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Telegraph noise effects on two charge qubits in double quantum dots
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We analyze theoretically the decoherence of two interacting electrons in a double self-assembled quantum
dot due to a random telegraph noise. For this purpose we have examined the pure dephasing rate by evaluating
the decoherence factor. The latter has been shown to be different from that calculated within the Gaussian
approximation in the strong coupling regime. In order to determine the influence of the random telegraph noise
on the entanglement of the system states, the concurrence, the populations, and the entropy are evaluated as well.
Our results show that telegraph noise can severely impact the coherence of charge qubits.
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I. INTRODUCTION

In connection with quantum-information processing, semi-
conductor quantum dots seem very promising to implement
qubits and to achieve a quantum computer. Sundry experiments
have already highlighted the quantum properties of these
devices [1–3]. Several designs for the physical realization of
qubits have been suggested and a wide variety of experiments
have demonstrated the possibility of controlling the spin
[2,4] and the charge states [3,5] of the confined electrons
in the quantum dots. It is widely accepted that spin qubits
hold great promise in the long term on account of the large
spin decoherence time characteristic; nevertheless, charge-
based qubits are receiving increasing interest as well. Indeed,
employing the charge degree of freedom of electrons rather
than their spin brings substantial practical advantages since
the experimental techniques for measuring and manipulating
electron charge are extremely developed and there is no need
for local control of magnetic fields and all the operations are
accessible involving just low electric fields [3,5].

An attractive platform to study the quantum control of a
charge qubit is the system of lateral quantum dots [6,7]. A
drawback to their use in quantum information is that they
are coupled to the external degrees of freedom which leads
to decoherence. Thereby, charge qubits in a double quantum
dot undergo various decoherence mechanisms caused by the
charge motion. Given that the qubit states are defined through
the position of a mobile electron, i.e., the logical states
corresponding to the electron being on the right or left dot, the
amendment of these states implies an electron jump from one
quantum dot to another. Such motion can couple to external
degrees of freedom such as phonons, impurity, and electromag-
netic fluctuations. Recent theoretical and experimental studies
have been developed to investigate the effect of phonons
in semiconductor quantum dots as a source of dephasing
accompanying dissipation [7–9]. The effect of electromagnetic
fluctuations has been widely examined [9,10].

Recently, evidence for noise due to the low frequency
fluctuations has been observed in both Josephson junction
structures [11] and in semiconductor self-assembled quantum
dots [12–14]. Several mechanisms have been proposed to
explain these fluctuations in terms of fluctuating background
charges, structural dynamic defects, or charge traps [15–21]

and can hence be modeled as two-level systems: fluctuators.
A random switching of one fluctuator between their two level
tunneling states produces a random telegraph noise (RTN). If
many of these fluctuators are appropriately superimposed, they
can lead to 1/f noise. Systems showing 1/f noise have been
extensively studied in several papers [19–26]. Unfortunately,
on account of the miniaturization of quantum dots and the
development of techniques for their manufacture, the recent
experiments prove the presence of only one or a few fluctuators
[27]. Therefore, numerous studies have been devoted to the
investigation of the decoherence in Josephson qubits due
to RTN as a source of dephasing through evaluating the
phase memory decay using first the spin-boson model [28–30]
and then the spin-fluctuator model [16,22,31]. Recent works
point out that the last model is more appropriate than the
Gaussian approximation for different coupling regimes (weak
or strong coupling) [16,19,32–34] and at different working
points [23,35].

Moreover, self-assembled semiconductor quantum dots
present the most suitable zero-dimensional structures for
many applications in new devices and new areas such as
quantum-information processing [36,37] and optoelectronic
devices [38]. A great deal of attention has been paid to
these structures since many fundamental properties (quantized
electronic states, etc.) are size dependent in the nanometer
range. Nevertheless, the fact that there are not enough studies
dealing with the decoherence in semiconductor charge qubits
due to RTN presents a challenge. The purpose of this paper
is to extend those works and to investigate the telegraph
noise effects on the entanglement through evaluating the
populations, the entropy, and the concurrence. Therefore,
we apply our analysis, which is motivated by experiments
proving the presence of RTN in semiconductor self-assembled
quantum dots, to the dephasing of two semiconductor charge
qubits [15–17].

