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Fidelity of Fock-state-encoded qubits subjected to continuous-variable Gaussian processes
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When a harmonic oscillator is under the influence of a Gaussian process such as linear damping, parametric
gain, and linear coupling to a thermal environment, its coherent states are transformed into states with Gaussian
Wigner function. Qubit states can be encoded in the |0〉 and |1〉 Fock states of a quantum harmonic oscillator,
and it is relevant to know the fidelity of the output qubit state after a Gaussian process on the oscillator. In this
paper we present a general expression for the average qubit fidelity in terms of the first and second moments of
the output from input coherent states subjected to Gaussian processes.
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I. INTRODUCTION

In analogy with the classical bit in computer science, the
qubit forms the most basic building block within the field
of quantum information [1]. In order to perform quantum
computation one must, among other tasks, be able to initialize,
manipulate, and read out the information encoded in qubits,
and in a scalable implementation it is necessary to store
quantum information and transport it from one place or
medium to another. Such operations are applied in quantum
memories for few-photon light pulses in single atoms [2,3]
and in quantum teleportation between similar qubits [4,5]. In
parallel to qubit-based quantum information science there has
also been attention to continuous-variable versions of quantum
computation [6], quantum teleportation [7–9], and quantum
memories [10–14]. These protocols can be implemented in,
e.g., quadrature variables of electromagnetic fields [7], atomic
or solid state ensembles of spins [15,16], or vibration modes
of nanomechanical oscillators [17–21], which are all exact or
excellent approximate realizations of the quantum harmonic
oscillator.

While the discrete and continuous-variable versions of
quantum information originally seemed like detached sci-
entific domains, there have been demonstrations of single
light quanta, discrete in nature, transferred into the collective
spin degrees of freedom of macroscopic atomic ensembles,
which are continuous in nature [22–24]. More recently,
quantum memories for photonic qubits have been implemented
benefiting from the increased collective interaction strength
of atomic ensembles compared to single atoms [25–27].
In connection with the use of hybrid physical systems for
quantum information processing, multiple proposals exist,
making use of the interconnection of mesoscopic qubit degrees
of freedom and the continuous variables of ensembles of mi-
croscopic systems, nanomechanical resonators, and quantized
field modes [25,28–35].

The present paper addresses an important question in
this context: If the transformation properties of continuous
variables are known for a particular process in a given physical
system, then what can be said about a qubit encoded into
the same system and subjected to the same transformation?
Specifically, if a harmonic oscillator is subjected to a Gaussian
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process, characterized by its effect on the first and second
moments of the conjugate variables X̂ and P̂ , we present
a general formula for the qubit fidelity, i.e., the probability
that the input state of a qubit encoded into the |0〉 and
|1〉 Fock states of the harmonic oscillator coincide with the
output state after the system has been exposed to the process.
A Gaussian process can be characterized completely by its
action on a small set of coherent states [36], and as pointed
out in Ref. [8] this is easier than preparing qubit states
for experimental determination of its fidelity. Also, from
a theoretical perspective, as exemplified by Ref. [37], the
quantum memory fidelity for qubit states can be calculated
more easily in a multimode setup by using coherent input
states and accounting solely for the first and second moments
of the physical variables involved.

The paper is arranged as follows: In Sec. II we show how the
observed first and second moments of output states, following
from application of coherent input states to the process, yield a
convenient parametrization of the Gaussian process. In Sec. III
we derive the average fidelity over all qubit states encoded
in the |0〉 and |1〉 Fock states and subjected to the Gaussian
process. In Sec. IV, we present some specific examples, and
in Sec. V we conclude the paper.

II. PARAMETRIZING THE GAUSSIAN PROCESS

We consider a process, which maps an input quantum
state of a single harmonic oscillator to an output state on
the same or a different oscillator. For instance this could
represent the storage of a radiation-field state into polarization
modes of a spin ensemble [10], or it could represent the
teleportation of the quadrature amplitudes from one laser
beam to another [7]. Figure 1(a) shows schematically how
this process transforms the input harmonic oscillator mode
(X̂in,P̂in) into the output mode (X̂out,P̂out) under the possible
influence of the environment. For any input state density
matrix ρ̂in this process is mathematically described by a
map, ρ̂out = E(ρ̂in), and our task is to (i) establish a suitable
parametrization of this map, and to (ii) calculate the fidelity
when a qubit state is subjected to the process.

