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Ground states of helium to neon and their ions in strong magnetic fields
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We use the combination of a two-dimensional Hartree-Fock and a diffusion quantum Monte Carlo method,
both of which we recently presented in this journal [C. Schimeczek et al., Phys. Rev. A 88, 012509 (2013)], for a
thorough investigation of the ground state configurations of all atoms and ions with Z = 2–10 with the exception
of hydrogen-like systems in strong magnetic fields. We obtain the most comprehensive data set of ground state
configurations as a function of the magnetic field strength currently available and hence are able to analyze and
compare the properties of systems with different core charges and electron numbers in detail.
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I. INTRODUCTION

In the last years many research groups have added
to the understanding of atomic and molecular systems
in strong magnetic fields applying different Hartree-Fock
methods [1–7], density functional theory [8], and configuration
interaction calculations [9–15]. Recently, we presented a
new combination of a two-dimensional Hartree Fock method
(2DHFR) with a fixed phase diffusion quantum Monte Carlo
code (FPDQMC) for the computation of energy levels of atoms
in intermediately strong to very strong magnetic fields [16].
These methods are capable of computing very accurate energy
values of atomic states for all field strengths βZ � 0.1, where
βZ = β/Z2 = B/(B0Z

2), with B0 ≈ 4.70103 × 105 T, is the
nuclear-charge-scaled magnetic field strength. We apply this
combination of the two methods to reveal the electronic ground
state configurations of all elements from helium to neon and
their positive ions with two or more electrons for such magnetic
field strengths.

In very strong magnetic fields (B � 107 T) the spin-flip
energies are much larger than the atomic single-particle
energies, and therefore in bound states all electron spins
are aligned antiparallel to the field. This is no longer true
when the magnetic field decreases and the spin-flip energies
come into the range of the single-particle energies. Then,
a transition from a fully spin-polarized state to a state
with mixed alignments of the electron spins occurs. The
ground state energies and configurations of atoms and ions in
strong magnetic fields are of special interest for astrophysical
applications. Ground state and excitation energies are the basis
to find Boltzmann weights and to calculate partition functions
and ionization fractions (see, e.g., [17,18]). Thus they are of
utter importance for the modeling of neutron star atmospheres
(see, e.g., [19,20]), a discipline always hampered by the lack
of atomic data for strong fields.

In this direction, Ivanov and Schmelcher [1–3] conducted
several studies with a two-dimensional Hartree-Fock mesh
approach. Reference [1] is devoted to the study of the ground
state configurations of Li and Li+ and covers all magnetic field
strengths from B = 0 T up to the high-field regime. This study
revealed three ground state configurations for Li and two for
Li+. The ground state configuration of neutral carbon was in-
vestigated in Ref. [2], again from B = 0 T up to the high-field
regime. In this case, seven different ground state configurations
were found. In Ref. [3] the authors went in a slightly different
direction. There, they focused on the high-field regime and

studied the transition from the high-field ground state to
other configurations for all atoms and singly positive ions
from helium to neon. To our knowledge, there is no further
systematic investigation of the ground state configurations of
atoms in strong magnetic fields available in the literature.

We therefore take over from where this last investigation
stopped and study all atoms and ions from helium to neon with
at least two electrons. The study of hydrogen-like systems is
superfluous in this context, as their ground state configuration
is independent of the magnetic field strength. For the hydrogen
atom a large amount of accurate data [21–23] over a wide range
of β is available and it is well known that the energies and wave
functions of hydrogen-like systems are related to those of the
hydrogen atom by simple scaling laws [9,21,24].

The many-particle Hamiltonian in cylindrical coordinates
reads

Ĥ =
Ne∑
i=1

⎛
⎝−1

2
�i − iβ∂ϕi

+ 1

2
β2ρ2

i + 2βmsi

− Z

|r i | +
Ne∑

j=i+1

1

|r i − rj |

⎞
⎠ (1)

and describes Ne electrons with spin msi
in the potential of a

nucleus with charge Z and infinite mass. We use atomic hartree
units throughout this paper. We do not consider relativistic
corrections, as they are expected to be small, even at large
magnetic field strengths [25,26]. Also, we assume a vanishing
pseudomomentum for the center of mass (see Schmelcher and
Cederbaum [27]). This assumption fails for charged systems
N �= Z as the internal and external motion of ions is coupled
and their description is in general much more complicated
(see, e.g., [28–30]). A complete theoretical description of this
problem is still lacking; thus we note that the accuracy of our
results might be limited for charged systems.