II. THEORETICAL MODEL

We consider a system with two interacting electrons in sym-
metric coupled quantum dots at a mutual distance 2d driven
by an oscillatory electric field and coupled longitudinally to a
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FIG. 1. (Color online) The confinement potential scheme for the
fixed interdot distance d = aB .

classical telegraph noise,

H =
∑
i=1,2

hi + Vc + HRTN. (1)

Here hi presents the single-particle effective mass Hamilto-
nian including the external electric field, Vc = e2

k|r1−r2| is the
Coulomb interaction, and HRTN corresponds to the RTN. Let
us start with a brief analysis of the system without the RTN. The
two-dimensional single-particle effective mass Hamiltonian of
our system is given by

hi(x,y) = P 2
i

2m∗
i

+ exiF (t) + Vconf . (2)

Here ex is the dipole operator and the ac-electric field
F (t) is applied along the x direction with the form F (t) =
F0 cos(wt). The electrons are confined by a Gaussian po-

tential Vconf(x,y) = −m∗ω2
0

2 a2
B(e

− (x−d)2+y2

a2
B + e

− (x+d)2+y2

a2
B ) in the

quantum well plane (see Fig. 1).
We can use different material parameters’ values to reflect

various self-assembled quantum dot systems. We take the
following as material parameters for a GaAs quantum dot:
m∗ = 0.067me for the electron effective mass and εr = 13.1
for the dielectric constant. The electron mass is denoted
me. The confinement strength is set to �ω = 6 meV and
aB =

√
�

(m∗ω) is the effective Bohr radius. The following
investigation takes as a starting point the uncoupled dots
at large distances, d � aB . We have fixed the half interdot
distance at d = 30 nm. By the choice of a large interdot
distance, the decoherence due to the interaction with a bath
of phonons can be neglected [8]. The molecular orbital
states of the field-free Hamiltonian are developed within the
Hund-Mulliken approximation and with properly symmetrized
products of Hermite functions that are the familiar solutions
of the single-particle harmonic oscillator in two dimensions.
The symmetric and asymmetric basis functions correspond
to singlet and triplet states, respectively. This basis has the
advantage of yielding analytic expressions for the Hamiltonian
matrix elements. A detailed investigation of the method can be
found in a previous paper [39]. The spectrum and the eigen-
states can be calculated by diagonalizing the two electrons’
Hamiltonian in a truncated Hilbert space. One natural approach
to build a qubit is to use the different charges states, so that
the charge qubit states can be defined through the position of

a single mobile electron. The resulting qubit is supposed to
evolve in the basis spanned by the states |0〉 and |1〉, which
describe the electron localized in the right dot and the left dot,
respectively. We consider an oscillatory electric field having an
amplitude F0 of about 0.4 kV/cm and a frequency equal to that
corresponding to the difference between the two lowest states:
�ω0 = Es2 − Es1 . It is interesting to note that the electric field
allows the observation of coherent oscillations between the
quantum states of the two-qubit system which is necessary for
their entanglement in the presence of a decoherence source.
Evidently, the latter does not mix singlet and triplet states,
and thus the spin-triplet state is insensitive to the applied
field within the truncated basis mentioned previously. Hence,
we focus our study on the three lowest singlets states (Es1 ,
Es2 , and Es3 ). The latter states show a relatively simple and
straightforward dependence on the confinement strength and
the interdot distance. It appears that, at large interdot distance
and for a system comprising two equal laterally disposed
dots, the energy spectrum presents two series of two nearly
degenerate states. And hence, the dynamics is determined by
transition between the ground state and the first excited state.
In this case, we obtain a two-level system. Furthermore, in
the resonant case �ω0 = Es2 − Es1 , the population frequency
matches the Rabi frequency �r [40,41].

We turn now to the RTN effects. It is worth mentioning here
that the classical telegraph noise is considered as a stochastic
process produced by a two-level tunneling fluctuator. In this
case, each process is represented by a function χ (t) switching
randomly between two values, ±1. As we noted above, several
mechanisms have been envisioned as RTN sources, among
them the dynamics of a background charge or a charge trap.
Telegraph noise can be thought of as coming from a fluctuator
with bistable states, 1 and 2, randomly fluctuating between
them on time scales ranging from milliseconds to fractions of
a nanosecond. A fluctuator considered as a two-level tunneling
system is characterized by its coupling to the qubit ν and its
switching rates γ12 and γ21 of the transition between its states
(1 → 2 and 2 → 1). The coupling strength depends on both
the working point of the qubit and the distance between the
qubit and the fluctuator. These parameters vary independently
in a wide energy range. A charge, during its movement or
a rearrangement of dynamic defects, produces a randomly
fluctuating (in time) electric field that can act upon the qubit
and shift its charge states’ energies. Therefore, the environment
effect is modeled classically through bringing into play the
following stochastic noise term in the system Hamiltonian:

