
PHYSICAL REVIEW A 89, 012328 (2014)

Fock parafermions and self-dual representations of the braid group

Emilio Cobanera1 and Gerardo Ortiz2

1Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
2Department of Physics, Indiana University, Bloomington, Indiana 47405, USA

(Received 26 July 2013; published 24 January 2014)

Because of potential relevance to topological quantum information processing, we introduce and study the
self-dual family of representations of the braid group. Self-dual representations are physically well motivated
and provide a natural generalization of the Majorana and Gaussian representations, which appear as particular
instances. To show that self-dual representations admit a particle interpretation, we introduce and describe in
second quantization a family of particle species with p = 2,3, . . . exclusion and θ = 2π/p exchange statistics.
We call these anyons Fock parafermions, because they are the particles naturally associated to the parafermionic
zero-energy modes, potentially realizable in mesoscopic arrays of fractional topological insulators. Josephson
junctions modeled with Fock parafermions may display a 2πp periodic relation between the Josephson current
and the phase difference across the junction. Self-dual representations can be realized in terms of local quadratic
combinations of either parafermions or Fock parafermions, an important requisite for physical implementation of
quantum logic gates. The second-quantization description of Fock parafermions entails the concept of Fock alge-
bra, i.e., a Fock space endowed with a statistical multiplication that captures and logically correlates these anyons’
exclusion and exchange statistics. As a consequence normal ordering continues to be a well-defined operation.
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I. INTRODUCTION: PROBLEM OF ANYONS IN
SECOND QUANTIZATION AND QUANTUM

INFORMATION PROCESSING

During the last decade quantum information science has
evolved into a mature discipline, with challenging theoretical
developments actually resulting in intense experimental work.
Large-scale quantum information processing devices may not
become readily available anytime soon, but when they do
become a reality, they will offer enormous advantages to
scientists and engineers. The challenge, or hope rather, that
constructing the inner gears of physical reality in the right
way may foster quantum information processing is so great
that it is forcing us to reconsider fundamental principles. Con-
sider the fundamental aspects of quantum mechanics in two
space dimensions. Topological quantum computation exploits
braiding at the hardware level to minimize the environment’s
decohering effects [1], thus constituting an example of utilizing
fundamental physical principles as engineering assets.

In this paper we investigate the Fock space description
of parafermions, which are indistinguishable particles with
unconventional statistics, and the associated second-quantized
description of braiding operations. We call Fock parafermions
the particles possessing a second-quantized description in
terms of an algebra of creation, annihilation, and number
operators. Fock parafermions provide the basis for a Fock
space formulation of clock models [2,3] and their localized
energy modes, including low-energy effective descriptions
of mesoscopically manipulated edge modes of quantum Hall
bilayers and fractional topological insulators [4–8]. We also
introduce the concept of self-dual representation of the braid
group [9] and obtain an extensive family of representations.
The latter are local in terms of creation, annihilation, and
number operators for Fock parafermions. Before describing
the specific contents and main results of this paper, let us
briefly review the concept of fractional exchange statistics as
developed in the framework of first quantization.

The nonrelativistic (first-quantized) description of N in-
distinguishable particles, each constrained to a d-dimensional
coordinate space Rd , relies on the analysis of the topological
properties of the system’s classical physical configuration
space CN (d) [10–12]. The latter is defined as a modification of
the usual Cartesian product RdN for distinguishable particles.
This modification entails removing the points where two or
more particles coincide, and then identifying points that are
equal up to a permutation of single-particle indices. Hence each
physical configuration of the N indistinguishable particles cor-
responds to a unique point in CN (d). The topological properties
of CN (d) are characterized by the homotopy equivalences
among physical trajectories that effectively exchange two
particle indices. The particles’ statistical exchange properties
should be independent of their trajectories; two trajectories that
can be continuously deformed to each other are equivalent. As
it turns out, the first homotopy group of the configuration space
is the permutation group of N objects, SN , whenever d � 3,
and it is the braid group BN of N strands for d = 2 [11]. This
implies that in higher space dimensions particles may be either
fermions or bosons while in d = 2, there are possibilities for
more exotic particles, such as anyons, which show fractional
statistics.

