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Nuclear-spin-dependent parity nonconservation in s-d5/2 and s-d3/2 transitions
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We perform calculations of s-d5/2 nuclear-spin-dependent parity nonconservation amplitudes for Rb, Cs, Ba+,
Yb+, Fr, Ra+, and Ac2+. These systems prove to be good candidates for use in atomic experiments to extract the
so-called anapole moment, a P -odd T -even nuclear moment important for the study of parity-violating nuclear
forces. We also extend our previous works by calculating the missed spin-dependent amplitudes for the s-d3/2

transitions in the above systems.
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I. INTRODUCTION

Parity nonconservation (PNC) in atoms can serve as a very
precise low-energy test of the standard model that is a relatively
inexpensive alternative to tests performed at high energy (e.g.,
at CERN). For more information regarding the history and
future prospects of PNC in atoms, see, e.g. [1–3].

Currently, the combination of measurements [4,5] and
calculations [6–12] for the 6s-7s parity-forbidden E1 tran-
sition in cesium provides the most precise atomic PNC result,
leading to the best atomic test of the electroweak theory so
far. It is the direct aim of such investigations to determine
an experimental value for the nuclear weak charge QW , a
dimensionless coupling constant quantifying the strength of
the Z0 exchange between the nucleus and electrons. The result
of this investigation leads to an observed value of the Cs
weak charge that gives a strong indication that improvements
and new avenues for investigation in this field could lead to
important results [12,13].

One way to proceed would be to try to improve the accuracy
in both the measurements and calculations in cesium, though
it is not expected that significant improvement could be made
here in the near future. Another possibility is to look to other
systems. Several proposals have been put forward to search
for PNC in heavier atoms, where the PNC signal is expected
to be larger (e.g. [14–18]), and in systems such as Rb [19],
where the accuracy could be higher. A promising alternative is
to perform measurements of PNC in a chain of isotopes [20],
where the accuracy is limited only by the knowledge of the
(poorly understood) neutron distribution.

In this work however, we focus our attention on another
area, the measurement the P -odd T -even nuclear moment that
arises due to parity violation in the nucleus, the so-called
nuclear anapole moment [21,22]. The experiment [4] of
Weiman et al. provides the only measurement of a nuclear
anapole moment. Measurements of the anapole moment
(ANM) could prove to be invaluable tools in the study of
parity violation in the hadron sector.

There is interest in measuring PNC in the 6s-5d5/2 transition
in cesium [23], and the possibility of measuring PNC in this
transition in Ba+ and in the 7s-6d5/2 transition of Ra+ has
been discussed [24,25]. In this work, we perform calculations
of this and similar amplitudes for several isotopes of Rb, Cs,
Ba+, Yb+, Fr, Ra+, and Ac2+ with the hope of motivating
experiment in this important area. The s-d5/2 transitions have
practically no contribution from the nuclear weak charge,

and thus provide good systems for the extraction of the
anapole moment. PNC in s-d transitions of moderately charged
ions could potentially be measured using techniques put
forward by Fortson [26]. The prospect of using these elements
in measurement of nuclear-spin-independent PNC has been
discussed in our recent work [27].

II. THEORY

The effective Hamiltonian describing the parity-violating
electron-nucleus interaction can be expressed as the sum of
the nuclear-spin-independent (SI) and nuclear-spin-dependent
(SD) parts (unless otherwise stated we use atomic units, � =
|e| = me = 1, c = 1/α ≈ 137, throughout):

ĥPNC = ĥSI + ĥSD = GF√
2

(
−QW

2
γ5 + κ

I
α I

)
ρ(r), (1)

where GF ≈ 2.2225 × 10−14 a.u. is the Fermi weak constant,
QW is the nuclear weak charge, α = γ0γ and γ5 = iγ0γ1γ2γ3

are Dirac matrices, I is the nuclear spin, ρ(r) is the normalized
nuclear density,

∫
ρ d3r = 1, and κ is a dimensionless constant

that quantifies the strength of the SD interaction [28].
There are three main sources that contribute to κ: (i)

the interaction with the so-called anapole moment of the
nucleus [21]; this is by far the dominating effect in heavy ele-
ments; (ii) the contribution from the spin-dependent electron-
nucleus weak interaction (Z0 exchange); see, e.g., Ref. [29];
(iii) the combination of the SI-PNC contribution (i.e., QW )
with the hyperfine interaction [22] (see also [30,31]). The
contribution of the combined QW and hyperfine effects is
discussed in Sec. IV. For greater detail we direct the reader to
the review in [2] and the book in [1].

The parity-violating “E1” transition between two states of
the same parity (a → b) is given by the sum

EPNC =
∑

n

[
〈b|d̂E1|n〉〈n|ĥPNC|a〉

Ea − En

+ 〈b|ĥPNC|n〉〈n|d̂E1|a〉
Eb − En

]
,

(2)

where d̂E1 is the electric dipole (E1) operator, and |a〉 ≡
|JaFaMa〉 with F = I + J the total atomic angular momen-
tum. With use of the Wigner-Eckart theorem the amplitude can

1050-2947/2014/89(1)/012502(8) 012502-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.012502


B. M. ROBERTS, V. A. DZUBA, AND V. V. FLAMBAUM PHYSICAL REVIEW A 89, 012502 (2014)

be expressed via the reduced matrix elements:

EPNC = (−1)Fb−Mb

(
Fb 1 Fa

−Mb q Ma

)
〈JbFb||dPNC||JaFa〉, (3)

where for the SI amplitude,

〈JbFb||dSI||JaFa〉 = GF

2
√

2
(−QW )(−1)I+Fa+Jb+1

√
(2Fb + 1)(2Fa + 1)

{
Ja Jb 1

Fb Fa I

}

×
∑

n

[ 〈Jb||d̂E1||Jn〉〈Jn||γ5ρ||Ja〉
Ea − En

+ 〈Jb||γ5ρ||Jn〉〈Jn||d̂E1||Ja〉
Eb − En

]
, (4)

and for the SD amplitude

〈JbFb||dSD||JaFa〉 = GF√
2

κ

√
(I + 1)(2I + 1)(2Fb + 1)(2Fa + 1)/I

∑
n

[
(−1)Jb−Ja

{
Jn Ja 1

I I Fa

}{
Jn Jb 1

Fb Fa I

}

× 〈Jb||d̂E1||Jn〉〈Jn||αρ||Ja〉
Ea − En

+ (−1)Fb−Fa

{
Jn Jb 1

I I Fb

}{
Jn Ja 1

Fa Fb I

} 〈Jb||αρ||Jn〉〈Jn||d̂E1||Ja〉
Eb − En

]
.

(5)

In tables we present the z components:

EPNC(z) = (−1)Fb−Fz

(
Fb 1 Fa

−Fz 0 Fz

)
〈JbFb||dPNC||JaFa〉, (6)

where we take Fz = min(Fa,Fb).