HRTN = �νχ (t), (3)

where ν denotes the coupling strength between the fluctuator
and the system in frequency units and the random telegraph
noise sequence χ (t) switches instantly between ±1, whose
flipping events are Poisson distributed with the average
switching rates γ12 and γ21. Without loss of generality, we can
assume, for simplicity, a symmetric jump process with both
rates of interstate RTN states occurring with equal probability,
i.e., γ12 = γ21 = γ . Indeed, since fluctuators with large level
splitting are frozen in their ground states, only fluctuators with
the energy splitting less than temperature contribute to the
dephasing [18,19,25]. At any given time t , the distribution
of feasible values of RTN is evidently not a Gaussian. The
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probability for these jumps to occur in a given time interval
is assumed to be independent of the previous history of
the process, i.e., the process is of the Markov type. The noise
affects the qubit through a shift in the energy levels of the
two states and hence introduces a random contribution to the
relative phase of the two states. A qubit system undergoing
these energy fluctuations will acquire a relative phase:

ϕ(t) = −
∫ t

0
νχ (t ′)dt ′. (4)

The phase-memory functional describes the relative phase
picked up during the time evolution by one state of a qubit
relative to another. As expected, telegraph noise in our case
leads to pure dephasing where the populations are preserved
and only the off-diagonal elements of the density matrix
(coherences) gain an additional coherence factor in their
oscillatory time evolution:

ρ =
(

ρs1s1 (t) ρs1s2 (0)e−i��r tD(t)

ρs2s1 (0)e+i��r tD(t) ρs2s2 (t)

)
. (5)

The coherence factor is defined as the average of the phase
factor eiϕ(t):

D(t) = 〈eiϕ(t)〉. (6)

Indeed, telegraph noise is an example of inherently non-
Gaussian noise and the probability distribution of the phase
has a pronounced non-Gaussian shape. Yet, it is worthwhile
to investigate the Gaussian approximation, despite being not
obvious in a general way, in order to determine the range of
validity and applicability of the Gaussian assumption. Given
that the time t entering the phase exceeds the correlation time
γ −1 of the telegraph noise, the integral can be considered
as the sum of a large number of uncorrelated contributions.
Accordingly, by virtue of the central limit theorem, the phase
ϕ(t) is distributed according to a Gaussian. Indeed, the noise
is completely defined by the correlation functions, one would
get [35,36] then

DGauss(t) = exp

{
− ν2

2γ

[
t − 1

2γ

(
1 − e−2γ t

)]}
. (7)

However, the true telegraph noise induces non-Gaussian
behavior; we assume already that such telegraph process does
not feel any feedback. Therefore, the time evolution of the
probability densities of finding this process in a state + or −
with a value ϕ is of Markov type. Taking the initial conditions
into account, we obtain [35,36]

DExact(t) = 1

2
e−γ t

[(
1 + γ

i�

)
ei�t +

(
1 − γ

i�

)
e−i�t

]
.

(8)

With � =
√

γ 2 − ν2. Both of the two expressions show the
dependence of the coherence factor upon the coupling strength
ν and the switching rate γ . The time evolution of the coherence
factor corresponding to the Gaussian approximation and the
exact solution are shown in Fig. 2. Both functions are plotted
for different values of ratio ν/γ . The decay of the coherence
DGauss(t) is monotonous and it doesn’t have any zeros on the
real axis. At long times γ t � 1, the coherence factor decays

FIG. 2. (Color online) Time evolution of the coherence factor
D(t) for different coupling values ν in the case of RTN. The dashed
lines show the Gaussian approximation (see the text). From top to
bottom: ν/γ = 0.2, 0.5, 1.0, 2.0, and 5.0.

exponentially with time DGauss(t) ∝ e(−
t) at a decoherence
rate 
 = ν2

4γ
. As is displayed in the same figure, the exact

coherence factor demonstrates qualitatively different features
for small and large ratios ν/γ corresponding to weak and
strong coupling, respectively. Figure 2 displays the appearance
of coherence oscillations when ν > γ (strong coupling), as
� becomes imaginary. Comparing the two expressions we
notice that the Gaussian result is a good approximation for the
exact solution in the weak coupling limit ν 
 γ . However,
in the strong coupling case, when ν � γ , the exact solution
strongly differs from the Gaussian approximation. The latter
fails even qualitatively and drastically underestimates the
phase memory functional. In the following, we use the exact
solution obtained above to analyze quantitatively the charge
qubits’ decoherence.

