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Isotope shift in a beryllium atom
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We calculate the isotope shift of 2 1P0 − 2 1S0, 3 1S0 − 2 1S0 transitions and of the 2 1S0 ionization potential in the
four-electron beryllium atom. The achieved precision is high enough to make possible the accurate determination
of the nuclear charge radii from the experimental isotope shifts. This calls for corresponding measurements and
opens the window for the determination of charge radii of heavier nuclei.
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I. INTRODUCTION

The determination of accurate charge radii from isotope
shifts in atomic transitions was first performed for hydrogenic
[1,2], and later for He [3–5], Li [6–8], and Be+, systems [9–11].
While for hydrogenic ions the nonrelativistic wave function is
known exactly, for all other systems it has to be obtained
numerically, most often with the help of the variational
approach. Presently, nonrelativistic energies of the He atom
are known to more than 20 digits of accuracy [12–14]; for Li,
it is about 15 digits [15,16]; and, very recently, the precision
achieved for the Be atom reached 11 significant digits [17,18].
The computational approach for four-electron systems is based
on explicitly correlated Gaussian (ECG) functions [19,20] and
global optimization of more than 40 000 nonlinear parameters.
All of the corrections to energies, including finite nuclear mass,
relativistic and QED, are calculated as an expectation value
with this nonrelativistic wave function.

The isotope shift observed in atomic spectra results from
differences in the masses and charge distributions of the nuclei.
For light isotopes, the mass shift is about 4–5 orders of
magnitude larger than the shift caused by the finite size of
the nucleus (the so-called field shift). Since it is not possible
to separate the two effects experimentally, one has to rely on
the theoretical calculations of the mass shift to extract the
field shift effect from precise atomic spectroscopy. In this
way, one determines the nuclear charge radius with respect
to a well-known stable isotope, for which the charge radius is
known from the electron-scattering experiments.

In this work, we perform the calculation of mass shift
effects in transition energies of Be atoms with a precision more
than sufficient to determine the nuclear charge radius from
the experimental isotope shifts, once they become available.
It will enable verification of the results obtained from the
spectroscopy of the Be+ ion, and also can be directly extended
to other four-electron systems, e.g., the boron cation B+ or
doubly ionized carbon C2+.

The most general approach to the calculation of energy
levels of light atomic systems is based on the expansion
in the fine-structure constant α. The leading term is the
nonrelativistic energy. The higher-order coefficients in α,
namely, the relativistic mα4 and quantum-electrodynamics
(QED) mα5 corrections, are expressed as mean values of
some effective Hamiltonians, while electron correlations are
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treated accurately by the use of explicitly correlated basis
sets. For three-electron systems, the most accurate solution
of the Schrödinger equation is obtained with the Hylleraas
basis functions [15,16,21]. In such systems, the accuracy of
the theoretical predictions for transition energies and isotope
shifts is limited by the approximate treatment of higher-order
(mα6 and mα7) QED corrections, rather than by numerical
inaccuracies of the nonrelativistic wave function. Methods
with Hylleraas functions have been extended to four-electron
atomic systems, but only for some restricted selection of basis
functions because of the significant difficulties in the evalua-
tion of fully correlated integrals [22,23]. Even more difficult
integrals appear in the matrix elements of relativistic operators.
Unquestionably, significant efforts have to be made to improve
upon the Hylleraas approach in order for it to be practical for
four-electron systems. Therefore, at present, the method of
choice for such systems is that based on explicitly correlated
Gaussian (ECG) functions. The effectiveness of the ECG func-
tions in treating few-electron problems has been demonstrated
by many high-precision calculations of the nonrelativistic
energies of atomic and molecular systems [20,24,25]. For the
beryllium atom, the highest accuracy has been obtained using
ECG functions [18,19,26–28]. In contrast to methods based
on the Hylleraas functions, the main advantage of the ECG
method is that the underlying integrations are manageable and
very fast in numerical evaluations due to the compact formulas
involving elementary functions only. On the other hand, the
Gaussian functions have the drawback of improper asymptotic
behavior since they decay too fast at long interparticle
distances. They also have an incorrect short-range form and
fail to correctly describe the Kato cusp. However, the two flaws
can be overcome if one employs a sufficiently large and well-
optimized ECG basis set. The issue is subtler in calculations of
relativistic and QED properties, where the local inaccuracies of
the wave functions result in significant numerical uncertainties
of mean values. One has to very carefully optimize over a huge
number of the variational parameters matching local behavior
of the exact wave function as accurately as possible and
employ dedicated techniques that accelerate the convergence
of singular operators [29]. It is a time-consuming process,
but the continuously ongoing advancements in accessible
computing power and the development of new algorithms
dedicated to multithreaded and parallel architecture make
the extensive optimization of the Gaussian exponents com-
putationally feasible even for systems with more than four
electrons [20].
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II. ENERGY-LEVEL EXPANSION IN THE
FINE-STRUCTURE CONSTANT

