permittivity of the composite slabs in the high-
frequency (or low-frequency) region is small (or large), one
observes small (or large) attractive Casimir force for small (or
large) d. In addition, the relative error becomes large for large
d [see Fig. 5(b)], which indicates that the nonlocal effects
become more and more important with increasing d. This is
due to the fact that the difference of the effective permittivity
for local and nonlocal cases is large in the low-frequency
region, as shown in Fig. 1(a).

IV. CONCLUSION

In summary, we investigate the Casimir force between
two infinite composite slabs containing nonlocal metallic
nanoparticles. Based on nonlocal Mie scattering theory and
beyond the electrostatic approximation, we develop an original
theory for the equivalent local permittivity and permeability
of a metallic nanosphere with spatially dispersive permittivity.
Using a nonlocal Bruggeman effective medium theory and
Maxwell-Garnett theory, we calculate the effective permit-
tivity and permeability of the composite slabs, and then the
nonlocal effect on the Casimir force between the inhomoge-
neous composite systems can be studied with Casimir-Lifshitz
theory. We illustrate that the nonlocality on the Casimir force

is strongly dependent on the choice of effective medium
theories, and the nonlocal effect becomes more significant for
the composite media with symmetric microstructures than for
those with asymmetric microstructures. Even for symmetric
microstructures, the nonlocal effect becomes strongest at the
percolation threshold.

Some comments are in order. The possibility of controlling
the Casimir force using nonlinear materials with optical Kerr
effects was pointed out [47]. Since the nonlinear materials
are homogeneous, the applied field should be quite large
to achieve available nonlinear responses and to control the
transition between attractive force and repulsive force. In this
connection, with the inhomogeneous composite materials, one
can make use of the surface plasmon resonance to enhance the
local fields in the nonlinear component and, hence, a small
applied field may result in large nonlinearity and tunable
Casimir force. More recently, the Casimir interaction torque
in the composite system formed by a dense array of metallic
nanowires embedded in dielectric fluids was studied, and the
Casimir torque can be several orders of magnitude larger
than the previous reports due to the ultrahigh density of
photonic states in the nanowire array [48]. It is of interest
to perform numerical calculations on the Casimir torque based
on different effective medium models, emphasizing the spatial
dispersion and percolation effect on the Casimir torque.
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