The restriction to Gaussian processes relies on two as-
sumptions about the map E. The first one is that it is linear
in the sense that our input and output harmonic oscillator
modes couple linearly to each other and to all auxiliary
reservoir modes. Thus we assume that (X̂in,P̂in), (X̂out,P̂out),
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FIG. 1. (a) A single mode of a harmonic oscillator is subjected to
a Gaussian process, which maps the input observables X̂in and P̂in into
the output variables X̂out and P̂out, of the same or a different quantum
system. The wavy arrows represent, e.g., absorption losses or addition
of thermal noise associated with the possible coupling to environment
degrees of freedom. (b) Schematic view of the transformation of a
coherent input state with var(X̂in) = var(P̂in) = 1

2 . The solid arrows
indicate the mean values, and the circle and the ellipse show the
standard deviation of the continuous quadrature variables in the xp

plane. For the output state, θ denotes the angle between the x axis
and the major axis of the uncertainty ellipse with σ1 � σ2.

and the reservoir variables (x̂j ,p̂j ) with j = 1, . . . ,n, obey the
equation ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̂out

P̂out

x̂out
1

p̂out
1

...

x̂out
n

p̂out
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̂in

P̂in

x̂ in
1

p̂in
1

...

x̂ in
n

p̂in
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where A is a 2(n + 1) × 2(n + 1) matrix. To preserve canoni-
cal commutator relations, A must be a symplectic matrix [38],
which we shall of course assume to hold in the following. The
first two rows of this set of equations can be rewritten as[

X̂out

P̂out

]
=

[
A11 A12

A21 A22

][
X̂in

P̂in

]
+

[
F̂x

F̂p

]
, (2)

where F̂ = [F̂x F̂p]T are noise operators and represent the
combined influence of the reservoir modes.

Our second assumption about E is that all the reservoir
modes are described by Gaussian states and are uncorrelated
to the input state, 〈X̂inF̂x〉 = 〈X̂in〉〈F̂x〉, etc. This means, in
particular, that the operators F̂ show Gaussian fluctuations,
and in order to preserve the commutation relation of the
output mode it is required that [F̂x,F̂p] = i[1 − det(Ã)],
where Ã is the upper 2 × 2 block of A used in Eq. (2).
The second moments of the input operators, the output
operators, and the noise operators are all given by covariance
matrices. For instance, for the output mode the covariance

matrix reads γ out = 〈2 Re{δŷout · δŷT
out}〉, where the vector

ŷout = [X̂out P̂out]T and where ŷout = 〈ŷout〉 + δŷout defines the
fluctuations of operators around their mean values. The output
mode covariance matrix thus reads

γ out = 2

[
var(X̂out) cov(X̂out,P̂out)

cov(X̂out,P̂out) var(P̂out)

]
, (3)

where cov(X̂out,P̂out) = 1
2 〈δX̂outδP̂out + δP̂outδX̂out〉. Similar

covariance matrices γ in and γ F are defined for the input and the
noise parts, respectively. The second moments of the operators,
i.e., the covariance matrices, fulfill

γ out = Ãγ inÃT + γ F . (4)

It was shown recently that coherent states suffice as input
states to fully characterize a process on harmonic oscillator
modes [39], and in the case of a Gaussian process with
the linear transformation (1) of the canonical variables, a
small discrete set of coherent states is enough to yield the
complete information about the process [36]. Gaussian states
are described completely by their first and second moments,
and the matrix Ã, the two mean values 〈F̂x〉 and 〈F̂p〉, and
the three real parameters of γ F are sufficient to describe the
entire Gaussian process. We shall now show how the process
may equivalently be characterized by the quantities indicated
in Fig. 1(a), which are experimentally available when applying
coherent input states to the process.