III. CALCULATIONS

If the states a, b, and n in (2) are the physical many-electron
wave functions of the atom, then these equations are exact
and the summation is over all excited states. In calculations
obviously this is not the case; we use single-electron orbitals
as the wave functions and extend the sum over all states (the
summation over core states corresponds to including the highly
excited autoionization states).

We begin with the relativistic Hartree-Fock (RHF) ap-
proximation, generating the single-particle orbitals in a V N−1

potential. Core-valence correlation effects are then included
using the correlation potential (CP) method [32], and the
polarization of the core electrons and interactions with external
fields are taken into account using the time-dependent Hartree-
Fock (TDHF) approximation [6,32,33].

The correlation potential, an ab initio, nonlocal (integra-
tion), energy-dependent operator, �̂ = �̂(E,l,j ), is calculated
using a summation of dominating diagrams of many-body
perturbation theory (including screening of the electron-
electron interaction and the particle-hole interaction) to all
orders using the Feynman diagram technique and relativis-
tic Hartree-Fock Green’s functions [33]. Then by solving
the relativistic Hartree-Fock–like equations with the extra
operator �̂, (

Ĥ0 + �̂ − ε(BO)
n

)
ψ (BO)

n = 0, (7)

we construct the Brueckner orbitals (BOs) for the valence
electron. Here, H0 is the RHF Hamiltonian and the index n

denotes valence states.

Part of the missing diagrams can be expressed in terms
of the energy derivatives of �, or can also be calculated
separately. These contributions are very small for alkaline
atoms but may be significant in atoms where radius of valence
electron is close to the core electron radius (e.g., in Yb+).
The correlation potential method is especially accurate in
atoms with one electron above closed subshells (which are
the topic of the present work), where it gives an accuracy of
about ∼0.1% for the ionization energies of valence electron
orbitals.

Note that the correlation potential is calculated indepen-
dently for orbitals with different l, j . Therefore, we may
estimate the missing (and very small) contributions of higher-
order diagrams by using a simple semiempirical procedure
of rescaling the CP operator, i.e., �̂ → λ�̂ in Eq. (7). A
different parameter is chosen for each partial wave (i.e.,
ns, np1/2, np3/2, nd3/2, and nd5/2) to reproduce exactly the
experimental energies corresponding to the lowest (valence)
principal quantum number for each partial wave. It should also
be noted that these parameters typically differ from 1 by only
a small fraction, e.g., for cesium they are λs = 0.99, λp1/2 =
0.96, λp3/2 = 0.97, λd3/2 = 0.94, and λd5/2 = 0.94, indicative
of the already very good accuracy of the ab initio all-order CP
method.

This fitting makes only a small difference to most PNC
amplitudes, and the difference between amplitudes calculated
with and without the fitting provides a good indication of
the relative size of any missed correlations and thus serves
as a good estimate of the uncertainty. In the transitions here,
however, the uncertainty is dominated by core-polarization
effects, not the correlation potential. It is also important to note
that even in cases where this fitting does make a difference its
effect on the ratio of the SI to SD parts is negligible.

012502-2



NUCLEAR-SPIN-DEPENDENT PARITY NONCONSERVATION . . . PHYSICAL REVIEW A 89, 012502 (2014)

For Yb+ we use only the second-order CP method due to
the more complicated electron structure. The presence of the
4f 14 shell means there are other correlation effects that are
larger than the all-order corrections; see, e.g., Ref. [34]. The
second-order CP operator provides reasonable accuracy as is,
and the process of rescaling means the accuracy is good here
also, as discussed in the next section.

In the evaluation of the amplitude, the operators d̂E1 and
ĥPNC in Eq. (2) are modified to include the effect of the
polarization of the core electrons due to the interaction with
the external E1 and weak fields: d̂E1 → d̂E1 + δVE1 and
ĥPNC → ĥPNC + δVPNC. Here δVE1 (δVPNC) is the modification
to the RHF potential due to the effect of the external field d̂E1

(ĥPNC). In the TDHF method, the single-electron orbitals are
perturbed in the form ψ = ψ0 + δψ , where ψ0 is an eigenstate
of the RHF Hamiltonian and δψ is the correction due to the
external field. The corrections to the potential are then found
by solving the set of self-consistent TDHF equations for the
core states:

(Ĥ0 − εc)δψc = −(f̂ + δVf )ψ0c, (8)

where the index c denotes core states and f̂ is the operator of
external field (be that d̂E1 or ĥPNC).

Note that the approach described above does not take
into account the effect of core polarization due to simul-
taneous action of the weak and E1 fields. This “double-
core-polarization”(DCP) effect was the study of our recent
work in Ref. [35]. Accurate calculations would require the
use of the “solving equations” approach (see, e.g. [10],), a
more numerically stable method based on solving differential
equations, which includes the DCP contribution. However,
since high accuracy is not needed for the SD-PNC, we use a
simpler approach which is based on a direct summation over
states. We use Ref. [35] to include the DCP correction into
the SI amplitudes, but do not include this term into the SD
amplitudes since the accuracy of analysis is less important
here.

To use the direct-summation method, we employ the B-
spline technique [36] to construct the set of single-electron
orbitals used for the summation in Eq. (2), as well as for the
calculation of �̂. The states used in the calculation of �̂ are
linear combinations of the B splines which are eigenstates of
the RHF Hamiltonian, whereas those used for the evaluation
of (2) are the Brueckner orbitals (eigenstates of the Ĥ0 + �̂

Hamiltonian). For the summation we use 90 B splines of order
9 for each partial wave in a cavity of radius 75a0.

A. Accuracy of the calculations

Without any rescaling of the correlation potential (see
Sec. III) our energies agree with experiment to around 0.1%–
0.5% for most levels, and the important s-p intervals are
reproduced to about 0.3%. A detailed analysis of the accuracy
in these systems has also been performed in our recent papers,
Refs. [27,34], where we present calculations for the same
atoms and ions investigated here. In Table I we present
calculated energy levels for cesium using the second-order
(�(2)) and the all-order (�(∞)) CP method, both with and
without scaling. Table II presents the percentage discrepancies
for the relevant energy intervals in cesium. This shows the

TABLE I. Calculated ionization energies for cesium in various
approximations and comparison with experiment (Ref. [37]). Blank
means calculated value matches exactly with experiment by construc-
tion. Units: cm−1.

Level �(2) λ�(2) �(∞) λ�(∞) Expt.

6s1/2 −32416 −31457 −31406
6p1/2 −20539 −20290 −20228
6p3/2 −19940 −19722 −19674
5d3/2 −17567 −17146 −16907
5d5/2 −17407 −17030 −16810
7s1/2 −13024 −12832 −12827 −12817 −12871
7p1/2 −9710 −9628 −9640 −9624 −9641
7p3/2 −9521 −9448 −9458 −9445 −9460
8p1/2 −5724 −5689 −5694 −5687 −5698
8p3/2 −5639 −5607 −5611 −5606 −5615

small effect that scaling has directly on the energies, but
the relatively large improvements it makes on the intervals.
The rescaling of the correlation potential helps to numerically
stabilize the results. The rescaling means there is no significant
loss in the accuracy for the energy levels when using �(2)

instead of �(∞). This is important for the case of Yb+, where
only the second-order correlation potential was used.