In the following we give a short summary of our solution
method. A detailed description can be found in our previous
paper [16]. In the 2DHFR method the many-particle wave
function is constructed from a Slater determinant of single-
particle spin orbitals ψi for each electron i. These are expanded
using a full 2D description in terms of Landau channels:

ψi(ρi,ϕi,zi) =
NL∑
n=0

P i
n(zi)�nmi

(ρi,ϕi), (2)
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where each channel contributes with an individual longitudinal
wave function P i

n(zi), which is expanded with B splines [31]
Bμ on a finite element grid:

P i
n(zi) =

∑
ν

αi
nνB

i
ν(zi). (3)

The variation of the energy functional with respect to the B-
spline coefficients αnμ yields two-dimensional Hartree-Fock-
Roothaan equations, which are solved iteratively. The initial
wave functions are given by the approximate solutions found
by our HFFER II code, described in [32]. We include up to NL =
30 Landau channels for the single-particle Landau expansion
and thereby obtain accurate results down to βZ ≈ 0.1.

Subsequent to the 2DHFR calculations we improve our
energy-estimates in a FPDQMC procedure [33], where we
simulate the importance sampled imaginary-time (τ = it)
Schrödinger equation. With the single-electron orbitals from
2DHFR, we construct a trial function �T of the usual form [34]:

�T(R) = J�↓(R)�↑(R). (4)

Here, �↓ and �↑ are Slater determinants of all spin-down and
spin-up electrons, respectively, and J is a Padé-Jastrow factor
[34], whose free parameters are optimized in a variational
quantum Monte Carlo simulation using correlated sampling.

The trial function is used to guide an ensemble of random
walkers through configuration space. The FPDQMC method
redistributes this ensemble, initially distributed according to
|�T|2, such that it represents |�Tφ0|, where φ0 is the ground
state of the symmetry subspace of �T; i.e., excited state
contributions are damped as the imaginary time progresses.

When the ensemble has been redistributed, we obtain
an energy estimate by evaluating the local energy EL(R) =
Ĥ�T(R)/�T(R) at all walker positions in a given number of
steps. The FPDQMC method has the limitation of keeping the
phase of the trial function fixed during the simulation; thus
the results contain a fixed-phase error. However, the method
is variational and the phase error is very small. For helium,
we found a maximum error of only 2‰ in the most extreme
cases [16].

II. PRELIMINARY REMARKS

The exploration of ground state configurations of atoms
and ions over a wide range of magnetic field strengths is
the natural next step after computing ground state energies
for several explicit magnetic field strengths as we did in
Ref. [16]. To do so, extensive numerical calculations are
required after identifying possible candidates for the ground
state configurations by qualitative arguments; see also the
extensive discussion in Ref. [3]. Our combination of the very
fast 2DHFR method and the very accurate FPDQMC method
is ideally suited for such a task. With 2DHFR, we analyze the
energies of possible ground state configurations by performing
many calculations over wide ranges of magnetic field strengths
β. In this way, we obtain first estimates for the magnetic field
strengths, where the ground state configuration changes. Then,
we conduct more accurate FPDQMC calculations for β values
close to the crossing points predicted with 2DHFR to obtain
our final results. As we already have a very good idea of where
the configurations cross after our 2DHFR calculations, we can

choose a very fine grid in β for our FPDQMC calculations,
and therefore find very accurate values for the crossing points.