For the vacuum input state 〈X̂out〉 = 〈F̂x〉 and 〈P̂out〉 =
〈F̂p〉 map out the mean values of the noise operators
of the environment, and then two other coherent input
states with nonzero mean values suffice to map out the
entries of the matrix Ã, since 〈yout〉 = Ã〈yin〉 + 〈F̂〉. In
turn, since γ in is the identity matrix for any coherent
state, the second moments of the output mode opera-
tors establish the relations var(F̂x) = var(X̂out) − 1

2 (A2
11 +

A2
12), var(F̂p) = var(P̂out) − 1

2 (A2
21 + A2

22), and cov(F̂x,F̂p) =
cov(X̂out,P̂out) − 1

2 (A11A21 + A12A22). In the following, we
assume without loss of generality that 〈F̂x〉 = 〈F̂p〉 = 0, since
any known nonzero mean value added to the output mode can
be readily identified by experiment and subtracted by a simple
displacement, which will not degrade our knowledge of the
quantum state. It is convenient to use the parametrization for
the second moments of the output mode shown in Fig. 1(b),
i.e., the variances σ 2

1 and σ 2
2 along the main axes of the “noise

ellipse” and the angle θ between the x axis and the major axis
of the noise ellipse. These variables relate to the parameters
σ 2

x = var(X̂out), σ 2
p = var(P̂out), and Cx,p = cov(X̂out,P̂out) of

γ out by

σ 2
1 = σ̄ 2 + δσ 2, σ 2

2 = σ̄ 2 − δσ 2,

tan(2θ ) = 2Cx,p

σ 2
x − σ 2

p

, (5)

with σ̄ 2 = σ 2
x + σ 2

p

2
, δσ 2 =

√
1

4

(
σ 2

x − σ 2
p

)2 + C2
x,p.

If Cx,p is positive (negative), 0 < θ < π
2 (−π

2 < θ < 0), while
if σ 2

x = σ 2
p and Cx,p �= 0 we assume θ = π

4 sgn(Cx,p).
For a coherent input state ρ̂in = |α〉〈α| the output state ρ̂out

can always be described by a displaced, squeezed, thermal
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state, offering enough variables to parametrize the Gaussian
state, illustrated in Fig. 1(b). We shall now provide a convenient
expression of this output state as a function of the coherent-
state amplitude α, and the parameters A11, A12, A21, A22, σ 2

1 ,
σ 2

2 , and θ , discussed above. To this end we define first the
thermal state:

ρ̂0 = 1

πn̄0

∫
d2γ e−|γ |2/n̄0 |γ 〉〈γ |, (6)

where the integral is carried out over all coherent states
|γ 〉. Applying the squeezing operator Ŝ(r) = e(r/2)(â2−â†2),
where r is a real parameter, to the thermal state we obtain
the squeezed thermal state: ρ̂STS = Ŝ(r)ρ̂0Ŝ

†(r) with well-
known properties [40]. With the standard definitions X̂ = â+â†√

2

and P̂ = −i(â−â†)√
2

this state has var(X̂) = (n̄0 + 1
2 )e−2r and

var(P̂ ) = (n̄0 + 1
2 )e2r . By choosing appropriately the values

of n̄0 and r ,

σ 2
1 = (

n̄0 + 1
2

)
e−2r , σ 2

2 = (
n̄0 + 1

2

)
e2r , (7)

and applying, finally, the rotation operator R̂(θ ) = eiθâ†â we
obtain a rotated squeezed thermal state,

ρ̂r = R̂(θ )ρ̂STSR̂
†(θ ), (8)

with precisely the noise properties indicated by the output
ellipse shown in Fig. 1(b).

The correct dependence of the output state mean values
on the amplitude of the input coherent state is reproduced
by applying the displacement operator D̂(ᾱ) = eᾱâ†−ᾱ∗â to ρ̂r

such that a coherent input state is mapped to the output state,

E(|α〉〈α|) = ρ̂α, (9)

with

ρ̂α = D̂(ᾱ)R̂(θ )Ŝ(r)ρ̂0Ŝ
†(r)R̂†(θ )D̂†(ᾱ),

(10)[
ᾱR

ᾱI

]
=

[
A11 A12

A21 A22

] [
αR

αI

]
,

where “R” and “I” refer to the real and imaginary parts,
respectively, of input mean amplitude α and output mean
amplitude ᾱ. It is convenient to introduce the equivalent
relations between α and ᾱ in complex notation:

ᾱ = Cα + Dα∗,

C = 1
2 (A11 − iA12 + iA21 + A22), (11)

D = 1
2 (A11 + iA12 + iA21 − A22).