In Table III we compare calculations of several of the
relevant E1 reduced matrix elements for cesium with their
corresponding experimental values. This shows very good
agreement with experiment, to better than 0.5% for the lowest
s-p transitions, and better than 5% for the transitions involving
d and higher p states. Again, we present calculations using the
second-order (�(2)) and the all-order (�(∞)) CP method, both
with and without scaling. We demonstrate that by including
the rescaling of the correlation potential we can correct
for the discrepancies that arise from using the second-order
correlation potential, effectively meaning that the rescaled
second-order CP is practically as good as using the all-order
method.

We present E1 reduced matrix elements for Ba+ and
Yb+ in Table IV , along with experimental values for
comparison where available. This demonstrates very good

TABLE II. Percentage variation between the experimental
(from [37]) energy intervals of relevance to parity nonconservation
in cesium and calculations in various approximations. Blank means
calculated value matches exactly with experiment by construction.

Interval �(2) λ�(2) �(∞) λ�(∞)

6s1/2-6p1/2 6.35 −0.10
6s1/2-6p3/2 6.31 0.02
6s1/2-7p1/2 4.08 −0.02 0.24 0.08
6s1/2-7p3/2 4.08 −0.01 0.24 0.07
5d3/2-6p1/2 −5.17 −5.35
5d3/2-6p3/2 −7.32 −6.92
5d3/2-7p1/2 4.83 −0.05 3.30 0.24
5d3/2-7p3/2 4.81 −0.04 3.24 0.20
5d5/2-6p3/2 −5.54 −6.02
5d5/2-7p3/2 4.28 −0.04 3.02 0.20
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TABLE III. Calculations of reduced matrix elements (a.u.) of electric dipole transitions of interest to PNC studies in cesium and comparison
with experiment. The last column shows the percentage difference between final calculations (using the rescaled all-order correlation potential,
λ�(∞)) and experiment.

This work Experiment

Transition �(2) λ�(2) �(∞) λ�(∞) Value Ref. % Diff.
6s1/2-6p1/2 4.387 4.503 4.506 4.512 4.4890(65) [38] 0.51

4.5097(74) [39] 0.05
6s1/2-6p3/2 6.170 6.337 6.343 6.351 6.3238(73) [38] 0.42

6.3403(64) [39] 0.16
6s1/2-7p1/2 0.2995 0.2744 0.2645 0.2724 0.2757(20) [41] 1.19

0.2825(20) [40,41] 3.56
6s1/2-7p3/2 0.6050 0.5686 0.5581 0.5659 0.5795(100) [41] 2.34

0.5856(50) [41] 3.36
5d3/2-6p1/2 6.744 7.039 6.927 7.032 7.33(6) [42] 4.07
5d3/2-6p3/2 3.037 3.173 3.121 3.170 3.28(3) [42] 3.37
5d5/2-6p3/2 9.254 9.629 9.481 9.616 9.91(3) [42] 2.97

agreement between our calculations and experiment for Ba+,
and reasonably good agreement for Yb+. The discrepancies
for the Yb+ values, on the order of 5%–10%, are due mainly
to the more complicated electron structure due to the closeness
of the 4f 14 core shell to the valence 6s state. The most
important E1 transition for the 6s-5d3/2 PNC amplitude in
Yb+ is the p1/2-d3/2 transition. This transition corresponds to
the weak s-p1/2 mixing, which dominates the amplitude. This
p1/2-d3/2 E1 matrix element agrees with experiment to about
4%. However, for the 6s-5d5/2 PNC amplitude considered
here, the most important E1 amplitudes are the s-p3/2 and
p3/2-d5/2 transitions. The s-p3/2 amplitude agrees to only 13%
with experiment, and an experimental value for the p3/2-d5/2

transition is, to the best of our knowledge, not known.
The accuracy of the weak-charge and anapole-moment

induced PNC interaction matrix elements relies on the ac-
curacy of the wave functions at short distances (near the
nucleus). One way to test the accuracy of the wave functions
at this distance scale is to calculate magnetic dipole hyperfine
structure constants, which also depend on the wave functions
close to the nucleus. The hyperfine structure constants are
typically reproduced very well for s and p states, but not so
well for d states (see, e.g., Ref. [34]). The direct applicability
of using hyperfine structure calculations as a test for p-d

TABLE IV. Calculated reduced matrix elements (a.u.) for electric
dipole transitions of interest in Ba+ and Yb+ and comparison with
experiment where available.

Ba+ Yb+

Transition Calc. Expt. Calc. Expt.

6s1/2-6p1/2 3.322 3.36(4) [43] 2.705 2.471(3) [46]
6s1/2-6p3/2 4.690 4.55(10) [43] 3.817 3.36(2) [47]
5d3/2-6p1/2 3.063 3.03(9) [44] 3.094 2.97(4) [46]

3.14(8) [45]
2.90(9) [43]

5d3/2-6p3/2 1.338 1.36(4) [44] 1.366
1.54(19) [43]

5d5/2-6p3/2 4.127 4.15(20) [44] 4.271

hPNC matrix elements has not been fully investigated, and
will be the focus of future work. The uncertainty in the
calculations of the hyperfine structure constants is dominated
by core polarization, which is much larger for the hyperfine
constants than for the weak matrix elements. The implication
of this is that the accuracy of the s-p PNC interaction matrix
elements can be high and, importantly, can be controlled
by computing hyperfine constants. For the p-d weak matrix
elements, however, there is no guarantee of high accuracy, and
it is not clear how the accuracy can be reliably judged. In
Table V we present calculations of magnetic dipole hyperfine
structure constants A, for the 6s and 6p1/2 states of Cs, Ba+,
and Yb+, along with experimental values for comparison.

The hPNC interaction, to lowest order, is effectively a contact
interaction and as such only significantly mixes s and p1/2

states. Due to core polarization, however, mixing between s

and p3/2 states, as well as between p3/2 and d3/2,5/2 states,
is not so small. For s-s PNC amplitudes there is nothing to
worry about, since these contain only terms involving s-p1/2

mixing. The s-d3/2 amplitudes contain also terms involving
p-d mixing; however, the s-p1/2 mixing is many times larger,
meaning that these amplitudes are dominated by the s-p1/2

mixing terms, which contribute between 70% and 90% to the
total amplitude.

For the spin-independent amplitudes (s-d3/2), the accuracy
should be about 1%–2% (see Ref. [27]). This is due to the
very good agreement with energy levels, hyperfine structure
constants, and matrix elements. The spin-dependent parts
of the s-d3/2 amplitudes are likely to be somewhat less
accurate, due mainly to core-polarization effects and the
larger number of contributing states (since the spin-dependent
PNC interaction can mix states with �J = 1). Because of
this, without the double-core-polarization contribution, the
accuracy for these amplitudes is likely to be between 5%
and 10%.