It is important to emphasize that this way of charac-
terizing particle statistics is kinematical, meaning that it
does not invoke any particular Hamiltonian. Indeed, one
can define exchange statistics as a phenomenon of parallel
transport (without Hamiltonians) and the statistical phase
as the holomony associated with the geometric evolution
leading to the exchange path, i.e., a statistical evolution.
This is analogous to the definition of Berry phases and its
generalizations [13], which are holonomies, associated with
adiabatic parallel transport over a generic parameter space.
Based on the character of the physical state, which must belong
to a Hilbert space, one can realize statistical evolutions, which
may be Abelian or non-Abelian, depending on the dimension
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of the unitary matrix representing the holonomy. Thus, one
may speak of non-Abelian exchange statistics whenever that
matrix is at least two-dimensional while the simple scalar case
will be reserved for Abelian statistics.

Only multicomponent states allow for non-Abelian statisti-
cal evolutions. In practice one can simulate a multicomponent
state by choosing a subspace degenerate in energy or some
other conserved quantity, such as the ground state of a
Hamiltonian. Then one can perform an adiabatic evolution to
realize the desired non-Abelian exchange. The implementation
of non-Abelian statistical phases is dynamical and subject to
errors, including departures from adiabaticity. This particular
type of error can be systematically accounted for by using
an adiabatic perturbation theory [14]. Holonomic quantum
computation [1] takes this observation and extends its scope by
exploiting adiabatic transport in arbitrary non-Abelian unitary
vector bundles to achieve quantum logic gates. Topological
quantum computation [1] is a particular instance of holonomic
computation where the transported subspace of degenerate
states has special physical properties. Typically, it is the
manifold of ground states for topological quantum matter that
are said to be topologically protected or robust against local
perturbations. The aim of topological quantum computation
is to exploit this fact at the hardware level for fault tolerant
quantum information processing.

Topological quantum matter represents many-body systems
whose degenerate ground states cannot be distinguished by
local measurements in the bulk [15]. They typically support
localized modes or excitations that may be carefully manip-
ulated to effectively exhibit anyonic exchange statistics. For
example [16–18], it is common to hear that Majorana modes
are non-Abelian anyons, because they support a non-Abelian,
unitary representation of the braid group. However, Majoranas
are not particles. By particle, we mean the usual quantum
field theory notion, which requires a Fock space and thus,
second quantization; that is, one needs a way of counting them.
That said, by generalizing the concept of particle statistics
to localized excitations of topologically ordered vacua, we
acquire a source of robustness against decoherence. These
localized excitations support natural representations of the
braid group and are optimal candidates for the realization of
the elusive topological quantum computer.

In this paper we introduce a second quantized description
of Fock parafermions, and self-dual representations of the
braid group [19]. Parafermions are collective degrees of
freedom associated to clock models [21,22], which support
a variety of local non-Abelian representations of the braid
group (including the Majorana representation as a special
case). Moreover, parafermions are naturally associated to Fock
parafermions, indistinguishable particles displaying correlated
p-exclusion and 2π

p
-exchange statistics where p is an integer

larger than one. It is unusual to have such a correlation
[23], which naturally emerges from the second-quantized
formalism. Fock parafermions are connected to parafermions
by a local transformation that generalizes the standard relation
between fermions in second quantization and Majoranas.
Other results well known for p = 2 are generalized as
well. Creation, annihilation, and number operators for Fock
parafermions are related to clock degrees of freedom by a
generalized Jordan-Wigner transformation that reduces to the

standard mapping from fermions to S = 1/2 spins for p = 2.
Hence we obtain the remarkable result that clock models
can be mapped to tight-binding models of anyons in second
quantization, the Fock parafermions of this paper.