We note that rather than presenting a map on the input coherent
state, Eq. (10) formally provides the output state as an α-
dependent transformation of a definite input state: |α〉〈α| →
E(|α〉〈α|) ≡ D̂(ᾱ)ρ̂r D̂

†(ᾱ). This form is, however, perfectly
useful to characterize the process and it is a good starting point
for our analysis of the qubit fidelity in the next section.

III. DERIVATION OF THE QUBIT FIDELITY FORMULA

From the coherent-state expansion on the Fock-state basis,

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉, (12)

we see that the Fock basis states can be formally ob-
tained from expressions involving coherent states by |n〉 =

1√
n!

∂n

∂αn [e|α|2/2|α〉]|α=0. In turn, due to the linearity of the map
E, its action on a general Fock state outer product can be
retrieved as

E(|n〉〈m|) = 1√
n!m!

∂n

∂αn

∂m

∂α∗m
[e|α|2E(|α〉〈α|)]|α=0. (13)

Any qubit state expanded on the Fock states |n = 0〉
and |n = 1〉 can thus be mapped if we know the
quantities E(|n = 0〉〈n = 0|) = E(|α = 0〉〈α = 0|),
E(|1〉〈0|) = ∂

∂α
E(|α〉〈α|)|α=0, E(|0〉〈1|) = ∂

∂α∗ E(|α〉〈α|)|α=0,

and E(|1〉〈1|) = (1 + ∂2

∂α∂α∗ )E(|α〉〈α|)|α=0.
The derivatives can be expressed in terms of ᾱ using

Eq. (11):

∂

∂α
= C

∂

∂ᾱ
+ D∗ ∂

∂ᾱ∗ ,

∂

∂α∗ = D
∂

∂ᾱ
+ C∗ ∂

∂ᾱ∗ ,

∂2

∂α∂α∗ = CD
∂2

∂ᾱ2
+ (|C|2 + |D|2)

∂2

∂ᾱ∂ᾱ∗

+ (CD)∗
∂2

∂ᾱ∗2
. (14)

Only the displacement operators in Eq. (10) depend on
the coherent-state amplitudes, and their derivatives are given
by ∂D̂(ᾱ)

∂ᾱ
= (â† − ᾱ∗

2 )D̂(ᾱ), ∂D̂(ᾱ)
∂ᾱ∗ = −(â − ᾱ

2 )D̂(ᾱ), and their
Hermitian conjugates. The first and second derivatives of
E(|α〉〈α|) with respect to ᾱ and ᾱ∗ are thus given by

∂E

∂ᾱ
= â†ρ̂r − ρ̂râ

†,

∂E

∂ᾱ∗ = −âρ̂r + ρ̂râ,

∂2E

∂ᾱ2
= â† 2ρ̂r − 2â†ρ̂râ

† + ρ̂râ
† 2, (15)

∂2E

∂ᾱ∗2
= â2ρ̂r − 2âρ̂râ + ρ̂râ

2,

∂2E

∂ᾱ∂ᾱ∗ = −â†âρ̂r + â†ρ̂râ + âρ̂râ
† − ρ̂rââ†,

where ρ̂r is given in Eq. (8), and the right-hand sides are
formally independent of α (the derivatives are evaluated at
α = 0).

The fidelity is defined as the overlap of the state
subject to the transformation E with the original qubit
state and thus requires matrix elements of the left-hand
side of Eq. (13) between the Fock states |0〉 and |1〉. In
turn, using Eqs. (13)–(15) this is equivalent to calculating
the matrix element of the right-hand side of Eq. (15)
between the Fock states |0〉 and |1〉. Now, due to the
raising and lowering operators in this equation (up to
quadratic order) we end up with matrix elements of the
form 〈n′|ρ̂r|m′〉 = eiθ(n′−m′)〈n′|ρ̂STS|m′〉, where the integers
n′ and m′ may take values from 0 to 3. For instance, we
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have 〈1|E(|1〉〈0|)|0〉 = C〈1|â†ρ̂r − ρ̂râ
†|0〉 + D∗〈1| − âρ̂r +

ρ̂râ|0〉 = C[〈0|ρ̂STS|0〉 − 〈1|ρ̂STS|1〉] − √
2D∗e2iθ 〈2|ρ̂STS|0〉,

and the first term in this expression can be calculated
directly as

〈0|ρ̂STS|0〉
= 1

πn̄0

∫
d2γ e−|γ |2/n̄0 |〈0|Ŝ(r)|γ 〉|2

= 1

πn̄0 cosh(r)