A. Ground state regimes

In the presence of a magnetic field an atom and its physics
are subject to a variety of changes. First, the conserved
quantum numbers are reduced to the total angular momentum
z projection M , the total z parity �z, the total spin z projection
Sz, and the total spin S2. In contrast to full configuration in-
teraction methods based on Slater determinants (see Knowles
and Handy [35]) our wave functions are spin contaminated if
different spin orientations are involved, a consequence of the
two Slater determinants in the FPDQMC approach given in
Eq. (4). However, this does not affect our precision during
the search for the ground states. The remaining quantum
numbers define a subspace and states are labeled by their
excitation level ν within this subspace: {−M,�z,Sz,ν}. Since
the wave functions and energies of the states strongly depend
on the magnetic field strength, the ground state energy and
configuration are also affected by the magnetic field. In
hydrogen-like systems the ground state is always the lowest
state of the {0, + ,↓} subspace. In multielectron systems,
however, the ground state configuration varies in dependence
of the magnetic field strength. Due to the noncrossing theorem
of states corresponding to the same symmetry subspace [36],
ground state configuration changes correspond to the crossing
of the lowest states of different symmetry subspaces.

Within the Hartree-Fock approximation we assign single-
particle quantum numbers (−mi,πzi

,msi
,ν̃i) to each orbital.

Both sets of quantum numbers are connected by the relations

M =
Ne∑
i=1

mi, Sz =
Ne∑
i=1

msi
, � =

Ne∑
i=1

πzi
. (5)

The energy of orbitals with positive m or ms is raised by 2βm

or 2β in atomic units in comparison to their counterparts with
negative m or ms , respectively. These orbitals are therefore
no candidates for the ground states at larger βZ . One can
define four regimes for the ground state configurations: the
low-field regime (LF), the magnetic polarization regime (MP)
with partial spin polarization (PSP), the regime of full spin
polarization (FSP), and the high-field ground state regime
(HFGS). In the MP regime the ground state configuration con-
tains only orbitals with m � 0. To estimate the transition field
strength to this regime we examine the single-particle orbital
(−1,+,↓,1), which corresponds to the field free state 2p+1 and
has the lowest energy of all orbitals with positive m. In neutral
carbon this orbital is no longer contained in the ground state
configuration at βZ ≈ 7 × 10−3 [2]; thus we can safely ignore
these states in this investigation. The ground state reaches
full spin polarization roughly at βZ ≈ 0.1. Then, all spins are
aligned antiparallelly to the magnetic field. Eventually, the
high-field ground state configuration is reached at large βZ .
There, all electrons occupy tightly bound orbitals (ν̃ = 1, πz =
1), the lowest lying orbital with positive z parity of each m.

Due to our Landau ansatz for the single-particle wave
functions [16,21] we are restricted to βZ � 0.1 and list
transitions only for these field strengths. Thus, we cannot
investigate ground state configurations in the LF regime or
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the transition to the MP regime. To facilitate the comparison
with the literature, we adopt the orbital labeling introduced by
Ivanov [3], which is useful at high βZ: We assume a HFGS
configuration and denote only those orbitals that deviate from
this configuration by their zero-field quantum numbers nl

(↑)
m

(see also [37]). Also, we only indicate the spin alignment (↑)
if it deviates from the FSP. This allows for a very compact
representation of the orbital configuration, even for many
electrons, at high βZ . The high-field ground state is then
denoted by 0. The relevant fully spin-polarized states for this
work are 0, 2p0, and 2p03d−1.

B. Computation of transition field strengths

We determine a precise estimate for the transition point (βTr
Z ,

ETr) between two states A and B by a linear interpolation of the
energy functions E(βZ) from four E(β) values in the vicinity
of the transition point. As we choose very small intervals �βZ ,
which are adapted to each of the crossing points, this linear
interpolation causes only insignificant deviations compared to
an interpolation of higher order. We account for the statistical
uncertainties of our FPDQMC results by error propagation,
yielding statistical 1σ uncertainties also for the crossing field
strengths and energies. Values in brackets thereby denote this
statistical uncertainties of the last digit(s).