Tight binding models of Fock parafermions are rarely
exactly solvable when p > 2, but their transparent physical
interpretation and straightforward numerical implementation
offer distinct advantages for modeling anyonic phase diagrams
and transport properties. In particular, they offer a unique
physical interpretation of the generalized 2πp fractional
Josephson effect phenomenon introduced in this paper: By
establishing a weak link between wires of Fock parafermions
one can tune the Josephson junction to a nontrivial phase
with p-fold quasidegeneracy, in which the junction displays
the fractional Josephson effect with period 2πp. For p = 2,
our junction reduces to the one introduced in Ref. [24] for
Majoranas. Our anyonic junction is not obtained from any
bosonization technique and offers a fully regularized lattice
model of the fractional Josephson effect for p > 2.

Most importantly, we introduce self-dual ordinary (that
is, not projective) representations of the braid group for all
p that can be realized in terms of local combinations of
either clock, parafermion, or Fock parafermion degrees of
freedom. This is crucial for physical implementation since
we take as framework the quantum control model of quantum
computation. This model assumes the existence of physical
systems that can be controlled by modulating the parameters
of the system’s Hamiltonian written in the appropriate phys-
ical language [23,25]. The control possibilities are used to
implement specific quantum gates that represent the unitary
evolution of the physical system over a time step obtained by
specific modulations of the Hamiltonian. In this regard, we can
think of the clock Hamiltonian HVP of Eq. (37) as our system
Hamiltonian whose parameters {hi,Ji} are controlled. The
quantum control and quantum gate viewpoints are effectively
equivalent [25].

The outline of the paper follows. In Sec. II we present the
Weyl algebra with generators U and V originally introduced to
study finite-dimensional quantum mechanics. There we show a
fundamental canonical decomposition of the algebra in terms
of Weyl algebras with smaller periods. This technical result
is used to analyze the self-dual representations of the braid
group developed in later sections. It turns out that the Weyl
algebra is behind the realization of Weyl parafermions, or
simply parafermions, with Majoranas being identified with
their lower dimensional representation p = 2. This is the topic
of Sec. III, where we derive parafermions as the product of
order and disorder variables associated with self-dual quantum
clock models [3]. Next we present the self-dual representations
of the braid group in Sec. IV, which is one of the main results
of the paper, and we show how to realize these representations
in terms of parafermions. We also show that the Gaussian
representation of Jones [26,27] is a particular example of a
self-dual representation. Our next main result is unveiled in
Sec. V, where we show how to construct a Fock space for the
Fock parafermions that reduce to canonical fermions in the
case p = 2. The key technical development is the introduction
of the concept of Fock algebra with a statistical multiplication.
The advantage of this approach is that it allows us to derive the
unconventional algebra of creation and destruction operators
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of Fock parafermions. It is possible that this approach may
be generalized to obtain Fock spaces for anyonlike particles
with more complicated statistical properties. Majoranas are
mathematically realized as combinations of fermionic creation
and annihilation operators. Fock parafermions possess an
unconventional algebra of creation and annihilation operators,
which allows us to generalize this connection to all Weyl
parafermions, as shown in Sec. VI. In Sec. VII we describe
a physical application of Fock parafermions that illustrates
some of their key advantages over parafermions. We introduce
a model Hamiltonian for a Josephson junction of Fock
parafermions displaying the phenomenon of fractional Joseph-
son effect with period 2πp. Gauge transformations, only well
defined for Fock parafermions but not for parafermions, play
a crucial role in modeling the fractional Josephson effect.
Finally, Appendix describes a Jordan-Wigner-like relation
between Fock parafermions and a type of particle that
we call Weyl hard-core bosons, which have a Fock space
representation with p-exclusion and bosonic statistics.