∫
d2γ e−[(1+n̄0)/n̄0]|γ |2+[(γ 2+γ ∗2)/2] tanh(r)

= 1√[(
1
2 + n̄0

)
e−2r + 1

2

] [(
1
2 + n̄0

)
e2r + 1

2

]
= 1[(

σ 2
1 + 1

2

)(
σ 2

2 + 1
2

)]1/2 . (16)

The first equality, in which 〈n = 0| refers to the Fock basis
and |γ 〉 to the coherent-state basis, follows from the expansion
(6) of the thermal state on coherent states, the second
line exploits the Fock-state expansion of squeezed coherent
states [41]:

〈n|Ŝ(r)|γ 〉 = e−(|γ |2/2)+(γ 2/2) tanh(r)

√
n! cosh(r)

(
1

2
tanh(r)

)n/2

×Hn(γ
/√

sinh(2r)), (17)

where Hn is a Hermite polynomial, the third line carries out
the γ integration, and the last step applies the relations in
Eqs. (7). Similar calculations are readily performed for the

remaining relevant matrix elements and yield

〈1|ρ̂STS|1〉 = σ 2
1 σ 2

2 − 1
4[(

σ 2
1 + 1

2

)(
σ 2

2 + 1
2

)]3/2 ,

〈0|ρ̂STS|2〉 = σ 2
1 − σ 2

2

2
√

2
[(

σ 2
1 + 1

2

)(
σ 2

2 + 1
2

)]3/2 ,

(18)

〈2|ρ̂STS|2〉 =
(
σ 2

1 σ 2
2 − 1

4

)2 + 1
8

(
σ 2

1 − σ 2
2

)2

[(
σ 2

1 + 1
2

)(
σ 2

2 + 1
2

)]5/2
,

〈1|ρ̂STS|3〉 =
√

6
(
σ 2

1 σ 2
2 − 1

4

)(
σ 2

1 − σ 2
2

)
4
[(

σ 2
1 + 1

2

)(
σ 2

2 + 1
2

)]5/2
.

By integrating the fidelity for any input qubit state, |ψ(�)〉 =
cos θ

2 |0〉 + eiφ sin θ
2 |1〉 with 0 � θ � π and 0 � φ � 2π , we

determine the average qubit fidelity Fq :

Fq = 1

4π

∫
d�〈ψ(�)|E(|ψ(�)〉〈ψ(�)|)|ψ(�)〉

= 1

3
[〈0|E(|0〉〈0|)|0〉 + 〈1|E(|1〉〈1|)|1〉]

+ 1

6
[〈0|E(|0〉〈1|)|1〉 + 〈1|E(|1〉〈0|)|0〉]

+ 1

6
[〈1|E(|0〉〈0|)|1〉 + 〈0|E(|1〉〈1|)|0〉], (19)

where |0〉 and |1〉 refer to Fock states. With the expression
derived above, we thus reach the final, explicit expression for
the average qubit fidelity in terms of the mapping parameters
of the Gaussian process:

Fq = 1

6
√(

σ 2
1 + 1

2

)(
σ 2

2 + 1
2

)
{

3 + 3
(
σ 2

1 σ 2
2 − 1

4

)
(
σ 2

1 + 1
2

)(
σ 2

2 + 1
2

) + Re{C + D̃∗}
σ 2

1 + 1
2

+ Re{C − D̃∗}
σ 2

2 + 1
2

− |C + D̃∗|2(σ 2
1 − 1

)
(
σ 2

1 + 1
2

)2 − |C − D̃∗|2(σ 2
2 − 1

)
(
σ 2

2 + 1
2

)2 − |C + D̃∗|2(σ 2
2 − 1

2

) + |C − D̃∗|2(σ 2
1 − 1

2

)
2
(
σ 2

1 + 1
2

)(
σ 2

2 + 1
2

)
}

, (20)

where D̃ = De−2iθ . This is the main result of the paper, and
in the next section we shall consider the fidelity formula
in various specific cases, corresponding to the experimental
storage and transfer schemes mentioned in the Introduction.