In general, due to the rather low field strengths, we obtain
corrections of energy values in FPDQMC with respect to the
2DHFR results of around 2% for PSP states and �1% for FSP
states. This is caused by the large spherical-symmetric compo-
nent of the innermost orbital, resulting in difficult convergence
of the employed single-particle Landau expansion. The differ-
ent corrections for PSP and FSP states lead to slightly larger
values of βZ for the change of regime that we find in FPDQMC
calculations compared to the corresponding 2DHFR values.
This is symbolically depicted in Fig. 1. The 2DHFR predic-
tions for transition field strengths deviate from the precise
FPDQMC results by up to 4%. Thus, all numerical values are
taken from our FPDQMC calculations in what follows.

III. RESULTS AND DISCUSSION

A. 2–4 electron systems

We start our discussion with systems of 2–4 electrons.
Here, only the 0 and 1s↑ configurations are possible ground

βTr
Z (2DHFR) βTr

Z (FPDQMC)

PSP states

FSP states

2DHFR

FPDQMC

ΔEPSP

ΔEFSP

FIG. 1. The larger energy corrections in FPDQMC (solid lines)
with respect to 2DHFR (dashed lines) for PSP states compared to
those for FSP states cause slightly larger predicted values βTr

Z for the
transitions between such states in FPDQMC compared to the values
in 2DHFR.

states for βZ � 0.1. The 1s↑ configuration is the zero-field
configuration for 2-electron systems. Table I shows the results
for the transition field strengths βTr

Z . In addition we also give
the corresponding energies ETr for these transitions to allow
for a comparison in future studies. We see that the nuclear
charge scaled magnetic field strength βZ of this transition
slowly increases with Z. It is reasonable to assume that the
transition field strength for two-electron systems in the limit of
Z → ∞ asymptotically approaches the value βTr

∞ = 0.17058.
At this β the energy curves of the hydrogen orbitals 1s↑
and 2p−1 intersect [21–23]. With increasing nuclear charge
the electron-electron interaction terms become less important
compared to the nuclear potential and can be neglected in
this limit. We have visualized this behavior with additional
calculations for Z = 11–26 and Z = 92 in Fig. 2. In the last
case we found βTr

Z = 0.16882(3), which deviates by only 1%
from the asymptotic value. This increase of βTr

Z with Z is a
shared feature of all ground state transitions we studied.

B. Systems with 5 and more electrons

We found four different ground state configurations for
the 5-electron systems, as is shown in Table II. At the lowest
investigated field strengths βZ ≈ 0.1 the configuration 1s↑2p0

TABLE I. Magnetic field strengths βTr
Z and energy values ETr in hartrees at the 1s↑-0 ground state configuration change for helium-like,

lithium-like, and beryllium-like ions.

Helium-like Lithium-like Beryllium-like

Z βTr
Z ETr[−Ha] βTr

Z ETr[−Ha] βTr
Z ETr[−Ha]

2 0.09393(4) 2.8010(2)
3 0.11744(3) 6.9766(3) 0.12212(3) 7.6905(3)
4 0.12993(4) 13.0453(6) 0.14229(4) 15.0670(6) 0.14432(4) 15.9779(7)
5 0.13763(4) 21.0082(8) 0.15510(4) 24.9386(9) 0.16023(4) 27.1632(10)
6 0.14292(4) 30.8640(13) 0.16404(4) 37.309(2) 0.17145(4) 41.356(2)
7 0.14675(3) 42.618(2) 0.17059(3) 52.184(2) 0.17979(3) 58.562(2)
8 0.14960(3) 56.260(2) 0.17556(3) 69.551(2) 0.18627(3) 78.775(3)
9 0.15189(3) 71.805(3) 0.17947(4) 89.418(4) 0.19137(3) 102.000(3)
10 0.15372(3) 89.235(4) 0.18266(3) 111.783(4) 0.19547(3) 128.218(4)
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FIG. 2. Magnetic field strength βTr
Z of the 1s↑-0 ground state

configuration change for helium-like ions with Z = 2–26 and 92.
The dashed line denotes the field strength βTr

∞ = 0.17058, where the
energies of the hydrogen states 1s↑ and 2p−1 coincide.

forms the ground state for all investigated boron-like ions but
not for neutral boron. Also, the 1s↑ and 2p0 configurations
represent ground states at intermediate field strengths. For
neutral boron our results differ from those in Ref. [3],
where the direct transition 1s↑-0 was found. Figure 3 shows
the progression of the energy functions E(βZ) of the two
configurations 2p0 and 0 of this system. Since the two energy
functions intersect at a very small angle, small differences in
the computed energy values for these two configurations lead
to large differences for the proposed transition field strengths,
the cause for the differing predictions in Ref. [3].

