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From the quantum relative Tsallis entropy to its conditional form:
Separability criterion beyond local and global spectra
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The quantum relative Rényi entropy of two noncommuting density matrices was recently defined from which
its conditional entropy is deduced. This framework is here extended to the corresponding Tsallis relative entropy
and to its conditional form. This expression of Tsallis conditional entropy is shown to witness entanglement
beyond the method based on global and local spectra of composite quantum states. When the reduced density
matrix happens to be a maximally mixed state, this conditional entropy coincides with the expression in terms of
Tsallis entropies derived earlier by Abe and Rajagopal [Physica A 289, 157 (2001)]. The separability range in a
noisy one-parameter family of W and Greenberger-Horne-Zeilinger states with three and four qubits is explored
here and it is shown that the results inferred from negative Tsallis conditional entropy matches that obtained
through Peres’s partial transpose criterion for one-parameter family of W states, in one of its partitions. The
criterion is shown to be nonspectral through its usefulness in identifying entanglement in isospectral density
matrices.
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I. INTRODUCTION

Entropic characterization of separability of composite
quantum systems has attracted significant attention [1–9]. This
is based on the observation that von Neumann conditional
entropy of a pure bipartite entangled state is negative and this
points towards a more general feature that entangled systems
could be more disordered locally than globally, while it is not
possible for separable states [10]. Positivity of generalized
quantum conditional entropies such as Rényi and Tsallis
conditional entropies is a more effective tool to investigate
global vs local disorder in mixed states and leads to stricter
constraints on separability than that obtained using conditional
von Neumann entropy [3–8]. However, the entropic criterion
is not sufficient for separability as it has been shown that any
criterion based on global and local spectra is incapable of
distinguishing a separable state from entangled ones [10].

Recently, a different quantum generalization of Rényi
relative entropy was introduced [11,12] and there has been a
surge of activity in establishing several properties of this recent
version of Rényi entropy [11–15]. This generalized Rényi
relative entropy of a pair of density operators reduces to the
traditional one when the two density operators commute with
each other. It is thus natural to anticipate that this quantity is
more effective than its traditional version when noncommuting
density matrices are involved. In Ref. [11] this generalization
was termed “sandwiched” Rényi relative entropy in view of
the sandwiching of noncommutative operators in a particular
way and hence this nomenclature is an appropriate one for the
generalized Rényi relative entropy.

In this paper we introduce a sandwiched version of Tsallis
relative entropy and identify an alternative quantum version of
conditional Tsallis entropy derived therefrom. We investigate
entanglement based on nonpositive values of sandwiched
Tsallis conditional entropy defined here. An earlier version of
Tsallis conditional entropy, introduced by Abe and Rajagopal

[3] using classical conditional Tsallis probabilities, has been
found to be useful in exploring separability of several families
of composite quantum systems [3–8]. The conditional version
of the sandwiched Tsallis relative entropy (CSTRE) offers as a
generalized version when the density matrix and its reductions
do not commute with each other. The present version reduces
to the Abe-Rajagopal (AR) q-conditional entropy when the
reduced density matrix is maximally disordered. We show that
the identification of inseparability based on nonpositive values
of the CSTRE goes beyond the spectral criterion and is capable
of distinguishing separable states from entangled states that are
globally and locally isospectral.

The contents of the paper are organized into five sections,
including the introduction and motivation behind this work
detailed here in Sec. I. In Sec. II we introduce the sandwiched
relative Tsallis entropy and its conditional version. We employ
this conditional form to examine the separability range in one-
parameter families of W and Greenberger-Horne-Zeilinger
(GHZ) states in Sec. III. In Sec. IV we show that the CSTRE
approach of identifying separability goes beyond spectral
disorder criteria and can distinguish separable states from en-
tangled ones when they share the same global and local spectra.
Section V contains a summary and concluding remarks.