For the s-d5/2 amplitudes, there are no s-p1/2 mixing terms;
instead there are terms involving s-p3/2 and p3/2-d5/2 mixing.
Due to core polarization, there is no significant difference
between the extent of the PNC mixing between these two
contributions, and the size of the respective matrix elements
is roughly the same. For the part of these PNC amplitudes
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TABLE V. Calculated magnetic dipole hyperfine constants A (MHz) for the lowest valence states of Cs, Ba+, and Yb+, and a comparison
with experiment.

133Cs 135Ba+ 171Yb+

Level Calc. Expt. Calc. Expt. Calc. Expt.

s1/2 2315 2298.2 [48] 3674 3593.3(22) [50] 13202 12645(2) [52]
p1/2 290 291.89(8) [49] 668 664.6(3) [51] 2515 2104.9(13) [52]

coming from the s-p3/2 mixing, i.e., the first term in Eq. (2),
the accuracy is likely to be good. However, for the contribution
from the 6p3/2-5d5/2 ĥSD matrix elements the accuracy is likely
to be significantly worse.

There is not enough information to determine reliably how
accurate the p3/2-d5/2 ĥSD matrix elements are, and as such
the s-d5/2 SD-PNC amplitudes should be considered order-of-
magnitude estimates. This low level of accuracy is sufficient
for the purpose of the current work, which is to demonstrate
the magnitude and relative sizes of these transitions in different
elements. Note also that the very high accuracy that is required
of the SI-PNC calculations for the extraction of the nuclear
weak charge is not required in the search for anapole moments.

In Table VI we compare our calculations of the SD-PNC
amplitudes in Ba+ and Ra+ with several of those available
in the literature. The agreement between results for the s-
d3/2 transitions is reasonable. For the s-d5/2, we agree with
calculations of Ref. [24] but not of Ref. [25].

For atoms and ions similar to Yb+, in which an external
electron is close to the core and strongly interacts with its
electrons, a different higher-order effect described by the
so-called “ladder diagrams” [53] becomes important. The
inclusion of ladder diagrams also significantly improves
the accuracy of calculations in ions, for which the valence
electrons lie closer to the core, and improves the accuracy
of the d states for atoms and ions; see, e.g. [27,54]. With
the inclusion of ladder diagrams, as well as the double-core-
polarization effect, the accuracy for these calculations can
potentially approach the level of several percent, though this
would need further investigation. The accuracy could then be
further improved by including the Breit [55] and QED [56]
corrections, as well as higher-order non-Brueckner electron
correlations, such as structure radiation, the weak correlation
potential, and renormalization of states (see, e.g., Ref. [10,33]).

TABLE VI. Reduced matrix elements 〈Jb,Fb||dSD||Ja,Fa〉 of the
spin-dependent PNC amplitudes of Ba+ and Ra+ and comparison
with other works [28]. Units: 10−13ea0κ.

EPNC

I Transition This work Others

135Ba+ 1.5 〈5d5/2,3||dSD||6s,2〉 0.85 0.82 [24]
0.274 [25]

〈5d3/2,3||dSD||6s,2〉 17.15 19.44 [25]
223Ra+ 1.5 〈6d5/2,3||dSD||7s,2〉 11.4 12.7 [24]

3.504 [25]

〈5d3/2,3||dSD||6s,2〉 210.9 234.690 [25]

IV. RESULTS AND DISCUSSION

Our calculations of the s-d5/2 SD-PNC amplitudes of
several isotopes of Rb, Cs, Ba+, and Yb+ are presented in
Table VII, and for Fr, Ra+, and Ac2+ in Table VIII. For ease
of comparison we present both the reduced matrix elements,
defined in Eq. (5), and the z components. The s-d5/2 are
typically between one and two orders of magnitude smaller
than the corresponding s-d3/2 transitions, due primarily to
the absence of s-p1/2 weak mixing. The largest amplitudes
presented are in Fr, consistent with its very large s-s and s-d3/2

TABLE VII. SD-PNC amplitudes of the |5sFa〉 → |4d5/2Fb〉
transition in Rb, and the |6sFa〉 → |5d5/2Fb〉 transitions in Cs,
Ba+, and Yb+. Both the reduced matrix elements (RME) and the
z components are shown. Units: 10−13ea0κ.

EPNC

I Fa Fb RME z component

85Rb 2.5 2 1 0.224 0.0708
2 2 0.409 0.149
2 3 0.448 −0.0977
3 2 0.219 0.0477
3 3 0.501 0.164
3 4 0.733 −0.122

87Rb 1.5 1 1 0.273 0.112
1 2 0.417 −0.132
2 1 0.122 0.0386
2 2 0.417 0.152
2 3 0.746 −0.163

133Cs 3.5 3 2 3.40 0.743
3 3 5.03 1.65
3 4 4.89 −0.815
4 3 2.91 0.484
4 4 5.78 1.72
4 5 7.71 −1.04

135Ba+ 1.5 1 1 −0.311 −0.127
1 2 −0.475 0.150
2 1 −0.139 −0.0440
2 2 −0.475 −0.174
2 3 −0.850 0.186

171Yb+ 0.5 1 2 −11.3 3.57
173Yb+ 2.5 2 1 −2.67 −0.845

2 2 −4.88 −1.78
2 3 −5.34 1.17
3 2 −2.61 −0.569
3 3 −5.98 −1.96
3 4 −8.75 1.46
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TABLE VIII. SD-PNC amplitudes of the |7sFa〉 → |6d5/2Fb〉
transitions in Fr, Ra+, and Ac2+. Units: 10−13ea0κ.

EPNC

I Fa Fb RME z component

211Fr 4.5 4 3 24.3 4.05
4 4 32.6 9.72
4 5 29.6 −3.99
5 4 19.7 2.65
5 5 36.3 10.0
5 6 45.8 −5.18

221Fr 2.5 2 1 13.2 4.17
2 2 24.1 8.79
2 3 26.4 −5.76
3 2 12.9 2.81
3 3 29.5 9.65
3 4 43.2 −7.20

223Fr 1.5 1 1 16.1 6.57
1 2 24.6 −7.77
2 1 7.20 2.28
2 2 24.6 8.97
2 3 44.0 −9.59

223Ra+ 1.5 1 1 4.16 1.70
1 2 6.35 −2.01
2 1 1.86 0.588
2 2 6.35 2.32
2 3 11.4 −2.48

225Ra+ 0.5 1 2 14.4 −4.55
229Ra+ 2.5 2 1 3.41 1.08

2 2 6.22 2.27
2 3 6.82 −1.49
3 2 3.33 0.726
3 3 7.62 2.49
3 4 11.2 −1.86

227Ac2+ 1.5 1 1 4.59 1.88
1 2 7.02 −2.22
2 1 2.05 0.650
2 2 7.02 2.56
2 3 12.6 −2.74

transitions. The amplitudes are large in fact for all the Fr-like
ions, and are also large in Cs and Yb+.