II. FINITE-DIMENSIONAL QUANTUM MECHANICS:
WEYL ALGEBRA

Heisenberg’s canonical commutation relations for position,
Xi , and momentum, Pi , Hermitian operators

[Xi,Pj ] = i�δi,j 1, i,j = 1, . . . ,M, (1)

cannot be satisfied by finite-dimensional matrix represen-
tations [28]. This is unfortunate because it is natural to
seek insight into quantum mechanics by disentangling con-
ceptual issues from the mathematical complications asso-
ciated to infinite-dimensional state spaces. To realize a
finite-dimensional framework for quantum mechanics, Weyl
[29,30] proposed a different starting point: the algebra W (M)
generated by translations in position and momentum spaces,

Vi,x ≡ eixPi/�, Uj,p ≡ eipXj /�, i,j = 1, . . . ,M. (2)

These unitary generators commute for i �= j , and otherwise
satisfy

Vi,xUi,p = eixp/�Ui,pVi,x. (3)

The Weyl algebra W (M) does admit a natural
finite-dimensional truncation. Let us introduce a lattice
(fundamental) spacing δ, and discretize x,p as

xm = m δ, pn = 2π�n

p δ
, m,n ∈ Z, (4)

with p = 2,3, . . . a fixed positive integer. Then, we can define

Vi ≡ eiδPi/�, Uj ≡ ei2πXj /pδ (5)

so that Vi,xn
= V n

i , Uj,pm
= Um

j , and

ViUi = ωUiVi, ω ≡ ei2π/p, ω̄ = e−i2π/p. (6)

It was Weyl who noticed [29] that the relations of Eq. (6) do

admit a finite dimensional, unitary representation Wp(M) in a
Hilbert space (defined over the field of complex numbers C)

of dimension pM . In particular, the unitary p × p matrices

V =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1
1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠,

(7)

U =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

...
0 0 0 · · · 0
0 0 0 · · · ωp−1

⎞⎟⎟⎟⎟⎟⎟⎠.

satisfy V U = ωUV , and have finite period p (V p = 1 = Up).
Hence the Weyl generators

Vi ≡ 1 ⊗ · · · ⊗ V ⊗ · · · ⊗ 1 (ith position), (8)

Uj ≡ 1 ⊗ · · · ⊗ U ⊗ · · · ⊗ 1 (j th position), (9)

(i,j = 1, . . . ,M) afford the desired finite-dimensional, unitary
representation of Eq. (6). For p = 2, ω = −1, V = σx , and
U = σ z (where σx,z are Pauli matrices). It is interesting to
notice that while Planck’s constant explicitly appears in W (M),
it does not appear in Wp(M), and so there is no obvious notion
of classical, � → 0, limit for this form of discrete quantum
mechanics.

It is well known that the three Pauli matrices σx,σ z,σ y =
iσ xσ z close a Lie algebra. There is an interesting general-
ization of this fact to arbitrary p. Let m = (m1,m2) with
m1,2 = 0, . . . ,p − 1, non-negative integers. Define the unitary
Schwinger basis

Jm ≡ ω̄m1m2/2V m1Um2 . (10)

The set {Jm} realizes an orthogonal (with respect to the
Hermitian inner product defined by the trace) basis of the full
matrix algebra Mp(C) of p × p complex matrices. Moreover,
the Schwinger basis is closed under the bracket operation,

[Jm,Jn] = 2i sin

(
π

p
(m × n)

)
Jm+n. (11)

Throughout this paper, addition and multiplication of integers
are understood to be modulo p operations unless stated
otherwise. Discarding the identity J(0,0) = 1, we recognize
this to be the Lie algebra of p-dimensional complex, traceless
matrices su(p − 1) [31].

The Weyl algebra Wp(M) finds one of its most important
applications in the design of model Hamiltonians with uncon-
ventional phase transitions [2,3], noncommutative symplectic
geometry [32,33], measurement-assisted topological quantum
computation [5], and the study of interacting zero-energy edge
modes [34]. Historically, ’t Hooft’s work on confinement in
QCD was instrumental to popularizing Weyl’s algebra in the
late 1970s. In Ref. [35], he proposed a generalized order
parameter for SU(N ) gauge theories satisfying the algebra of
the Weyl generators. A flurry of activity followed, centered on
studying quantum many-body systems with Weyl generators
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as elementary degrees of freedom. Popular examples are the
vector Potts, or p-clock, model for the BKT phase transition
[2], Zp gauge theories for confinement transitions [36], and,
more recently, topologically ordered Zp toric code models
[37].