II. SANDWICHED RELATIVE TSALLIS ENTROPY
AND ITS CONDITIONAL VERSION

The generalized entropies, the Rényi and Tsallis entropies,
denoted, respectively, by SR

q (ρ) and ST
q (ρ), are given by

[2,3,16]

SR
q (ρ) = 1

1 − q
ln Tr (ρq),

(1)

ST
q (ρ) = Tr (ρq) − 1

1 − q
,

1050-2947/2014/89(1)/012331(5) 012331-1 ©2014 American Physical Society

http://dx.doi.org/10.1016/S0378-4371(00)00476-3
http://dx.doi.org/10.1016/S0378-4371(00)00476-3
http://dx.doi.org/10.1016/S0378-4371(00)00476-3
http://dx.doi.org/10.1016/S0378-4371(00)00476-3
http://dx.doi.org/10.1103/PhysRevA.89.012331


RAJAGOPAL, SUDHA, NAYAK, AND DEVI PHYSICAL REVIEW A 89, 012331 (2014)

where q is a real positive parameter. Both these reduce to von
Neumann entropy in the limit q → 1. The traditional quantum
relative Rényi entropy for a pair of density operators ρ and σ

is defined, by ignoring the ordering of the density matrices, as

DR
q (ρ||σ ) = ln Tr (ρqσ 1−q)

q − 1
for q ∈ (0,1) ∪ (1,∞)

= Tr [ρ(ln ρ − ln σ )] for q → 1. (2)

Recently, a generalized version of quantum relative Rényi
entropy was introduced by Wilde et al. [11] and Müller-
Lennert et al. [12] independently:

D̃R
q (ρ||σ ) = 1

q − 1
ln[Tr (σ (1−q)/2qρσ (1−q)/2q)q]

for q ∈ (0,1) ∪ (1,∞). (3)

The quantum relative Rényi entropy (3) reduces to the
traditional one given by (2) when the density matrices ρ and
σ commute and hence the present version is an extension to
the noncommutative case.

We consider the traditional form of Tsallis relative entropy

DT
q (ρ||σ ) = Tr (ρqσ 1−q) − 1

1 − q
(4)

and define the sandwiched Tsallis relative entropy in a similar
manner,

D̃T
q (ρ||σ ) = Tr [(σ (1−q)/2qρ σ (1−q)/2q)q] − 1

1 − q
. (5)

Note that when σ = I , the sandwiched Tsallis relative entropy
(5) reduces to the Tsallis entropy ST

q (ρ) = Tr (ρq )−1
1−q

and in the
limit q → 1 it reduces to the von Neumann relative entropy
limq→1 Dq(ρ||σ ) = Tr [ρ(ln ρ − ln σ )] [17].

We now define the conditional version of D̃T
q (ρAB ||σ )

by taking σ ≡ IA ⊗ ρB (or ρA ⊗ IB) where ρB = TrA(ρAB)
[ρA = TrB(ρAB)] is the subsystem density matrix of the
composite state ρAB . It is given by

D̃T
q (ρAB ||ρB) = Q̃q(ρAB ||ρB) − 1

1 − q
, (6)

where

Q̃q(ρAB ||ρB)

= Tr {[(I ⊗ ρB)(1−q)/2qρAB(I ⊗ ρB)(1−q)/2q]q}. (7)

The sandwiched conditional Tsallis entropy (6) reduces to AR
q-conditional Tsallis entropy [3]

ST
q (A|B) = 1

q − 1

(
1 − Tr ρ

q

AB

Tr ρ
q

B

)
(8)

when the subsystem density matrix is a maximally mixed
state. Negative values of AR q-conditional entropy indicate
entanglement and it has been employed as a separability
criterion for several classes of composite states [3–8]. Here
we employ the form of sandwiched conditional Tsallis entropy
derived from its relative entropy to infer about entanglement.

While the evaluation of the expression Q̃q(ρAB ||ρB) does
not seem trivial, construction of the unitary operator that
diagonalizes the subsystem density matrix ρB makes the

calculation a feasible one. If UB is the unitary operator that
diagonalizes ρB , we have

σD = Uσσ (1−q)/2qU †
σ

for σ = I ⊗ ρB, Uσ = I ⊗ UB, (9)

σD = diag
(
λ

(1−q)/2q

1 · · · λ(1−q)/2q
n

)
.

Thus the expression for Q̃q(ρAB ||ρB) in Eq. (7) simplifies to

Q̃q(ρAB ||ρB) = Tr [(σDUσρU †
σ σD)q]. (10)

Defining � = σDUσρU †
σ σD , an evaluation of the eigenvalues

γi of � immediately leads us to the quantity Q̃q(ρAB ||ρB) as∑d
i=1 γ

q

i , d being the dimension of ρ. Thus we finally obtain
an expression for the CSTRE

D̃T
q (ρAB ||ρB) =

∑d
i=1 γ

q

i − 1

1 − q
. (11)

We make use of Eq. (11) to determine the separability range in
one-parameter families of W and GHZ states in the following
section.