Let us briefly discuss the different effects contributing to
a reduction of the fidelity. First, we observe that Eq. (20)
decreases when σ1,2 become large. This is natural, as the qubit
occupies only the lowest two Fock states, while the output
state is distributed toward higher number states n ∝ σ 2

1 ,σ 2
2 ,

and hence a corresponding smaller fraction of the population
remains in the qubit space. Even with σ1,2 close to the
minimum allowed by the Heisenberg uncertainty relation, the
values of C, D, and θ can lead to large variations in the qubit
fidelity. This is associated with the possibility for the map to
yield an (undesired) unitary operation on the qubit, e.g., in the
form of a rotation of the Bloch vector around the z axis, caused
by a rotation of the continuous quadrature variables in the
(X̂,P̂ ) phase space. Thus, the unitary mapping X̂1 → −X̂1 and

P̂1 → −P̂1, represented by A11 = A22 = −1, A12 = A21 = 0,
and σ 2

1 = σ 2
2 = 1

2 , yields, according to Eq. (20), an average
qubit fidelity Fq = 1

3 . The mapping, however, is perfect, if we
only redefine the basis states by a simple phase change of −π

after the process, and it makes sense to allow incorporation of
such a trivial transformation in the definition of the average
qubit fidelity. The effect on Eq. (20) of a phase rotation by θ ′
corresponds to setting C → Ceiθ ′

and D̃∗ → D̃∗eiθ ′
, which

affects only the two terms linear in C and D̃∗ in Eq. (20). The
angles θ ′ yielding the extremal values of Fq are thus given by

e2iθ ′ = (C∗ + D̃)
(
σ 2

2 + 1
2

) + (C∗ − D̃)
(
σ 2

1 + 1
2

)
(C + D̃∗)

(
σ 2

2 + 1
2

) + (C − D̃∗)
(
σ 2

1 + 1
2

) . (21)

For the simple map with the π rotation, qubit fidelity extrema
are found at θ ′ = nπ , where n is an integer, and for odd n the
rotation is counteracted and a unit fidelity is recovered.
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IV. EXAMPLES

A. Symmetric gain and variance

Consider the specific case where both X̂ and P̂ are
multiplied by the same gain coefficient g in the transformation
process such that A11 = A22 = g and A12 = A21 = 0. Assume
also the added noise to be symmetric, σ 2

1 = σ 2
2 = σ 2. Then the

fidelity becomes

Fq = 6σ 4 + 3σ 2 + g(2σ 2 + 1) − g2
(
3σ 2 − 5

2

)
6
(
σ 2 + 1

2

)3 , (22)

which is identical to the result found in [8]. The value of Fq

as a function of g and σ 2 is shown in Fig. 2.
By a projective qubit measurement, one obtains an outcome

that may be stored by classical means, and the corresponding
eigenstate may be reinstalled in the physical output system at
any later time. This classical procedure provides a qubit state
with an average overlap with the unknown initial state of 2/3
[42]. The dashed curve with Fq = 2/3 in Fig. 2 represents
the benchmark value where a quantum storage or transfer
operation outperforms the much simpler classical strategy.

B. An oscillator coupled to a heat bath

Consider a harmonic oscillator, e.g., a cavity field with
resonance frequency ω0, coupled by an energy-decay rate γ

to an external heat bath at temperature T . The characteristic
number of excitations in the heat bath is N̄ = [exp( �ω0

kBT
) −

1]−1, and the quantum Langevin equations for the oscillator
mode â can be written [43]

∂â

∂t
= −iω0â − γ

2
â − √

γ b̂in, (23)

where b̂in is the input thermal field, which in the broadband
approximation satisfies 〈b̂in(t)b̂†in(t ′)〉 = (N̄ + 1)δ(t − t ′) and
〈b̂†in(t)b̂in(t ′)〉 = N̄δ(t − t ′). Equation (2) yields the solution
of Eq. (23) with g ≡ A11 = A22 = e− γ t

2 and A12 = A21 =
0. From the properties of b̂in we deduce that var(F̂x) =

0.99

0.95

0.80

2/3

10−3 10−2 10−1 1
10−3

10−2

10−1

1

1 − g

2σ
2
−

1

FIG. 2. (Color online) A contour plot of the qubit fidelity for
symmetric gain and variances according to Eq. (22) as a function
of the gain imperfection, 1 − g, and the excess variance relative to
the vacuum noise limit, 2σ 2 − 1. A few values of Fq are marked
on the graph with the dashed curve enclosing the nonclassical limit
Fq > 2