The energy level is considered as a function of the fine-
structure constant α being expanded in a power series,

E(α) =
∑

n

E(n), E(n) ∼ mαn, n = 2,4,5,6, . . . . (1)

We perform also an expansion in the reduced electron mass to
nuclear mass ratio η = −μ/M(∼m/M),

E(n) =
∑

k

E(n,k), E(n,k) ∼ mαnηk (2)

(k = 0,1,2, . . .), and each coefficient E(n,k) is calculated
separately from an expectation value of the corresponding
effective Hamiltonian.

The leading order E(2) is obtained from the nonrelativistic
Hamiltonian in the center-of-mass system,

H (2) =
∑

a

p2
a

2m
+ p2

N

2M
−

∑
a

Z α

ra

+
∑
a<b

α

rab

, (3)

with �pN = −∑
a �pa . In order to extract a dependence on the

finite nuclear mass M , all momenta and distances are scaled
following the rules

�p → �p (1 + η), �r → 1

1 + η
�r. (4)

Then, the transformed nonrelativistic Hamiltonian (3) is given
by

H (2) = (1 + η)

(
H0 − η

∑
a<b

�pa · �pb

m

)
. (5)

The leading term E(2,0) ≡ E0 is a solution of the Schrödinger
equation H0� = E0� with the clamped nucleus Hamiltonian,

H0 =
∑

a

(
p2

a

2m
− Zα

ra

)
+

∑
a<b

α

rab

. (6)

The mass polarization effect in Eq. (5) is included perturba-
tively. It leads to the first-order correction to the wave function
�̃ = � + η δ�mp with

δ�mp = − 1

E0 − H0

∑
a<b

�pa · �pb

m
� . (7)

Let us introduce the following shorthand notation 〈. . .〉 =
〈�| . . . |�〉 and 〈. . .〉mp = 2 〈�| . . . |δ�mp〉. The first- and
second-order nonrelativistic recoil coefficients can be written
as

E(2,1) = η

(
E(2,0) −

∑
a<b

〈 �pa · �pb

m

〉)
, (8)

E(2,2) = −η2
∑
a<b

(〈 �pa · �pb

m

〉
+ 1

2

〈 �pa · �pb

m

〉
mp

)
. (9)

In calculations of relativistic effects for singlet states, the
spin-spin interaction and the spin-orbit coupling terms vanish
in the effective Breit-Pauli Hamiltonian [30]. We also do

not consider the hyperfine structure. The final relativistic
Hamiltonian is of the form

H (4) =
∑

a

H (4)
a +

∑
a<b

H
(4)
ab +

∑
a

H
(4)
aN , (10)

H (4)
a = − �p4

a

8 m3
, (11)

H
(4)
ab = α

{
π

m2
δ3(rab) − 1

2 m2
pi

a

(
δij

rab

+ ri
ab r

j

ab

r3
ab

)
p

j

b

}
,

H
(4)
aN = Z α

{
1

2 m M
pi

a

(
δij

ra

+ ri
a r

j
a

r3
a

)
p

j

N

+ 2 π

3

(〈
r2

ch

〉 + 3

4 m2

)
δ3(ra)

}
. (12)

All terms in Eq. (10) are treated as perturbations. Elements
free of the nuclear mass and the rms radius 〈r2

ch〉 contribute to
E(4,0) as mean values with the unperturbed wave function �.
Coefficient E(4,1) comprises terms proportional to η resulting
from the scaling from Eq. (4) and the evaluation of the
expectation value of H (4) with the perturbed wave function
�̃. Relativistic finite nuclear mass terms of order O(mα4η2)
have been abandoned as negligible.