III. TWO CHARGE QUBITS DYNAMIC

We have evaluated the coherence factor related to RTN
and we now turn to investigate RTN effects on our two
charge qubits. The more conventional methods to analyze
the dynamics of the quantum system in the presence of a
decoherence source rely on studying the reduced density
matrix. We are interested in the time evolution of the two-
qubit system by density matrix ρ(t), with an arbitrary initial
condition at t = 0 s, where the corresponding system has been
in its ground state corresponding to single dot occupancies.
The time evolution of a general quantum system is governed
by the Liouville–von Neumann equation:

i�ρ̇(t) = [H,ρ(t)]. (9)

The Liouville–von Neumann equation allows us to exploit the
intrinsic quantum decoherence effects in the electron charge
coherency. For instance, as a result of coupling with the
environment, the off-diagonal element of the density matrix
decays as a function of time as described above. In order to
investigate the effect of the RTN on the populations, arbitrary
values of both ν and γ have been used. Having examined
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FIG. 3. (Color online) Time evolution of the populations ρs1s1

(solid line) and ρs2s2 (dashed line) for different coupling values ν

in the case of RTN with the ratio ν/γ = 1.0. (a) In the absence of
RTN. (b) ν = 10 MHz. (c) ν = 50 MHz. (d) ν = 100 MHz.

the time dependencies of the populations shown in Fig. 3, we
can conclude that the more important the coupling strength
is the more the random telegraph noise acts on the qubits
dynamics and destructs the coherence between system states
and vice versa. It is clearly visible from Fig. 3(a) that, in the
absence of telegraph noise, the amplitude of the populations
does not diminish at all and thus the qubits get their initial
entanglement back completely. In the presence of RTN and by
examining Fig. 3, the populations show a damped oscillatory
behavior. We attribute this effect to the competition between
the electric field impact on the interqubit interactions and
the telegraph noise decays. For longer times, the correlated
decay becomes dominant and leads to a damped oscillatory
decay of the entanglement. The coherence phase can persist
until 1.4 ns for the low coupling strength corresponding to
ν = 10 MHz. However, for a coupling strength ν = 50 MHz,
the telegraph noise processes do not go over more than three
Rabi cycles, with which a significant effect can be seen in
maintaining the charge coherence, as is exhibited below. In
others words, we show that even a low coupling strength
among the system and telegraph noise may cause a substantial
decrease of the populations amplitude. It is worth mentioning
here that, bearing in mind that the system entanglement lasts
longer upon decreasing the coupling strength, we presume that

FIG. 4. (Color online) Time evolution of the entropy for different
coupling values ν in the case of RTN with the ratio ν/γ = 1.0.

the decoherence time can reach values higher than what we
have found only with playing with the values of ν and γ . As is
displayed in Fig. 3, we can follow the evolution of each state
population just within a brief time, after which all the qubit
states gain the same probability. In order to make the issue
more clear we have evaluated the linear entropy as a function
of time [42]. The linear entropy provides a measure of the
mixed character of the system described by a density matrix,

S(ρ) = tr(ρ − ρ2). (10)

The entropy reaches its minimum value 0 for a pure state
system. Nonzero values of this quantity then provide a
quantitative measure of the nonpurity of the system states.
We explore the influence of the coupling strength ν on S. In
Fig. 4 we plot the time evolution of the corresponding linear
entropy for different values of the coupling strength ν. In the
absence of RTN, we have a pure state with a linear combination
of two-qubit states |00〉, |11〉, |01〉, and |10〉. In Fig. 4, we show
that starting from a pure state and in the presence of RTN the
state becomes mixed indicating that the noise quickly destroys
the qubit states’ superpositions. We see that the linear entropy
increases to a final stable value. In this case, all the possible
two-qubit states have the same probability; i.e., the populations
are equally distributed. The entropy of qubits increases due to
the pure dephasing. The results reveal that the initial pure qubit
states become mixed states. The stronger the coupling to the
telegraph noise, the faster the purity system destruction. By
comparing the time evolution of the populations exhibited in
Fig. 3 for each coupling strength, we see that the time at which
the linear entropy reaches the final stable value is the same and
matches the moment in which the populations become equal.