III. SEPARABILITY OF NOISY ONE-PARAMETER
FAMILIES OF W AND GHZ STATES

The symmetric one-parameter families of N -qubit mixed
states, involving a W or a GHZ state, are given, respectively,
by

ρ
(W )
N (x) =

(
1 − x

N + 1

)
PN + x|W 〉N 〈W | (12)

and

ρ
(GHZ)
N (x) =

(
1 − x

N + 1

)
PN + x|GHZ〉N 〈GHZ|. (13)

Here 0 � x � 1 and PN = ∑
M |N/2,M〉〈N/2,M| denotes

the projector onto the symmetric subspace of N -qubits
spanned by the N + 1 angular momentum states |N/2,M〉,
M = N/2,N/2 − 1, . . . , − N/2, belonging to the maximum
value J = N/2 of total angular momentum.

A systematic attempt to examine the separability range
of the noisy one-parameter family of W and GHZ states
using the AR q-conditional entropy has been carried out
in Ref. [8]. While Prabhu et al. obtained a result matching
that of the positive partial transpose (PPT) criterion [18] for
two-qubit states of ρ

(W )
N=2(x), the range of separability identified

by them is weaker than that through the PPT criterion for
both W and GHZ families when N � 3. Here we identify
that noncommutativity of the density matrix ρAB with its
subsystem state ρB does indeed play a role and the separability
domain inferred through non-negative values of the CSTRE
is stricter than that obtained from the AR q-conditional
entropy, though it is weaker than the PPT criterion in some
cases.

For N = 3, a direct evaluation of the subsystem density
matrix ρBC of ρW

3 (x) ≡ ρABC and the unitary matrix that
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diagonalizes it leads us to � = σDUσρU †
σ σD . Here we have

σD = I2 ⊗ diag
( (

1

3

)(1−q)/2q

,0,

(
1 − x

3

)(1−q)/2q

,

×
(

1 + x

3

)(1−q)/2q )
,

Uσ = I2 ⊗

⎛
⎜⎜⎜⎝

1 0 0 0

0 1√
2

− 1√
2

0

0 0 0 1

0 1√
2

1√
2

0

⎞
⎟⎟⎟⎠ , ρ = ρW

3 (x).

The nonzero eigenvalues of � are found to be

γ1 = 3(1 − x)3−1/q

4
, γ2 = 3(1 − x)1/q3−1/q

4
,

γ3 = 3−1/q (1 + 3x)[1 + x + 2(1 + x)1/q]

4(1 + x)
, (14)

γ4 = 3−1/q [(1 + x)(1 − x)1/q + 2(1 − x)(1 + x)1/q]

4(1 + x)
.

One can now readily evaluate the expression for the CSTRE
in Eq. (11) and for different values of q, we obtain
D̃T

q (ρ(W )
3 (x)||ρBC) as a function of x. The plots in Figs. 1

and 2 illustrate the stricter separability range for ρ
(W )
3 (x),

in its A:BC partition, for increasing values of q. It can be
readily seen from Figs. 1 and 2 that the separability range
0 � x � 0.1547 in the A:BC partition of the one-parameter
family of three-qubit W states obtained through the CSTRE
approach is in complete agreement with that obtained from the
partial transpose criterion. It should be noted (see Fig. 2) that
AR q-conditional entropy yields a weaker separability range
[8] 0 � x � 0.2 for the A:BC partition of ρ

(W )
3 (x).

In a similar manner we evaluate the CSTRE
D̃T

q (ρ(W )
4 (x)||ρBCD) and arrive at the separability range in

the A:BCD partition of the state ρ
(W )
4 (x). It can be seen

that ρ
(W )
4 (x) is separable when x � 0.1124, in complete

conformity with the separability range obtained through the
PPT criterion. In Fig. 3 we illustrate our result for ρ

(W )
4 (x)

0.2 0.4 0.6 0.8 1.0
x

0.10

0.05

0.05

0.10
Dq
T
ρ3
w ρBC

20
5
1

0
0
0
1

q
q
q
q

FIG. 1. (Color online) Conditional form of the sandwiched
Tsallis relative entropy D̃T

q (ρ(W )
3 (x)||ρBC) for a one-parameter family

of three-qubit W states as a function of x for different values of q.
It can be seen that the CSTRE is negative for x � 0.57 when q = 1,
whereas it is negative as x → 0.1547 (the value of x identified by the
PPT criterion) for q � 1. All the quantities are dimensionless.
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q