Analogously, the leading QED corrections E(5,0), E(5,1) are
determined based on the known formulas [31,32]

E(5) = −4 Z α2

3

(
1

m
+ Z

M

)2 〈∑
a

δ3(ra)

〉
ln k0

+
∑

a

〈
H

(5)
aN

〉 + ∑
a<b

〈
H

(5)
ab

〉 + Epol, (13)

H
(5)
aN =

[
19

30
+ ln(α−2)

]
4 α2 Z

3 m2
δ3(ra)

+
[

62

3
+ ln(α−2)

]
(Z α)2

3 m M
δ3(ra)

− 7

6π

m2

M
(Z α)5 P

(
1

(m α ra)3

)
, (14)

H
(5)
ab = α2

m2

(
164

15
+ 14

3
ln α

)
δ3(rab)

− 7

6π
mα5P

[
1

(mα rab)3

]
, (15)

where the Bethe logarithm and the Araki-Sucher distribution
are defined by

ln k0 =
∑

a,b

〈 �pa (H0 − E0) ln
[ 2 (H0−E0)

α2 m

] �pb

〉
2 π α Z

∑
c〈δ3(rch)〉 , (16)

〈φ|P
(

1

r3

)
|ψ〉 = lim

a→0

∫
d3rφ∗(�r)

[
1

r3
	(r − a)

+ 4πδ3(r)(γ + ln a)

]
ψ(�r). (17)
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At present, complete numerical evaluation of the mα6

corrections for a four-electron system is unfeasible. Full
calculations of the E(6) have been performed only for one-
[33] and two-electron systems [34]. From this experience, we
observe that the E(6) factor can be reasonably estimated using
its dominating contribution built of one-electron terms,

E(6) ≈
{

Z2 α3

m2

[
427

96
− 2 ln(2)

]

+ Z2 α3

m M

[
35

36
− 448

27π2
− 2 ln(2) + 6ζ (3)

π2

]

+ Z3 α3

m M

[
4 ln(2) − 7

2

]}
π

∑
a

〈δ3(ra)〉. (18)

The above formula consists of electron-nucleus one-loop
radiative, radiative recoil, and pure (no-loop) recoil corrections
[33]. The electron-electron radiative corrections and the purely
relativistic mα6 corrections were neglected. As in [18], the
approximate treatment of E(6) is the main source of uncertainty
in the overall error budget.

The nuclear recoil corrections mα6η represented by coeffi-
cient E(6,1) are obtained from Eq. (18) in a procedure analogous
to that described above for E(4,1) and E(5,1). Although the
radiative recoil effect is negligible in the case of the transition
energy calculations, it is still significant for the isotope mass
shift. Again, the approximate form employed to estimate this
contribution introduces some uncertainty in the determination
of the isotope shift.

In addition to the above corrections resulting from the en-
ergy expansion (1) and (2), we included a term corresponding
to the nuclear polarizability correction Epol. It comes from
excitation of the nucleus by electrons orbiting in the atom.
The relevant formula [7] relating the electric dipole nuclear
transition moment with the shift of atomic-energy levels reads

Epol = −mα4
∑

a

〈δ3(ra)〉(m3 α̃pol), (19)

where α̃pol is a weighted electric polarizability of the nucleus
[7]. This correction has been calculated from the so-called
B(E1) function for beryllium isotopes 9,11Be+ [11,35]. In
contrast to the beryllium ion calculations [11], we use in
Eq. (19) the expectation value of the Dirac-δ operator of the
neutral beryllium atom.