As well as the s-d5/2 transitions, which have no SI contri-
bution, we have also performed calculations for several s-d3/2

transitions for which both SI and SD contributions are nonzero.
We express these amplitudes in the form EPNC = P (1 + R),
where P is the SI PNC amplitude (including QW ) and R is
the ratio of the SD to SI parts. Here we calculate both parts
concurrently, using the same method and wave functions. This
approach has the advantage that the relative sign difference
between the SI and SD parts is fixed, ensuring no ambiguity
in the sign of κ [15]. There is also typically a significant
improvement in accuracy for the ratio over that for each of
the amplitudes individually, due to the fact that the atomic
calculations for both components are very similar and much
of the theoretical uncertainty cancels in the ratio [34].

We present these amplitudes for Rb and Cs in Table IX,
and for Fr and Ac2+ in Table X. We don’t present amplitudes

TABLE IX. PNC amplitudes (z components) of the |5sFa〉 →
|4d3/2Fb〉 transition in Rb, and the |6sFa〉 → |5d3/2Fb〉 transitions in
Cs. Units: 10−11ea0.

QW I Fa Fb EPNC

87Rb −46.8 1.5 1 0 −0.301 × [1 + 0.0805κ]
1 1 −0.337 × [1 + 0.0796κ]
1 2 0.261 × [1 + 0.0779κ]
2 1 −0.117 × [1 − 0.0439κ]
2 2 −0.301 × [1 − 0.0457κ]
2 3 0.301 × [1 − 0.0483κ]

133Cs −73.2 3.5 3 2 −2.05 × [1 + 0.0444κ]
3 3 −3.14 × [1 + 0.0431κ]
3 4 1.35 × [1 + 0.0412κ]
4 3 −0.923 × [1 − 0.0305κ]
4 4 −2.86 × [1 − 0.0323κ]
4 5 1.87 × [1 − 0.0345κ]

for Ba+, Yb+, or Ra+ since these have been performed in our
recent work in Ref. [34].

A. Suitability for measurements

A method has been proposed by Fortson for measuring
PNC in a single atomic ion that has been laser trapped and
cooled [26]. Originally proposed with measuring the 6s-5d3/2

transition of Ba+ in mind, work has begun to use this method
for the 7s-6d3/2 transition in Ra+ at KVI [17]. The use of this
or a similar method to study spin-dependent PNC in s-d5/2

transitions has been previously discussed [23–25]. Though
these transitions have significantly smaller PNC signals than
the corresponding s-d3/2 transitions, the main advantage here
is that there is no SI contribution. This is beneficial for the
extraction of the nuclear anapole moment since the (larger)
SI contribution would not need to be subtracted, and it would
limit the possibility of spurious SI-PNC acting as a false signal.

In [26] it was shown that to ensure accurate PNC measure-
ments of a single trapped ion both the upper and lower levels
of the transition should be long lived. The only significant
contribution to the decay rate of the 5,6d5/2 states in Ba+, Ra+
are the E2 transitions to the s ground state. There are also

TABLE X. PNC amplitudes of the |7sFa〉 → |6d3/2Fb〉 transi-
tions in Fr and Ac2+. Units: 10−11ea0.

QW I Fa Fb EPNC

223Fr −128.3 1.5 1 0 −38.4 × [1 + 0.0273κ]
1 1 −43.0 × [1 + 0.0278κ]
1 2 33.3 × [1 + 0.0288κ]
2 1 −14.9 × [1 − 0.0189κ]
2 2 −38.4 × [1 − 0.0179κ]
2 3 38.4 × [1 − 0.0164κ]

227Ac2+ −130.1 1.5 1 0 −28.7 × [1 + 0.0250κ]
1 1 −32.0 × [1 + 0.0241κ]
1 2 24.8 × [1 + 0.0223κ]
2 1 −11.1 × [1 − 0.0105κ]
2 2 −28.7 × [1 − 0.0123κ]
2 3 28.7 × [1 − 0.0150κ]
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M1 and E2 d5/2-d3/2 contributions, though these are highly
suppressed. Both E2 transitions are suppressed in the case of
Ac2+, so we include both in the calculation. We calculate
the lifetimes of the relevant d5/2 states in Ba+, Ra+, and
Ac2+ to be 35.9 s, 0.302 s, and 247 s, respectively. These
results are in good agreement with other recent calculations,
e.g. [57,58]. The upper states of the other elements presented
here are unstable as they have allowed E1 transitions to lower
levels. This is not a problem for neutral Cs or Fr, where
atomic-beam-type experiments could be used.

In the s-d5/2 transitions considered here it is possible that
the contribution to the amplitude coming from the combination
of the weak charge and hyperfine interaction may not be as
small as in other systems, due to the d3/2-d5/2 and p1/2-p3/2

hyperfine mixing. The ratio of the hyperfine to fine-structure
splitting goes as

1

Z

me

mp

∼ 10−5. (9)

The PNC amplitude of the s-d5/2 transitions due to
the combined weak charge and hyperfine interaction would
therefore be of the order

E
QW +hf
PNC (s-d5/2) ∼ 10−5E

QW

PNC(s-d3/2). (10)

For Cs, this leads to a QW + hf contribution on the
order of 10−16 (including QW ), whereas the anapole moment
contribution to this transition is 10−13

κ ∼ 10−14. Similarly
for Ba+, Fr, and Ra+, the QW + hf contribution is between
one and two orders of magnitude smaller than the contribution

from the anapole moment. This is smaller than the assumed
accuracy here, so this contribution can be safely neglected for
now. An accurate calculation of this contribution is beyond the
scope of the current work, and will be the focus of a future
study.

V. CONCLUSION

We have presented order-of-magnitude calculations of
nuclear-spin-dependent PNC amplitudes for the s-d5/2 tran-
sitions of several heavy atoms and ions. Also presented are
PNC amplitudes of the s-d3/2 transitions of the same ions
(where not presented previously) that are accurate to the
∼10% level. These calculations could be used to extract an
experimental value of the nuclear anapole moment, which in
turn could be used to study parity-violating nuclear forces.
The accuracy of these calculations could be improved with
the inclusion of higher-order correlation corrections, such
as the double-core polarization [35], structure radiation [33],
and ladder diagrams [53], as well as other small corrections
such as the Breit [55] and QED [56] corrections.

ACKNOWLEDGMENTS

One of the authors (V.A.D.) would like to express a special
thanks to the Mainz Institute for Theoretical Physics (MITP)
for its hospitality and support. We extend our thanks to D. S.
Elliot for stimulating this work. The work was also supported
by the Australian Research Council.

[1] I. B. Khriplovich, Parity Nonconservation in Atomic Phenomena
(Gordon and Breach, New York, 1991).