0.1

0.2

0.3

0.4

0.5

x

FIG. 2. (Color online) Implicit plot of D̃T
q (ρ(W )

3 ||ρBC) = 0 as a
function of q (solid line) indicating that x → 0.1547 as q → ∞.
In contrast, the implicit plot of the Abe-Rajagopal q-conditional
entropy ST

q (A|BC) = 0 (dashed line) leads to x → 0.2 as q → ∞.
The quantities plotted are dimensionless.

through an implicit plot of D̃T
q (ρ(W )

4 ||ρBCD) = 0 and compare
it with that of AR q-conditional entropy ST

q (A|BCD) = 0.

It is pertinent to point out that the state ρ
(W )
N (x) and its

reduced counterparts I2 ⊗ ρN−1 are noncommuting and thus
are ideal examples to test the present CSTRE criterion for
separability.

The separability range of the one-parameter family of N -
qubit GHZ states has been examined using AR q-conditional
entropy in Ref. [8], where the separability range matching
that from the PPT criterion for ρ

(GHZ)
3 (x) only in the A:BC

partition was obtained. It may be noted that the separability
range in the A:BC partition of ρ

(GHZ)
3 (x) is [0, 1

7 ] through
the PPT criterion as well as the AR q-conditional entropy
criterion. An explicit evaluation using the CSTRE approach is
seen to reproduce the same separability range, indicating that
the CSTRE separability domain is bounded by the PPT range.

For N = 4 also, the separability ranges obtained through
both the PPT criterion and the AR q-conditional entropy
approach match each other only in the A:BCD partition of
ρ

(GHZ)
4 (x). Here we identify the separability ranges through

the present CSTRE approach and show that a separability
range that is the same as that through the AR q-conditional
approach is obtained in all possible partitions of the state

1 50 100 150 200 250 300
q

0.1

0.2

0.3

0.4

0.5

x

FIG. 3. (Color online) Implicit plot of D̃T
q (ρ(W )

4 ||ρBCD) = 0
(solid line) and ST

q (A|BCD) = 0 (dashed line) as functions of q. Here
x → 0.1124 according to the CSTRE approach while x → 0.1666 is
inferred from the AR q-conditional entropy, both in the limit q → ∞.
The quantities plotted are dimensionless.
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TABLE I. Comparison of separability range of one-parameter
families of states through entropic criteria and a PPT.

von Neumann AR
Quantum conditional q-conditional
state entropy entropy CSTRE PPT

ρ
(W )
3

A:BC partition {0,0.5695} {0,0.2} {0,0.1547} {0,0.1547}
AB:C partition {0,0.7645} {0,0.4286} {0,0.3509} {0,0.1547}

ρ
(GHZ)
3

A:BC partition {0,0.5482} {0,1/7} {0,1/7} {0,1/7}
AB:C partition {0,0.7476} {0,1/3} {0,1/3} {0,1/7}

ρ
(W )
4

A:BCD partition {0,0.5193} {0,0.1666} {0,0.1123} {0,0.1123}
AB:CD partition {0,0.6560} {0,0.2105} {0,0.2105} {0,0.0808}
ABC:D partition {0,0.8222} {0,0.5454} {0,0.4174} {0,0.1123}

ρ
(GHZ)
4

A:BCD partition {0,0.4676} {0,0.0909} {0,0.0909} {0,0.0909}
AB:CD partition {0,0.6560} {0,0.2105} {0,0.2105} {0,0.0625}
ABC:D partition {0,0.7868} {0,0.375} {0,0.375} {0,0.0909}

ρ
(GHZ)
4 (x). Table I summarizes our results for the different

partitions of the one-parameter family of W and GHZ states.
It can be readily seen from Table I that the CSTRE approach
yields a separability range that is either equal to or stricter
than the range obtained through the AR q-conditional entropy
and matches the PPT criterion in some of the noncommuting
cases such as in ρ

(W )
N=3, 4 in one of their A:BC and A:BCD

partitions. We proceed further in Sec. IV to illustrate that the
CSTRE separability criterion is nonspectral in nature and thus
can distinguish separable and entangled states that share the
same local and global eigenvalues.