Following the convention introduced for E(n,m), formulas
for related contributions to the transition energy and to the
isotope mass shift are given by

ν(n,m)(X → Y ) = E(n,m)(X) − E(n,m)(Y ), (20)

ν(n,m)(A,B) = ν(n,m)(A) − ν(n,m)(B). (21)

One of the main goals of this work was to present data
which enable determination of the nuclear charge radius of
one isotope, say A, with respect to B,

δr2
ch = 〈

r2
ch

〉
A

− 〈
r2

ch

〉
B
. (22)

δr2
ch can be determined from the difference between the

experimental and theoretical isotope mass shifts,

νexp − ν the
ms = C δr2

ch, (23)

provided that the C constant is known. To determine this
constant, we consider various corrections due to the finite
nuclear size. The leading rch-dependent corrections consist
of the mα4 terms extracted from Eq. (12),

E
(4,0)
fs = 2π

3
Zα

〈
r2

ch

〉∑
a

〈δ3(ra)〉 (24)

and

E
(4,1)
fs = 2π

3
Zα

〈
r2

ch

〉
η

[
3
∑

a

〈δ3(ra)〉 +
∑

a

〈δ3(ra)〉mp

]
.

(25)

We include also the logarithmic relativistic correction to the
wave function at the origin,

E
(6,0)
fs,log = −(Z α)2 ln

(
Zαm

〈
r2

ch

〉)
E

(4,0)
fs . (26)

Our recommended value of the constant C is obtained as a
sum of three components, C = C(4,0) + C(4,1) + C

(6,0)
log .

III. NUMERICAL CALCULATIONS

In numerical calculations, we use dimensionless energies
E (n,k) with the α and η factors pulled out, e.g., E(n,k) =
mαnηkE (n,k). The same can also be done for all terms in
the effective Hamiltonian H (n,k) = mαnηkH(n,k) entertaining
transformations p → mαp and r−1 → mαr−1.

As an extension of our previous nonrelativistic results for
2 1S and 2 1P states [18], we present herein results for the 31S

state. We employed the ECG basis functions of progressively
doubled size from 512 to 4096 terms. The sequence of energies
obtained for several basis sets enables estimation of the final
energy error. The energy obtained from the largest basis is of
comparable accuracy to the value published a few years ago
by Stanke et al. [27], but the size of our basis set has been
significantly reduced thanks to the thorough optimization.

Apart from finding the best possible energy and the wave
function of the unperturbed atom, one of the most crucial parts
of our perturbative calculations of the isotope mass shift is an
accurate representation of the mass polarization correction to
the wave function, δ�mp, of Eq. (7). This correction can be
found as a solution of the inhomogeneous equation

(E0 − H0)δ�mp = −
∑
a<b

( �pa · �pb − 〈 �pa · �pb〉)�. (27)

The operator �pa · �pb changes neither the orbital angular
momentum nor the spin symmetry of �. This means that
δ�mp can be expressed using basis functions of the same
symmetry as �. The variational parameters of such a basis
can be determined in a minimization of the symmetric quantity
J [δ�mp] = 〈∑a<b �pa · �pb〉mp. In our approach, the basis set
for δ�mp is divided into two sectors. The first sector is built
of the known basis functions with the nonlinear parameters
determined in the minimization of E0. For this purpose, we
selected one of the previously generated basis sets of size

012506-3



PUCHALSKI, PACHUCKI, AND KOMASA PHYSICAL REVIEW A 89, 012506 (2014)

equal to half of the final size of �. The nonlinear parameters
of this basis remain fixed during the optimization in order to
enable accurate representation of the states orthogonal to �.
The second sector, of size equal to that of the final �, consists
of basis functions that undergo optimization with respect to
the functional J . Due to the more complicated structure of
the first-order function, both the convergence and the cost
of the optimization are less favorable than in the case of
the unperturbed wave function optimization. The first-order
correction function δ�mp obtained in the procedure sketched
above is subsequently employed to evaluate all the mass
polarization corrections for the relativistic and QED operators.