For C+ the configuration 1s↑2p0 becomes ground state
at field strengths βZ < 0.0788(7). In this case, we push our
2DHFR ansatz down towards a critically low magnetic field.
However, we found that our FPDQMC results are still very
accurate even for such small magnetic fields. Still, we cannot
calculate reliably the transition field strength to 1s↑2p0 for
neutral boron, which occurs at even lower field strengths.

The 6-electron systems are especially interesting. Here, we
find two possible paths from the configuration 1s↑2p0 at the
lowest available field strengths to the high-field configuration
(Table III). For Z = 6 and Z = 7 we found the path 1s↑2p0-
1s↑-2p0-0, whereas for Z = 8–9, the configuration 1s↑ is
never ground state and we find the transitions 1s↑2p0-2p0-0
instead. This indicates that for N+ and O2+ the configurations
1s↑ and 1s↑2p0 should have almost the same energies in the
relevant region of βZ . Indeed, for O2+ the transitions 1s↑2p0-

−28.5

−28.4

−28.3

−28.2

−28.1

0.160 0.161 0.162 0.163 0.164 0.165 0.166

E
[H

a
]

βZ

β
1s↑-2p0
Z

0
1s↑
2p0

FIG. 3. (Color online) Energies of the 2p0, 1s↑, and 0 ground
state candidates for neutral boron in the neighborhood of their
crossing points. Lines serve as a guide to the eye.

1s↑ at βTr
Z = 0.1855(7) and 1s↑2p0-2p0 at βTr

Z = 0.18445(3)
occur at very similar field strengths; see Fig. 4. The energy
functions of 1s↑2p0 and 1s↑ progress almost in parallel, which
causes a higher uncertainty in the transition field strength
between these two states compared to the one for the transition
1s↑2p0-2p0. Still, our results are accurate enough to exclude
1s↑ as ground state configuration.

The nitrogen-like, oxygen-like, and fluorine-like systems
show, similarly to the 6-electron systems with Z = 8–10,
only the ground state transitions 1s↑2p0-2p0 and 2p0-0, as
is presented in Table IV.

In neutral neon, however, we find for the first time the
ground state configuration 2p03d−1; see Table V. Here, our
results again differ qualitatively from those in Ref. [3], where
2p03d−1 was excluded as ground state configuration. However,
the authors of Ref. [3] themselves stated that in more accurate
studies 2p03d−1 might be revealed to be ground state in neutral
neon in a short interval of magnetic field strengths. Indeed,
the transition 1s↑2p0-2p03d−1 occurs at βZ = 0.20346(3) and
the transition 2p03d−1-2p0 already at βZ = 0.2089(6). The
configuration 2p0 then is the ground state up until βZ =
0.8076(4), before the change to the high-field configuration
occurs.

C. Transitions to the FSP and HFGS regimes

The regime of fully spin polarized ground states and the
high-field ground state are of special interest. The latter is
important as in this regime the ground state configuration

TABLE II. Transitions of ground state configurations for boron-like ions. The 1s↑2p0-1s↑ transition in neutral boron is not accessible in
our approach.

1s↑2p0-1s↑ 1s↑-2p0 2p0-0

Z βTr
Z ETr[−Ha] βTr

Z ETr[−Ha] βTr
Z ETr[−Ha]

5 0.16129(4) 28.2640(10) 0.1657(3) 28.47(2)
6 0.0788(7) 41.67(3) 0.17206(4) 43.799(2) 0.2067(3) 46.13(2)
7 0.1013(6) 60.33(3) 0.17993(4) 62.768(3) 0.2378(3) 68.06(3)
8 0.1191(5) 82.47(3) 0.18600(4) 85.178(4) 0.2622(3) 94.27(3)
9 0.1332(4) 108.08(3) 0.19083(3) 111.029(4) 0.2816(3) 124.73(4)
10 0.1450(4) 137.17(3) 0.19472(4) 140.317(5) 0.2971(3) 159.39(5)
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TABLE III. Transitions of ground state configurations for carbon-like ions.