[2] J. S. M. Ginges and V. V. Flambaum, Phys. Rep. 397, 63
(2004).

[3] V. A. Dzuba and V. V. Flambaum, Int. J. Mod. Phys. E 21,
1230010 (2012).

[4] C. S. Wood et al., Science 275, 1759 (1997).
[5] S. C. Bennett and C. E. Wieman, Phys. Rev. Lett. 82, 2484

(1999).
[6] V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys. Lett. A

141, 147 (1989).
[7] S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. Lett.

65, 1411 (1990).
[8] S. A. Blundell, J. Sapirstein, and W. R. Johnson, Phys. Rev. D

45, 1602 (1992).
[9] M. G. Kozlov, S. G. Porsev, and I. I. Tupitsyn, Phys. Rev. Lett.

86, 3260 (2001).
[10] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev.

D 66, 076013 (2002).
[11] S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev. Lett. 102,

181601 (2009); ,Phys. Rev. D 82, 036008 (2010).
[12] V. A. Dzuba, J. C. Berengut, V. V. Flambaum, and B. Roberts,

Phys. Rev. Lett. 109, 203003 (2012).
[13] P. G. Blunden, W. Melnitchouk, and A. W. Thomas, Phys. Rev.

Lett. 109, 262301 (2012).
[14] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev.

A 61, 062509 (2000).

[15] V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 83, 042514
(2011).

[16] V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev.
A 63, 062101 (2001).

[17] L. W. Wansbeek, B. K. Sahoo, R. G. E. Timmermans, K.
Jungmann, B. P. Das, and D. Mukherjee, Phys. Rev. A 78,
050501 (2008).

[18] S. Aubin et al., The Francium Facility at TRIUMF, AIP Conf.
Proc. No. 525 (AIP, New York, 2013), p. 530.

[19] V. A. Dzuba, V. V. Flambaum, and B. Roberts, Phys. Rev. A 86,
062512 (2012).

[20] V. A. Dzuba, V. V. Flambaum, and I. B. Khriplovich, Z. Phys.
D 1, 243 (1986).

[21] V. V. Flambaum and I. B. Khriplovich, Zh. Eksp. Teor. Fiz. 79,
1656 (1980) [Sov. Phys. JETP 52, 835 (1980)]; V. V. Flambaum,
I. B. Khriplovich, and O. P. Sushkov, Phys. Lett. B 146, 367
(1984).

[22] V. V. Flambaum and I. B. Khriplovich, Zh. Eksp. Teor. Fiz. 89,
1505 (1985) [Sov. Phys. JETP 62, 872 (1985)].

[23] D. S. Elliott (private communication).
[24] K. P. Geetha, A. D. Singh, B. P. Das, and C. S. Unnikrishnan,

Phys. Rev. A 58, R16 (1998).
[25] B. K. Sahoo, P. Mandal, and M. Mukherjee, Phys. Rev. A 83,

030502 (2011).
[26] N. Fortson, Phys. Rev. Lett. 70, 2383 (1993).
[27] B. M. Roberts, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A

88, 012510 (2013).

012502-7

http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1016/j.physrep.2004.03.005
http://dx.doi.org/10.1142/S021830131230010X
http://dx.doi.org/10.1142/S021830131230010X
http://dx.doi.org/10.1142/S021830131230010X
http://dx.doi.org/10.1142/S021830131230010X
http://dx.doi.org/10.1126/science.275.5307.1759
http://dx.doi.org/10.1126/science.275.5307.1759
http://dx.doi.org/10.1126/science.275.5307.1759
http://dx.doi.org/10.1126/science.275.5307.1759
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1103/PhysRevLett.82.2484
http://dx.doi.org/10.1016/0375-9601(89)90777-9
http://dx.doi.org/10.1016/0375-9601(89)90777-9
http://dx.doi.org/10.1016/0375-9601(89)90777-9
http://dx.doi.org/10.1016/0375-9601(89)90777-9
http://dx.doi.org/10.1103/PhysRevLett.65.1411
http://dx.doi.org/10.1103/PhysRevLett.65.1411
http://dx.doi.org/10.1103/PhysRevLett.65.1411
http://dx.doi.org/10.1103/PhysRevLett.65.1411
http://dx.doi.org/10.1103/PhysRevD.45.1602
http://dx.doi.org/10.1103/PhysRevD.45.1602
http://dx.doi.org/10.1103/PhysRevD.45.1602
http://dx.doi.org/10.1103/PhysRevD.45.1602
http://dx.doi.org/10.1103/PhysRevLett.86.3260
http://dx.doi.org/10.1103/PhysRevLett.86.3260
http://dx.doi.org/10.1103/PhysRevLett.86.3260
http://dx.doi.org/10.1103/PhysRevLett.86.3260
http://dx.doi.org/10.1103/PhysRevD.66.076013
http://dx.doi.org/10.1103/PhysRevD.66.076013
http://dx.doi.org/10.1103/PhysRevD.66.076013
http://dx.doi.org/10.1103/PhysRevD.66.076013
http://dx.doi.org/10.1103/PhysRevLett.102.181601
http://dx.doi.org/10.1103/PhysRevLett.102.181601
http://dx.doi.org/10.1103/PhysRevLett.102.181601
http://dx.doi.org/10.1103/PhysRevLett.102.181601
http://dx.doi.org/10.1103/PhysRevD.82.036008
http://dx.doi.org/10.1103/PhysRevD.82.036008
http://dx.doi.org/10.1103/PhysRevD.82.036008
http://dx.doi.org/10.1103/PhysRevD.82.036008
http://dx.doi.org/10.1103/PhysRevLett.109.203003
http://dx.doi.org/10.1103/PhysRevLett.109.203003
http://dx.doi.org/10.1103/PhysRevLett.109.203003
http://dx.doi.org/10.1103/PhysRevLett.109.203003
http://dx.doi.org/10.1103/PhysRevLett.109.262301
http://dx.doi.org/10.1103/PhysRevLett.109.262301
http://dx.doi.org/10.1103/PhysRevLett.109.262301
http://dx.doi.org/10.1103/PhysRevLett.109.262301
http://dx.doi.org/10.1103/PhysRevA.61.062509
http://dx.doi.org/10.1103/PhysRevA.61.062509
http://dx.doi.org/10.1103/PhysRevA.61.062509
http://dx.doi.org/10.1103/PhysRevA.61.062509
http://dx.doi.org/10.1103/PhysRevA.83.042514
http://dx.doi.org/10.1103/PhysRevA.83.042514
http://dx.doi.org/10.1103/PhysRevA.83.042514
http://dx.doi.org/10.1103/PhysRevA.83.042514
http://dx.doi.org/10.1103/PhysRevA.63.062101
http://dx.doi.org/10.1103/PhysRevA.63.062101
http://dx.doi.org/10.1103/PhysRevA.63.062101
http://dx.doi.org/10.1103/PhysRevA.63.062101
http://dx.doi.org/10.1103/PhysRevA.78.050501
http://dx.doi.org/10.1103/PhysRevA.78.050501
http://dx.doi.org/10.1103/PhysRevA.78.050501
http://dx.doi.org/10.1103/PhysRevA.78.050501
http://dx.doi.org/10.1103/PhysRevA.86.062512
http://dx.doi.org/10.1103/PhysRevA.86.062512
http://dx.doi.org/10.1103/PhysRevA.86.062512
http://dx.doi.org/10.1103/PhysRevA.86.062512
http://dx.doi.org/10.1007/BF01436678
http://dx.doi.org/10.1007/BF01436678
http://dx.doi.org/10.1007/BF01436678
http://dx.doi.org/10.1007/BF01436678
http://dx.doi.org/10.1016/0370-2693(84)90140-0
http://dx.doi.org/10.1016/0370-2693(84)90140-0
http://dx.doi.org/10.1016/0370-2693(84)90140-0
http://dx.doi.org/10.1016/0370-2693(84)90140-0
http://dx.doi.org/10.1103/PhysRevA.58.R16
http://dx.doi.org/10.1103/PhysRevA.58.R16
http://dx.doi.org/10.1103/PhysRevA.58.R16
http://dx.doi.org/10.1103/PhysRevA.58.R16
http://dx.doi.org/10.1103/PhysRevA.83.030502
http://dx.doi.org/10.1103/PhysRevA.83.030502
http://dx.doi.org/10.1103/PhysRevA.83.030502
http://dx.doi.org/10.1103/PhysRevA.83.030502
http://dx.doi.org/10.1103/PhysRevLett.70.2383
http://dx.doi.org/10.1103/PhysRevLett.70.2383
http://dx.doi.org/10.1103/PhysRevLett.70.2383
http://dx.doi.org/10.1103/PhysRevLett.70.2383
http://dx.doi.org/10.1103/PhysRevA.88.012510
http://dx.doi.org/10.1103/PhysRevA.88.012510
http://dx.doi.org/10.1103/PhysRevA.88.012510
http://dx.doi.org/10.1103/PhysRevA.88.012510