Direct use of formulas (10) and (13) for relativistic and
QED operators leads to a slow numerical convergence of its
mean values, since they are sensitive to local inaccuracies
of the wave function � and the mass polarization correction
δ�mp. This spurious effect is especially observable with
the ECG functions having improper short-distance behavior.
The solution is to employ the regularized matrix elements
following Drachman‘s recipes [36]. Pertinent expressions
for the relativistic operators, including those with the mass
polarization correction, have been presented in the Appendix.
Below we provide the set of formulas for the Araki-Sucher
distribution P (r−3). The expression for P (r−3

ab ) has been
derived in Ref. [29],

[
P

(
r−3
a

)]
r

= 4π (1 + γ )δ3(ra) + 4(E0 − V)r−1
a ln ra

− 2
∑

b

�pbr
−1
a ln ra �pb, (28)

[
P

(
r−3
ab

)]
r

= 4π (1 + γ )δ3(rab) + 2(E0 − V)r−1
ab ln rab

−
∑

c

�pc r−1
ab ln rab �pc, (29)

where V is a dimensionless Coulomb potential. Such a
regularized operator, denoted as [. . .]r , has exactly the same
expectation value as the operator inside the square brackets if
the exact wave function is used.

In the regularized form of the second-order elements
〈. . .〉mp, there are additional first-order terms to be evaluated

following the formula

〈
P

(
r−3
ab

)〉
mp = 〈[

P
(
r−3
ab

)]
r

〉
mp + 2

∑
c<d

(〈 �pc · �pd r−1
ab ln rab

〉
−〈 �pc · �pd〉

〈
r−1
ab ln rab

〉)
. (30)

The Bethe logarithm and its mass polarization correction
is computationally the most demanding term in this work. It
involves numerical evaluation of the integrand in 200 points
in the method based on the integral representation introduced
by Schwartz [37,38]. Recently, we have obtained the Bethe
logarithms for the 2 1S and 2 1P states [18], whereas here we
present a result for the 3 1S state. The method of evaluation of
the mass polarization correction to the Bethe logarithm was
originally applied to the helium atom [39]. We have recently
extended this approach to the lithium atom [8], and we follow
this approach here.

IV. RESULTS

Numerical results for all operators necessary to evaluate the
transition energies and the isotope shifts with the 2 1S, 3 1S, and
2 1P states of the beryllium atom are presented in Table I. In
calculations of the isotope mass shift of the ionization energy,
we use the numerical values obtained previously with the
Hylleraas basis functions [11] for the Be+ ion. These values
appear to be determined with much higher numerical precision
than that accessible from the ECG approach. In Table I, some
of the first-order quantities 〈. . .〉 for the 2 1S and 2 1P states
come from our former work [18]. For a given operator, the
final value is assessed in an extrapolation from a series of
basis sets of progressively doubled size. We have used up
to 4096 basis functions to represent the 2 1S and 3 1S states
in the first-order expectation value as well as in the mass
polarization corrections 〈. . .〉mp. The exception is the Bethe
logarithm calculated with, at most, 2048 basis functions. For
the 2 1P state, the most accurate results have been acquired
from a 6144-term basis, but only for the first-order terms. The
expressions for the expectation values in the 1P states are much
more complex compared to those of the 1S states, and thus
accurate determination of the mass polarization corrections
is very time consuming. We obtained these corrections with

TABLE I. Dimensionless mean values for 2 1S, 3 1S, and 2 1P states of the beryllium atom.

Operator 2 1S 3 1S 2 1P

〈. . .〉 〈. . .〉mp 〈. . .〉 〈. . .〉mp 〈. . .〉 〈. . .〉mp

H0 −14.667 356 498(3) −14.418 240 37(5) −14.473 451 37(4)
�pa · �pb 0.460 224 112(8) 7.702 088 9(11) 0.450 500 94(9) 6.930 24(12) 0.434 811 25(13) 8.291 95(5)
�p 4
a 2 165.630 1(9) 138.347(6) 2 148.339 7(18) 122.58(18) 2 133.321 1(12) 195.83(11)

δ3(ra) 35.369 002 6(6) 1.274 91(17) 35.127 977(9) 1.039(5) 34.897 914 6(8) 2.268(3)
δ3(rab) 1.605 305 33(9) −0.417 38(9) 1.583 185 4(7) −0.425 2(6) 1.567 943 6(2) −0.335 7(5)

pi
a

(
δij

rab
+ ri

ab
r
j
ab

r3
ab

)
p

j

b 1.783 648 19(15) 19.320 040(3) 1.800 258 3(15) 18.243 7(5) 1.624 185 8(5) 19.278 7(8)

pi
N

(
δij

ra
+ ri

a r
j
a

r3
a

)
pj

a 224.965 525(6) 222.843 53(7) 220.689 8(2)