1s↑2p0-1s↑ 1s↑-2p0 1s↑2p0-2p0 2p0-0

Z βTr
Z ETr[−Ha] βTr

Z ETr[−Ha] βTr
Z ETr[−Ha] βTr

Z ETr[−Ha]

6 0.1170(7) 43.91(2) 0.17000(3) 45.023(2) 0.2693(4) 51.61(2)
7 0.1538(7) 64.65(2) 0.17805(4) 65.342(3) 0.3181(3) 78.03(3)
8 0.18445(3) 89.501(3) 0.3571(3) 109.94(3)
9 0.19085(3) 117.737(4) 0.3880(3) 147.33(4)
10 0.19615(3) 149.891(5) 0.4141(4) 190.27(6)

is independent of β, whereas in the former regime one can
disregard orbitals with spin-up alignment for ground state con-
figurations. Both facts correspond to a significant reduction in
numbers of lowly excited electronic configurations. Therefore
we expect considerable effects on the partition functions and
thus the ionization balances of atoms and ions in different
regimes of the magnetic field strength.

For the 2–4 electron systems, these regime changes coincide
and correspond to the ground state transition 1s↑-0. All other
investigated systems have one additional FSP configuration
besides the HFGS, namely 2p0, with the exception of neutral
neon with two additional configurations 2p0 and 2p03d−1. In
Table VI we sum up the magnetic field strengths for PSP-FSP
transitions for all systems studied in this paper. We see that not
only these transition field strengths increase monotonically
with increasing Z at constant Ne, which we have explained
before, but also with increasing Ne while Z is kept fixed. We
suggest the following explanation for the latter finding: The
orbitals 2p0 or 3d−1 are considerably stronger affected by the
electronic repulsion that increases with Ne in comparison to the
inner orbital 1s↑, whose shape and energy is mostly unaffected
by a larger number of electrons. Thus, the PSP ground state
prevails up to higher values of βZ for larger electron numbers.
The only exceptions to this rule were found for boron-like and
carbon-like systems, where βZ of the PSP-FSP transition drops
coming from Ne = 4 but then rises again at Ne = 7. This is
caused by different ground state configurations involved at this
change of regimes. Up to 4 electrons this change corresponds
to the transition 1s↑-0, but for higher Ne other transitions are
involved.
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Z

β
1s↑2p0-1s↑
Z

FIG. 4. (Color online) Energies of O2+ ground state candidates
at the edge of the FSP regime. Lines serve as a guide to the eye.

The magnetic field strength corresponding to the onset of
the HFGS regime is commonly estimated with the condition
βZ � Z [19]. Our calculations show that this estimate yields
too large a βZ for small values of Z and Ne; see Table VII.
However, we indeed see that the field strength βZ that marks
the verge of the HFGS strongly increases with Z and Ne, i.e.,
from βZ = 0.09393(4) for neutral helium to βZ = 0.8076(4)
for neutral neon.

D. Comparison with the literature

We end the discussion of our results with a comparison with
the findings of Ivanov and Schmelcher [2,3]. Their method,
as well as our FPDQMC, are variational, so we are sure that
higher binding energies correspond to more accurate results. A
direct comparison is complicated by the fact that we and Ivanov
and Schmelcher did not compute binding energies for exactly
the same βZ . Hence, we linearly interpolate our results to be
able to compare with the energy values given in Ref. [3]. The
results of this comparison are shown in Table VIII. We focus
on the transitions at low βZ as our employed Landau ansatz
is especially prone to errors in this magnetic field strength
regime. In all cases our binding energies are slightly higher
than those given in Ref. [3], for both states in question. In
addition, our calculations feature a higher data point density.
Therefore, we can assume that our transition field strengths
are also more accurate.