3 .
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/
3

FIG. 3. (Color online) (a) The decay of qubit fidelity when the
harmonic oscillator hosting the qubit is coupled to a heat bath by a
decay rate γ . Each curve corresponds to a specific bath temperature
with N̄ denoting the mean excitation level of the oscillator in
equilibrium. From top to bottom: N̄ = 0 (red), N̄ = 0.3 (green),
N̄ = 1 (blue), N̄ = 3 (cyan), and N̄ = 10 (magenta). The horizontal
dashed line denotes the nonclassical limit Fq > 2

3 and the vertical
dashed lines mark the time TFq=2/3 at which this limit is reached. This
characteristic time is also shown in (b) on the vertical axis (in units
of γ −1) as a function of the equilibrium excitation level N̄ .

var(F̂p) = (N̄ + 1
2 )(1 − e−γ t ) and cov(F̂x,F̂p) = 0, and hence

for a coherent-state input the variance of the output state
is σ 2 ≡ σ 2

1 = σ 2
2 = 1

2 + N̄ (1 − e−γ t ). The qubit fidelity now
follows from inserting the parameters g and σ 2 into Eq. (22),
and the resulting fidelity is shown in Fig. 3.

We observe that the decay of fidelity occurs faster when the
heat bath temperature is increased. In Fig. 3(a) the initial linear
decrease in Fq follows the approximate formula Fq ≈ 1 −
(2+5N̄ )γ t

3 . In the asymptotic limit t → ∞ the fidelity converges,

Fq → N̄+ 1
2

(N̄+1)2 , i.e., for N̄ = 0 the qubit decays to the ground
state |0〉 which has a 50% chance of reproducing the random
input qubit, and for large N̄ the oscillator is most likely excited
away from the qubit space spanned by |0〉 and |1〉 leading to a
vanishing fidelity.

The horizontal dashed line with Fq = 2/3 in Fig. 3(a)
represents the benchmark value of quantum storage, which
occurs at the N̄ -dependent times marked by the vertical dashed
lines. In Fig. 3(b) the these times are shown more generally
as a function of N̄ . The N̄ → 0 limit yields γ TFq=2/3 →
− ln(

√
2 − 1) ≈ 0.88, i.e., for an exponentially decreasing

coherence, the process supersedes the classical benchmark for
times less than 88% of the coherence time.

C. Asymmetric gain and variance along the same major axes

In most practical cases with asymmetric gain and variance,
the asymmetries materialize along the same axes in (X̂,P̂ )
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space. One example is the degenerate parametric amplifier
[44], for which the transformations are 〈X̂out〉 = G〈X̂in〉,
〈P̂out〉 = G−1〈P̂in〉, σ 2

x = G2

2 , σ 2
p = 1

2G2 , and Cx,p = 0, i.e.,
the coordinate system is chosen, without loss of generality,
such that the mean value transformation Ã is diagonal and
at the same time it turns out that θ = 0, i.e., the (X̂,P̂ )
axes also form the major axes for the covariance matrix γ out.
Another example can be found in spin-ensemble-based quan-
tum memories, which encode quantum information into the
transverse components X̂ ≡ Ŝx/

√|Sz| and P̂ ≡ −Ŝy/
√|Sz|

of a macroscopic spin polarized along the negative z direction.
For an inhomogeneous distribution of spin frequencies the
stored information is “diffused” into the spin ensemble and
recalled as a spin echo using a set of π pulses for inverting the
ensemble population. These π pulses employ a spin rotation
around a certain axis and thereby break the symmetry of
the (X̂,P̂ ) space, and especially for nonideal π pulses the
transformations (2) and (4) become asymmetric (in some cases
even squeezed) [45]. In this case also, Ã and γ turn out diagonal
in a common coordinate system, and the two above examples
thus motivate a closer look on the particular transformation

Ã =
[
gx 0

0 gp

]
, γ out =

[
2σ 2

x 0

0 2σ 2
p

]
. (24)

As long as the Heisenberg uncertainty relation σ 2
x σ 2

p � 1
4 is

satisfied we allow σ 2
x and σ 2

p to take any value meeting the
constraints 2σ 2

1 � g2
x and 2σ 2

2 � g2
p imposed by Eq. (4) and

the positivity of (γF )11 and (γF )22. We may think of this
transformations as a noisy parametric amplifier (the version
discussed above is a minimum-uncertainty case). When the
properties of (24) are inserted into the general formula (20)
we find