P
(
r−3
ab

) −7.326 766(3) −0.305(7) −7.472 06(4) −0.12(5) −7.097 15(8) −1.978(9)
P

(
r−3
a

) −917.750 9(2) −911.495 2(9) −905.256(3)
ln(k0) 5.750 46(2) −0.130 9(2) 5.751 49(5) −0.126 7(7) 5.752 32(8) −0.128 8(11)
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TABLE II. Dimensionless coefficients of the energy difference expansion in powers of α and η. For the 3 1S − 2 1S transition, the coefficients
were explicitly converted to MHz using CODATA [41] inverse fine-structure constant α−1 = 137.035 999 074(44) and the nuclear mass mN (9Be) =
9.012 182 20(43) u [42]. The finite-size correction ν

(4,0)
fs was calculated with rch(9Be) = 2.519(12) fm [43].

Contribution 3 1S − 2 1S (MHz) 2 1P − 2 1S IP(2 1S)

ν(2,0) 0.249 116 13(6) 54 674.671(13) 0.193 905 149(8) 0.342 593 324(6)
ν(2,1) 0.258 839 3(2) −3.458 8 0.219 318 0(2) 0.349 898 28(3)
ν(2,2) 0.395 65(6) −0.269 541(12) 0.677 212(4)
ν(4,0) 0.569 5(8) 6.65 6(9) 1.041 2(2) 0.634 38(12)
ν(4,1) 0.632(8) −2.060(3) 0.926 4(5)
ν(5,0) −5.945(10) −0.507(1) −11.849(16) −6.542(5)
ν(5,1) −4.74(15) 28.86(22) −7.36(5)
ν(6,0) −37.(7) −0.023(4) −73.(15) −41.(9)
ν(6,1) −199.(100) −165.(83) −232.(116)
ν

(4,0)
fs −2.019 21(7)

〈
r2

c

〉 −0.001 0 −3.946 57(2)
〈
r2

c

〉 −2.211 23(1)
〈
r2

c

〉
Total 54 677.337(17)
Theor. [27]. 54 677.378(30)
Expt. [40]. 54 677.26(10)

3072-term functions, and the Bethe logarithm calculations
involved up to 1536 basis functions.

Table II contains dimensionless coefficients of the energy
difference ensuing from the expansions (1) and (2), which have
been computed on the basis of the data collected in Table I.
These coefficients enable summation of the expansion for any
isotope. We show explicitly the results of such a summation
for the 3 1S − 2 1S energy gap in the 9Be isotope (see column
3 of Table II). A major contribution to the overall uncertainty
of this value comes from the assumption that the missing
mα6 and higher-order terms contribute approximately 20%
of the evaluated correction ν(6,0). For this transition, we have
obtained agreement with the other theoretical calculation [27]
as well as with the experimental value [40]. Note, however,
that theoretical results are currently significantly more accurate
than measurement results. The entries neglected in the third
column of Table II correspond to contributions that do not
affect the absolute transition frequencies. However, they are
significant in the isotope shift calculations. The results of
analogous summation for the 2 1P − 2 1S transition and the
2 1S ionization potential have already been given in [18].

The expansion coefficients ν(n,1),n = 2,4,5,6 and ν(2,2) of
Table II can be used to evaluate subsequent contributions to the
isotope mass shift ν the

ms . An example of such an evaluation for
the 11Be–9Be shift is presented in Table III. We observe that the

leading nonrelativistic contribution gives at least 99.9% of the
total isotope shift. The relativistic and QED recoil corrections
are small but still important. The uncertainty of our ν the

ms
comes in 50% from ν(6,1), in 10% from νpol, and in the
remaining part from several smaller contributions. The nucleus
polarizability α̃pol has been determined based on B(E1) data
[11,35] and is used here to obtain the shift of energy levels
Epol. Calculating coefficient C, we included the finite mass
correction as well as the logarithmic relativistic correction,
resulting in a small isotope dependence. The uncertainty of
C coefficients comes from the estimation of the relativistic
correction to the wave function at the origin, which is about
25% of the logarithmic part. This completes the theoretical
results necessary for the nuclear charge radii determination of
the beryllium isotopes.