In Table IX we compare the transition field strengths for
various ground state configuration changes with those of

TABLE IV. Transitions of ground state configurations for
nitrogen-like ions, oxygen-like ions, and fluorine-like ions.

1s↑2p0-2p0 2p0-0

Z βTr
Z ETr[−Ha] βTr

Z ETr[−Ha]

Nitrogen-like
7 0.17812(4) 66.838(3) 0.3864(4) 85.31(3)
8 0.18678(4) 92.768(4) 0.4430(3) 122.52(3)
9 0.19388(3) 123.029(5) 0.4894(3) 166.54(4)
10 0.19978(3) 157.618(5) 0.5279(3) 217.35(4)

Oxygen-like
8 0.18781(3) 94.545(4) 0.5172(4) 131.90(4)
9 0.19550(3) 126.460(4) 0.5805(3) 181.94(4)
10 0.20191(3) 163.091(6) 0.6335(4) 240.11(5)

Fluorine-like
9 0.19649(4) 128.367(5) 0.6581(6) 193.41(7)
10 0.20311(3) 166.688(6) 0.7071(4) 258.27(5)
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TABLE V. Transitions of ground state configurations in neutral neon.

1s↑2p0-2p03d−1 2p03d−1-2p0 2p0-0

Z βTr
Z ETr[−Ha] βTr

Z ETr[−Ha] βTr
Z ETr[−Ha]

10 0.20346(3) 168.685(6) 0.2089(6) 170.07(14) 0.8076(4) 272.04(6)

TABLE VI. Magnetic field strength βTr
Z at the transition from PSP to FSP for all systems.

Z Ne = 2 Ne = 3 Ne = 4 Ne = 5 Ne = 6 Ne = 7 Ne = 8 Ne = 9 Ne = 10

2 0.09393(4)
3 0.11744(3) 0.12212(3)
4 0.12993(4) 0.14229(4) 0.14432(4)
5 0.13763(4) 0.15510(4) 0.16023(4) 0.16129(4)
6 0.14292(4) 0.16404(4) 0.17145(4) 0.17206(4) 0.17000(3)
7 0.14675(3) 0.17059(3) 0.17979(3) 0.17993(4) 0.17805(4) 0.17812(4)
8 0.14960(3) 0.17556(3) 0.18627(3) 0.18600(4) 0.18445(3) 0.18678(4) 0.18781(3)
9 0.15189(3) 0.17947(4) 0.19137(3) 0.19083(3) 0.19085(3) 0.19388(3) 0.19550(3) 0.19649(4)
10 0.15372(3) 0.18266(3) 0.19547(3) 0.19472(4) 0.19615(3) 0.19978(3) 0.20191(3) 0.20311(3) 0.20346(3)

TABLE VII. Magnetic field strength βTr
Z at the transition to the HFGS configuration for all systems.

Z Ne = 2 Ne = 3 Ne = 4 Ne = 5 Ne = 6 Ne = 7 Ne = 8 Ne = 9 Ne = 10

2 0.09393(4)
3 0.11744(3) 0.12212(3)
4 0.12993(4) 0.14229(4) 0.14432(4)
5 0.13763(4) 0.15510(4) 0.16023(4) 0.1657(3)
6 0.14292(4) 0.16404(4) 0.17145(4) 0.2067(3) 0.2693(4)
7 0.14675(3) 0.17059(3) 0.17979(3) 0.2378(3) 0.3181(3) 0.3864(4)
8 0.14960(3) 0.17556(3) 0.18627(3) 0.2622(3) 0.3571(3) 0.4430(3) 0.5172(4)
9 0.15189(3) 0.17947(4) 0.19137(3) 0.2816(3) 0.3880(3) 0.4894(3) 0.5805(3) 0.6581(6)
10 0.15372(3) 0.18266(3) 0.19547(3) 0.2971(3) 0.4141(4) 0.5279(3) 0.6335(4) 0.7071(4) 0.8076(4)

TABLE VIII. Binding energies in atomic hartree units of ground state candidates at the transition field strength predicted in Ref. [3] as
well as their corresponding energy result. Our first and second listed energies E1 and E2 correspond to the first and second listed state in the
transition, respectively.