B. M. ROBERTS, V. A. DZUBA, AND V. V. FLAMBAUM PHYSICAL REVIEW A 89, 012502 (2014)

[28] Note that several different definitions of κ and the SD-PNC
Hamiltonian exist in the literature. The reader should be
aware that these differences must be taken into account when
comparing results.

[29] V. N. Novikov, O. P. Sushkov, V. V. Flambaum, and I. B.
Khriplovich, Zh. Eksp. Teor. Fiz. 73, 802 (1977) [Sov. Phys.
JETP 46, 420 (1977)].

[30] C. Bouchiat and C. A. Piketty, Phys. Lett. B 269, 195 (1991).
[31] W. R. Johnson, M. S. Safronova, and U. I. Safronova, Phys. Rev.

A 67, 062106 (2003).
[32] V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P.

Sushkov, J. Phys. B 20, 1399 (1987).
[33] V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Phys. Lett.

A 140, 493 (1989); V. A. Dzuba, V. V. Flambaum, A. Y.
Krafmakher, and O. P. Sushkov, ibid. 142, 373 (1989).

[34] V. A. Dzuba and V. V. Flambaum, Phys. Rev. A 83, 052513
(2011).

[35] B. M. Roberts, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A
88, 042507 (2013).

[36] W. R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57, 1126 (1986).
[37] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD

Team, NIST Atomic Spectra Database, 2012. Online:
http://physics.nist.gov/asd.

[38] R. J. Rafac, C. E. Tanner, A. E. Livingston, and H. G. Berry,
Phys. Rev. A 60, 3648 (1999).

[39] L. Young, W. T. Hill, III, S. J. Sibener, S. D. Price, C. E. Tanner,
C. E. Wieman, and S. R. Leone, Phys. Rev. A 50, 2174 (1994).

[40] L. N. Shabanova, Y. N. Monakov, and A. N. Khlyustalov, Opt.
Spektrosk. 47, 3 (1979) [Opt. Spectrosc. (USSR) 47, 1 (1979)].

[41] A. A. Vasilyev, I. M. Savukov, M. S. Safronova, and H. G. Berry,
Phys. Rev. A 66, 020101 (2002).

[42] D. DiBerardino, C. E. Tanner, and A. Sieradzan, Phys. Rev. A
57, 4204 (1998).

[43] M. D. Davidson, L. C. Snoek, H. Volten, and A. Doenszelmann,
Astron. Astrophys. 255, 457 (1992).

[44] A. Kastberg, P. Villemoes, A. Arnesen, F. Heijkenskjold,
A. Langereis, P. Jungner, and S. Linnaeus, J. Opt. Soc. Am.
B 10, 1330 (1993).

[45] J. A. Sherman, A. Andalkar, W. Nagourney, and E. N. Fortson,
Phys. Rev. A 78, 052514 (2008).

[46] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N.
Matsukevich, P. Maunz, and C. Monroe, Phys. Rev. A 76,
052314 (2007); S. Olmschenk, D. Hayes, D. N. Matsukevich,
P. Maunz, D. L. Moehring, K. C. Younge, and C. Monroe, ibid.
80, 022502 (2009).

[47] E. H. Pinnington, G. Rieger, and J. A. Kernahan, Phys. Rev. A
56, 2421 (1997).

[48] E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49,
31 (1977).

[49] R. J. Rafac and C. E. Tanner, Phys. Rev. A 56, 1027 (1997).
[50] K. Wendt, S. A. Ahmad, F. Buchnger, A. C. Mueller, R. Neugart,

and E. W. Otten, Z. Phys. A 318, 125 (1984).
[51] P. Villemoes, A. Amesen, F. Heijkenskjold, and A. Wannstrom,

J. Phys. B 26, 4289 (1993).
[52] A.-M. Martensson-Pendrill, D. S. Gough, and P. Hannaford,

Phys. Rev. A 49, 3351 (1994).
[53] V. A. Dzuba, Phys. Rev. A 78, 042502 (2008).
[54] V. A. Dzuba, Phys. Rev. A 88, 042516 (2013).
[55] V. A. Dzuba, V. V. Flambaum, and M. S. Safronova, Phys. Rev.

A 73, 022112 (2006).
[56] B. M. Roberts, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A

87, 054502 (2013).
[57] R. Pal, D. Jiang, M. S. Safronova, and U. I. Safronova, Phys.