For a better understanding of the effect of interaction among
the two qubits and the telegraph noise on decoherence, we
must study the dynamics of two-qubit entanglement. The
entanglement for any bipartite system is often identified by
examining and measuring the Wootters concurrence [43]. The
concurrence varies from 0 for the disentangled state to 1 for
the maximally entangled state. For any pair of qubits, the
concurrence may be calculated explicitly from its density
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FIG. 5. Time evolution of the concurrence for different coupling
values ν in the case of random telegraph noise (RTN) with the ratio
ν/γ = 1.0. (a) In the absence of RTN. (b) ν = 10 MHz. (c) ν =
50 MHz. (d) ν = 100 MHz.

matrix ρ for qubits A and B. It is defined as

CAB(t) = max |
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4,0|, (11)

where λi are the square roots of the eigenvalues in decreasing
order of the matrix ρABρ̃AB arranged as

ρ̃AB = (σy ⊗ σy)ρ∗
AB(σy ⊗ σy), (12)

where ρ∗
AB denotes the complex conjugation of ρAB in

the standard bases |00〉, |11〉, |01〉, and |10〉 and σy is
the Pauli matrix expressed in the same basis. Figure 5
shows the concurrence evolution as a function of time.
One can clearly see the influence of the coupling strength
on the concurrence and the qubits’ coherence phase. The
most interesting observation is that, contrarily to the deco-
herence factor, the concurrence and the entanglement are
independent of the ratio ν/γ . Then, we can obtain the
concurrence value according to the Gaussian approximation
as the exact solution of D(t) for any ratio ν/γ . In Fig. 5(a),

we plot the dynamical evolution of entanglement when ν =
0 MHz, i.e., in absence of RTN and any environmental
perturbation. This is an ideal case of close quantum systems
whose dynamics is only influenced by the initial condition
of the entangled qubits and the interqubit interactions due to
the electric field. The concurrence oscillates between 0 and
1 involving the evolution of the two charge qubits between
maximally entangled and unentangled states. The inset of
Fig. 5(a) shows the long time behavior of entanglement for
the latter case. We note that for selected times, we have a
maximally entangled state, i.e., C = 1 corresponding to the
single dot occupancy (ρs1s1 = 1) or the double dot occupancy
(ρs2s2 = 1), and a disentangled state C = 0 corresponding to
ρs1s1 = ρs2s2 = 0.5. As expected for the other case, telegraph
noise affects the oscillations and destructs the entanglement
of the system. At a given finite time, these oscillations
vanish completely. We see that the entangled qubits get
repeatedly disentangled and entangled, leading to periods in
the concurrence. The oscillation amplitude decreases with time
down to a complete vanishing after a relatively long time.
We have found that this trend in entanglement also holds
for other values of the parameter ν as well. As expected, the
destruction of the coherence becomes increasingly important
upon increasing the coupling strength ν. According to Figs. 3
and 5, we note that the time when the two-qubit states gain
the same probability ρs1s1 = ρs2s2 = 0.5 is almost equal to that
corresponding to C = 0. From this time on, the probability of
finding the two electrons in the same dot will be equal to that
relative to the finding of one electron in each dot.

IV. CONCLUSIONS

In this paper, for a set of initial two-qubit states driven
by an oscillatory electric field, we have investigated quantum
entanglement decay due to interaction with classical telegraph
noise. We have shown that noisy classical environments
may completely destroy the coherences between two qubits.
To this end, we have considered the time evolution of the
degree of entanglement, as measured by the populations, the
linear entropy and Wootters concurrence. We found that RTN
completely destroys the coherences between two qubits. This
effect is more important with increasing the coupling strength
between qubits and RTN.

In conclusion, our calculations pinpoint environment-
related dephasing as a critical issue in the envisioned utilization
of double quantum dots in quantum-information schemes. We
hope that our work will stimulate experiments and the concep-
tion of alternative strategies (with improvements in material
growth and/or structure design) for the implementation of
qubits using charge localization in quantum dots.
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