Z Transition βTr
Z E1 E2 Ref. [3]

2 1s↑-0 0.0889 2.81133(19) 2.77385(14) 2.76940
3 1s↑-0 0.1196 7.69456(31) 7.65409(17) 7.64785
4 1s↑-0 0.1427 15.9780(7) 15.9310(4) 15.91660
5 1s↑-0 0.1605 28.2584(10) 28.2098(6) 28.18667
6 1s↑-2p0 0.1697 45.0183(12) 44.9974(8) 44.93410
7 1s↑2p0-2p0 0.1775 66.8237(17) 66.7729(11) 66.69306
8 1s↑2p0-2p0 0.1874 94.5279(22) 94.4792(13) 94.37730
9 1s↑2p0-2p0 0.1959 128.3431(28) 128.2893(16) 128.16050
10 1s↑2p0-2p0 0.2034 168.6763(32) 168.6265(18) 168.47340
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TABLE IX. Comparison of magnetic field strengths βTr
Z at ground state transitions with results in Ref. [3] for neutral atoms and singly

positive ions. Values marked with ∗ represent transitions that are only ground state transitions in the corresponding work. The transition
2p03d−1-2p0 in neutral neon and the transition 1s↑2p0-1s↑ in neutral carbon discussed in Ref. [2] are given in the text.

1s↑-0 1s↑-2p0 1s↑2p0-2p0 2p0-0

Z FPDQMC Ref. [3] FPDQMC Ref. [3] FPDQMC Ref. [3] FPDQMC Ref. [3]

Neutral atoms
2 0.09393(4) 0.0889
3 0.12212(3) 0.1196
4 0.14432(4) 0.1427
5 0.1605∗ 0.16129(4)∗ 0.16065 0.1657(3)∗ 0.1585
6 0.17000(3) 0.16967 0.2693(4) 0.25922
7 0.17812(4) 0.17753 0.3864(4) 0.37601
8 0.18781(3) 0.18738 0.5172(4) 0.50563
9 0.19550(3) 0.19590 0.6581(6) 0.645988
10 0.20364(3) 0.20336∗ 0.8076(4) 0.795690

Singly positive ions
3 0.11744(3) 0.11510
4 0.14229(4) 0.1407
5 0.16023(4) 0.1591
6 0.17206(4) 0.17154 0.2067(3) 0.20189
7 0.17805(4) 0.17785 0.3181(3) 0.31132
8 0.18678(4) 0.18632 0.4430(3) 0.43552
9 0.19550(3) 0.19514 0.5805(3) 0.57175
10 0.19649(4) 0.20280 0.7071(4) 0.718020

Ref. [3]. In order to keep the table compact, we omitted the
transitions 1s

↑
0 2p0-1s

↑
0 , occurring only in neutral carbon, and

2p03d−1-2p0, relevant only in neutral neon. For the first one,
Ivanov and Schmelcher [2] found βZ = 0.1100 compared to
βZ = 0.1170(7) in our study. The second transition is only
identified as a ground state configuration change by us at
βZ = 0.2089(6), whereas the study [3] found βZ = 0.20269.
Altogether, the results are in good agreement, showing
maximum deviations around 3%. Thus, besides the two cases
where Ivanov and Schmelcher predicted a different ground
state sequence due to a very small crossing angle of the energy
curves, we confirm the findings of that study.

IV. CONCLUSION AND OUTLOOK

In this paper, we analyzed the electronic configuration of
the ground states of all systems with Z = 2–10 and Ne = 2–Z

at magnetic fields βZ � 0.1. Up to date this is the most
comprehensive investigation of ground state configurations
for light to medium-heavy atoms and ions in strong mag-
netic fields. The data presented can be of special value for
astrophysical applications, e.g., the modeling of neutron star
atmospheres. A natural next step is the extension of this study
to heavier elements up to iron, as they are assumed to exist in
the atmospheres of neutron stars [38]. Also, the investigation
of ground state configurations in the full range of magnetic
fields from B = 0 to the high-field ground state regime is
an important task. We will pursue both directions in future
work.
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