Rev. A 79, 062505 (2009).
[58] B. K. Sahoo, M. R. Islam, B. P. Das, R. K. Chaudhuri, and

D. Mukherjee, Phys. Rev. A 74, 062504 (2006).

012502-8

http://dx.doi.org/10.1016/0370-2693(91)91474-A
http://dx.doi.org/10.1016/0370-2693(91)91474-A
http://dx.doi.org/10.1016/0370-2693(91)91474-A
http://dx.doi.org/10.1016/0370-2693(91)91474-A
http://dx.doi.org/10.1103/PhysRevA.67.062106
http://dx.doi.org/10.1103/PhysRevA.67.062106
http://dx.doi.org/10.1103/PhysRevA.67.062106
http://dx.doi.org/10.1103/PhysRevA.67.062106
http://dx.doi.org/10.1088/0022-3700/20/7/009
http://dx.doi.org/10.1088/0022-3700/20/7/009
http://dx.doi.org/10.1088/0022-3700/20/7/009
http://dx.doi.org/10.1088/0022-3700/20/7/009
http://dx.doi.org/10.1016/0375-9601(89)90129-1
http://dx.doi.org/10.1016/0375-9601(89)90129-1
http://dx.doi.org/10.1016/0375-9601(89)90129-1
http://dx.doi.org/10.1016/0375-9601(89)90129-1
http://dx.doi.org/10.1016/0375-9601(89)90385-X
http://dx.doi.org/10.1016/0375-9601(89)90385-X
http://dx.doi.org/10.1016/0375-9601(89)90385-X
http://dx.doi.org/10.1016/0375-9601(89)90385-X
http://dx.doi.org/10.1103/PhysRevA.83.052513
http://dx.doi.org/10.1103/PhysRevA.83.052513
http://dx.doi.org/10.1103/PhysRevA.83.052513
http://dx.doi.org/10.1103/PhysRevA.83.052513
http://dx.doi.org/10.1103/PhysRevA.88.042507
http://dx.doi.org/10.1103/PhysRevA.88.042507
http://dx.doi.org/10.1103/PhysRevA.88.042507
http://dx.doi.org/10.1103/PhysRevA.88.042507
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://physics.nist.gov/asd
http://dx.doi.org/10.1103/PhysRevA.60.3648
http://dx.doi.org/10.1103/PhysRevA.60.3648
http://dx.doi.org/10.1103/PhysRevA.60.3648
http://dx.doi.org/10.1103/PhysRevA.60.3648
http://dx.doi.org/10.1103/PhysRevA.50.2174
http://dx.doi.org/10.1103/PhysRevA.50.2174
http://dx.doi.org/10.1103/PhysRevA.50.2174
http://dx.doi.org/10.1103/PhysRevA.50.2174
http://dx.doi.org/10.1103/PhysRevA.66.020101
http://dx.doi.org/10.1103/PhysRevA.66.020101
http://dx.doi.org/10.1103/PhysRevA.66.020101
http://dx.doi.org/10.1103/PhysRevA.66.020101
http://dx.doi.org/10.1103/PhysRevA.57.4204
http://dx.doi.org/10.1103/PhysRevA.57.4204
http://dx.doi.org/10.1103/PhysRevA.57.4204
http://dx.doi.org/10.1103/PhysRevA.57.4204
http://dx.doi.org/10.1364/JOSAB.10.001330
http://dx.doi.org/10.1364/JOSAB.10.001330
http://dx.doi.org/10.1364/JOSAB.10.001330
http://dx.doi.org/10.1364/JOSAB.10.001330
http://dx.doi.org/10.1103/PhysRevA.78.052514
http://dx.doi.org/10.1103/PhysRevA.78.052514
http://dx.doi.org/10.1103/PhysRevA.78.052514
http://dx.doi.org/10.1103/PhysRevA.78.052514
http://dx.doi.org/10.1103/PhysRevA.76.052314
http://dx.doi.org/10.1103/PhysRevA.76.052314
http://dx.doi.org/10.1103/PhysRevA.76.052314
http://dx.doi.org/10.1103/PhysRevA.76.052314
http://dx.doi.org/10.1103/PhysRevA.80.022502
http://dx.doi.org/10.1103/PhysRevA.80.022502
http://dx.doi.org/10.1103/PhysRevA.80.022502
http://dx.doi.org/10.1103/PhysRevA.80.022502
http://dx.doi.org/10.1103/PhysRevA.56.2421
http://dx.doi.org/10.1103/PhysRevA.56.2421
http://dx.doi.org/10.1103/PhysRevA.56.2421
http://dx.doi.org/10.1103/PhysRevA.56.2421
http://dx.doi.org/10.1103/RevModPhys.49.31
http://dx.doi.org/10.1103/RevModPhys.49.31
http://dx.doi.org/10.1103/RevModPhys.49.31
http://dx.doi.org/10.1103/RevModPhys.49.31
http://dx.doi.org/10.1103/PhysRevA.56.1027
http://dx.doi.org/10.1103/PhysRevA.56.1027
http://dx.doi.org/10.1103/PhysRevA.56.1027
http://dx.doi.org/10.1103/PhysRevA.56.1027
http://dx.doi.org/10.1007/BF01413460
http://dx.doi.org/10.1007/BF01413460
http://dx.doi.org/10.1007/BF01413460
http://dx.doi.org/10.1007/BF01413460
http://dx.doi.org/10.1088/0953-4075/26/22/030
http://dx.doi.org/10.1088/0953-4075/26/22/030
http://dx.doi.org/10.1088/0953-4075/26/22/030
http://dx.doi.org/10.1088/0953-4075/26/22/030
http://dx.doi.org/10.1103/PhysRevA.49.3351
http://dx.doi.org/10.1103/PhysRevA.49.3351
http://dx.doi.org/10.1103/PhysRevA.49.3351
http://dx.doi.org/10.1103/PhysRevA.49.3351
http://dx.doi.org/10.1103/PhysRevA.78.042502
http://dx.doi.org/10.1103/PhysRevA.78.042502
http://dx.doi.org/10.1103/PhysRevA.78.042502
http://dx.doi.org/10.1103/PhysRevA.78.042502
http://dx.doi.org/10.1103/PhysRevA.88.042516
http://dx.doi.org/10.1103/PhysRevA.88.042516
http://dx.doi.org/10.1103/PhysRevA.88.042516
http://dx.doi.org/10.1103/PhysRevA.88.042516
http://dx.doi.org/10.1103/PhysRevA.73.022112
http://dx.doi.org/10.1103/PhysRevA.73.022112
http://dx.doi.org/10.1103/PhysRevA.73.022112
http://dx.doi.org/10.1103/PhysRevA.73.022112
http://dx.doi.org/10.1103/PhysRevA.87.054502
http://dx.doi.org/10.1103/PhysRevA.87.054502
http://dx.doi.org/10.1103/PhysRevA.87.054502
http://dx.doi.org/10.1103/PhysRevA.87.054502
http://dx.doi.org/10.1103/PhysRevA.79.062505
http://dx.doi.org/10.1103/PhysRevA.79.062505
http://dx.doi.org/10.1103/PhysRevA.79.062505
http://dx.doi.org/10.1103/PhysRevA.79.062505
http://dx.doi.org/10.1103/PhysRevA.74.062504
http://dx.doi.org/10.1103/PhysRevA.74.062504
http://dx.doi.org/10.1103/PhysRevA.74.062504
http://dx.doi.org/10.1103/PhysRevA.74.062504