IV. NONSPECTRAL NATURE OF THE CSTRE CRITERION

Generalized entropies serve as a measure of disorder in a
given quantum state and negative values of traditional versions
of generalized conditional entropies point towards more global
order than local order in a composite system. Separable states
are more locally ordered than globally as the eigenspectra
of the whole composite separable state is majorized by that
of its reduced systems [10]. Negative values of conditional
entropies reflect the contrasting feature that local spectra need
not majorize global spectra in entangled states. However, the
separability criterion based purely on the spectra of composite
and reduced states is shown to be insufficient [10]. This feature
was illustrated through an example of an isospectral pair of
two-qubit states ρAB and �AB , which share the same local and
global spectra with ρAB being entangled while �AB is separable
[10]:

ρAB = 1

3

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

⎞
⎟⎟⎟⎠ , (15)

1 4 6 8 10
q

2.5
2.0
1.5
1.0
0.5

0.5
DTq ρAB ρB

FIG. 4. Plot of the CSTRE D̃T
q (ρAB ||ρB ) of the two-qubit state

(15) as a function of q. It can be readily seen that the CSTRE is
negative for all values of q > 1, indicating that the state is entangled.
Both quantities are dimensionless.

�AB = 1

3

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

⎞
⎟⎟⎟⎠ . (16)

It is worth observing that the separable state �AB commutes
with its reduced density matrices, whereas the entangled state
ρAB and its subsystems are noncommutative. Interestingly, the
present sandwiched conditional Tsallis entropy is capable of
distinguishing the isospectral states and hence the approach
proves to be superior to any spectral disorder criteria. We
demonstrate the effectiveness of the CSTRE separability
criterion in the above examples of two-qubit isospectral states.

For the state ρAB we obtain

γ1 = 2(1−q)/q3−1/q,

γ2 = (1 + 2(1−q)/q)3−1/q

and the CSTRE is given by

D̃T
q (ρAB ||ρB) = (1 + 2(1−q)/q)q + 21−q − 3

3(1 − q)
. (17)

A plot of D̃T
q (ρAB ||ρB) as a function of q is given in Fig. 4.

It can be readily seen from Fig. 4 that D̃T
q (ρAB ||ρB) is

negative for all values of q, except for q = 1. In contrast, in
the two-qubit separable state �AB we find that

γ1 =
(

2

3

)1/q

, γ2 =
(

1

3

)1/q

, (18)

leading to γ
q

1 + γ
q

2 = 1 and hence

D̃T
q (�AB ||�B) = 0 (19)

for all values of q. The isospectral example of two-qubit states
highlights that the CSTRE approach is essentially nonspectral
in nature, unlike other entropic criteria [19].

V. CONCLUSION

Characterization of entanglement based on Rényi and
Tsallis conditional entropies [1–9] is essentially based on the
spectra of the composite state and its subsystems. Separable
states are more disordered locally than globally [10] and this
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feature is reflected through their generalized conditional en-
tropies being positive. Negative values of conditional entropies
imply entanglement. However, the spectral criterion is only
sufficient but not necessary to detect entanglement. There exist
examples of separable and entangled states that share the same
global and local spectra [10].

Motivated by the recently introduced sandwiched Rényi
relative entropy [11,12], we defined a corresponding version
of quantum Tsallis relative entropy for a pair of noncom-
muting density matrices. We have shown that conditional
Tsallis entropy derived from sandwiched relative entropy
of a composite quantum state and its subsystem is useful
to characterize entanglement beyond the spectral disorder
criteria. The present CSTRE reduces to the traditional form
of Tsallis conditional entropy (AR q-conditional entropy)
developed by Abe and Rajagopal [3] when the subsystem
density matrix is a maximally mixed state. We have used
the CSTRE to investigate separability of noisy one-parameter
families of three- and four-qubit W and GHZ states. The results

were compared with those obtained by AR q-conditional
entropy and also Peres’s PPT criterion. It was shown that
the CSTRE is superior to AR q-conditional entropy, while
the separability range is limited by that drawn from the
PPT criterion. These results were collected in Table I. The
CSTRE approach was shown here to be useful to distinguish
between isospectral separable and entangled states. While the
CSTRE approach was seen to be either identical to or weaker
than the PPT criterion in the examples considered here, it
is an open question whether this hierarchy is true for all
states and whether this approach can identify bound entangled
states.
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