V. CONCLUSION

The principal motivation for this work was to provide
theoretical means for determination of the nuclear radii from
the isotope shifts of transition lines 2 1P − 2 1S, 3 1S − 2 1S,
and ionization potential of the 2 1S state. The uncertainty of
our calculations for beryllium isotope mass shifts is dominated
by the numerical uncertainty of ν(n,1), n = 2,4, and the
estimation of unknown terms of order mα6η, which amounts

TABLE III. Contributions to the 11Be–9Be isotope shift of the 3 1S − 2 1S, 2 1P − 2 1S transition and ionization potential IP(2 1S) in
MHz, with exclusion of the finite-size correction. The second uncertainty of ν the

ms is due to the atomic mass. The nucleus polarizability
α̃pol(11Be) = 6.90(69) × 10−7 m−3 [11], α̃pol(9Be) = 2.90(29) × 10−7 m−3 [35].

Contribution 3 1S − 2 1S 2 1P − 2 1S IP(2 1S)

ν(2,1) 18 907.131(15) 16 020.271(15) 25 558.619(2)
ν(2,2) −3.198 2(5) 2.178 8(1) −5.474 2
ν(4,1) 2.46(3) −8.013(12) 3.604(2)
ν(5,1) −0.135(4) 0.819(6) −0.209(2)
ν(6,1) −0.041(20) −0.034(17) −0.048(24)
νpol 0.034(3) 0.066(7) 0.037(4)
ν the

ms 18 906.25(4)(1) 16 015.29(3)(1) 25 556.53(3)(1)

C(MHz/fm2) −4.772(8) −9.334(16) −5.225(9)
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to 30–40 kHz. This is sufficient to determine the mean-square
charge radii difference with a precision of about 0.003 fm2,
which is much less than the uncertainty in the charge radius
of the reference nucleus. The beryllium rms charge radii
of 7,10-12Be have already been obtained relative to the only
stable 9Be nucleus from the D1 and D2 transition lines in
three-electron Be+ [9,44]. The results provided herein can be
employed for a consistency check with corresponding values
extracted from presumably more accurate transitions in atomic
beryllium. More important, however, is that the analogous
results can be obtained for the berylliumlike ions, such as the
boron cation B+ or carbon cation C2+.
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APPENDIX: REGULARIZATION
OF RELATIVISTIC OPERATORS

In this section, we present regularization formulas. The
following three operators, denoted by [. . . ]r , are defined as

∑
a

[
p4

a

]
r

= 4 (E0 − V)2 − 2
∑
a<b

�p 2
a �p 2

b , (A1)

4π [δ3(ra)]r = 4 (E0 − V) r−1
a − 2

∑
b

�pb r−1
a �pb , (A2)

4π [δ3(rab)]r = 2 (E0 − V) r−1
ab −

∑
c

�pc r−1
ab �pc. (A3)

For the exact wave function, the following expectation value
identities are valid:

∑
a

〈
p 4

a

〉 =
∑

a

〈[
p 4

a

]
r

〉
, (A4)

〈4πδ3(ra)〉 = 〈4π [δ3(ra)]r〉, (A5)

〈4πδ3(rab)〉 = 〈4π [δ3(rab)]r〉, (A6)

∑
a

〈
p 4

a

〉
mp

=
∑

a

〈[
p 4

a

]
r

〉
mp − 8

∑
a<b

(〈 �pa · �pb V〉 − 2 E0 〈 �pa · �pb〉),

(A7)

〈4π δ3(ra)〉mp

= 〈4π [δ3(ra)]r〉mp + 4
∑
b<c

(〈 �pb · �pc r−1
a

〉 − 〈 �pb · �pc〉
〈
r−1
a

〉)
,

(A8)

〈4π δ3(rab)〉mp

= 〈4π [δ3(rab)]r〉mp + 2
∑
c<d

(〈 �pc · �pd r−1
ab

〉 − 〈 �pc · �pd〉
〈
r−1
ab

〉)
.

(A9)

For an approximate wave function, the right-hand side con-
verges faster to the exact value than does the conventional
expression on the left-hand side.
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