Fq = 1

6
√(

σ 2
x + 1

2

)(
σ 2

p + 1
2

)
{

3 + 3
(
σ 2

x σ 2
p − 1

4

)
(
σ 2

x + 1
2

)(
σ 2

p + 1
2

)

+ gx

σ 2
x + 1

2

+ gp

σ 2
p + 1

2

− g2
x

(
σ 2

x − 1
)

(
σ 2

x + 1
2

)2 − g2
p

(
σ 2

p − 1
)

(
σ 2

p + 1
2

)2

− g2
x

(
σ 2

p − 1
2

) + g2
p

(
σ 2

x − 1
2

)
2
(
σ 2

x + 1
2

)(
σ 2

p + 1
2

)
}

. (25)

In order to illustrate how the asymmetry affects the qubit
fidelity, we show in Fig. 4 a number of curves, where for each
curve the products gxgp ≡ g2

0 and σ 2
x σ 2

p ≡ σ 4
0 remain constant

but the degree of asymmetry is changed along the horizontal
axis (see the figure caption for explanation). We note that the
upper curve corresponds to the special case of a noiseless para-
metric amplifier for which Fq =

√
2

3
cosh(2r)+2 cosh(r)+3

[1+cosh(2r)]3/2 , where
we parametrized the gain as G = ε = er . This expression for
Fq stays above the classical benchmark 2

3 for ε � 1.96.

V. SUMMARY

In this paper we have presented calculations yielding the
average fidelity for storage and transfer of qubit states which
are encoded in the |0〉 and |1〉 Fock states of a harmonic
oscillator, subjected to a Gaussian process. Since coherent
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0.9

1.0

F
q

FIG. 4. (Color online) The qubit fidelity from Eq. (25) as a
function of ε, which is conveniently used to parametrize the asym-
metry in gain and variance by gx = g0ε, gp = g0/ε, σ 2

x = σ 2
0 ε2, and

σ 2
p = σ 2

0 /ε2. From top to bottom: g0 = 1 and σ 2
0 = 1

2 (black), g0 = 1
and σ 2

0 = 1.05
2 (red), g0 = 0.9 and σ 2

0 = 1
2 (green), and g0 = 0.9 and

σ 2
0 = 1.05

2 (blue).

states form a complete basis for the harmonic oscillator,
the parameters characterizing a Gaussian process can be
determined by its action on coherent states, and subsequently
the action of the process on any class of quantum states can
be obtained. The main result of our calculation is the explicit
expression, Eq. (20), for the average qubit fidelity for a general
Gaussian process. This expression shows how imperfect gain
and added noise both contribute to the infidelity of protocols
handling qubits in oscillator degrees of freedom. It also shows,
however, that part of the infidelity may be recovered by merely
redefining the phases of the qubit basis states.

There has already been considerable effort to determine the
fidelity of Gaussian operations acting on oscillators prepared
in coherent states, squeezed states, and qubit states, and
in connection with the beam-splitter-like coupling of light
modes and atomic ensembles, the average qubit fidelity has
been calculated in Ref. [8]. Our theory, indeed, reproduces
that result when we restrict to symmetric gain and noise.
Currently, however, there is a growing experimental interest
in hybrid quantum system architectures, where, e.g., effective
two-level systems are used for preparation and processing of
qubit states, while oscillator systems are used for storage and
transport. These systems apply different coupling schemes and
frequently the couplings to the quadratures of the electromag-
netic, mechanical, or collective spin oscillators differ, leading
to asymmetries in the (X̂,P̂ ) phase space. Another source
of asymmetry may occur during processing of the individual
oscillator modes, as exemplified by π pulses applied to spin
ensembles in Ref. [45]. The general expression Eq. (20) and
the examples given in Sec. IV properly describe the fidelity of
qubit manipulation in such hybrid systems.
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J. Reichel, and P. Treutlein, Phys. Rev. Lett. 104, 143002 (2010).

[22] C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J.
van Enk, and H. J. Kimble, Nature (London) 438, 828 (2005).

[23] T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S. Lan, T. A. B.
Kennedy, and A. Kuzmich, Nature (London) 438, 833 (2005).
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