In closing this section on Weyl algebras, we want to show
that the Weyl algebra Wp admits a canonical decomposition in
terms of Weyl algebras Wpj

with periods pj ,

Wp1 ⊗ · · · ⊗ Wpt
∼= Wp, (12)

dictated by the decomposition of p into relative prime factors,

p =
t∏

j=1

pj , pj = q
mj

j , qj distinct prime numbers, (13)

with mj and t non-negative integers. The isomorphic mapping
∼= will be very useful for establishing some basic properties of
the self-dual representations of the braid group in Sec. IV.

Assume p = p1p2, with p1 and p2 relative primes. Then
the mapping

Um
(p1) ⊗ Um

(p2)
∼= Um

(p), V m
(p1) ⊗ V m

(p2)
∼= V

(p1+p2)m
(p) , (14)

(m = 0, . . . ,p − 1) induces the algebra isomorphism

Wp1 ⊗ Wp2
∼= Wp. (15)

(Here we write U(pj ), V(pj ) for the Weyl generators of Wpj

instead of U, V , and ω(p) instead of ω. For example, ω(2) =
−1, U(2) = σ z and V(2) = σx .) To see that ∼= is an algebra
isomorphism we need to combine two observations. First, the
two relations(

V m
(p1) ⊗ V m

(p2)

)(
Un

(p1) ⊗ Un
(p2)

)
= ωmn

(p1)ω
mn
(p2)

(
Un

(p1) ⊗ Un
(p2)

)(
V m

(p1) ⊗ V m
(p2)

)
(16)

and

V
(p1+p2)m

(p) Un
(p) = ω(p1+p2)mn

p Un
(p)V

(p1+p2)m
(p) , (17)

are equivalent because

ωmn
(p1)ω

mn
(p2) = ω

(p1+p2)mn

(p) . (18)

Second, the mapping

m �→ (p1 + p2)m (mod p), m = 0, . . . ,p − 1, (19)

is one to one and onto, but only if p1,p2 are relative primes.
The isomorphism fails to be one to one if one does not enforce
this latter condition. For example, blindly applied to the case
p1 = 2,p2 = 2,p = 4, Eq. (14) obtains

σx ⊗ σx ∼= V 4
(4) = 1, (20)

mapping an element that is not the identity to the identity. Since
by definition the factors pj in Eq. (13) are relative primes,
repeated application of Eq. (14) establishes the decomposition
of Eq. (12).

Consider as an example the decomposition
W2 ⊗ W3

∼= W6:

σ z ⊗ U(3)
∼= U(6), σ x ⊗ V(3)

∼= V 5
(6),

1(2) ⊗ U 2
(3)

∼= U 2
(6), 1(2) ⊗ V 2

(3)
∼= V 4

(6),

σ z ⊗ 1(3)
∼= U 3

(6), σ x ⊗ 1(3)
∼= V 3

(6),

1(2) ⊗ U(3)
∼= U 4

(6), 1(2) ⊗ V(3)
∼= V 2

(6),

σ z ⊗ U 2
(3)

∼= U 5
(6), σ x ⊗ V 2

(3)
∼= V(6). (21)

The reasoning leading to ∼= can be adapted to obtain canon-
ical embeddings Wq ↪→ Wp of lower- into higher-dimensional
Weyl algebras. If p/q is an integer and p/q and q are relative
primes, then the mapping

U
mp/q

(q) ↪→ U
mp/q

(p) , V
mp/q

(q) ↪→ V
mp2/q2

(p) , (22)

(m = 0, . . . ,q − 1) defines a one-to-one homomorphism. We
can read off our example in the previous paragraph the
embeddings W2 ↪→ W6 and W3 ↪→ W6,

σ z ↪→ U 3
(6), σ x ↪→ V 3

(6), (23)

U(3) ↪→ U 4
(6), V(3) ↪→ V 2

(6), (24)

U 2
(3) ↪→ U 2

(6), V 2
(3) ↪→ V 4

(6). (25)

Similarly to the isomorphism ∼=, the embeddings ↪→ will be
very useful to understand some properties of our self-dual
representations of the braid group in Sec. IV.

III. WEYL PARAFERMIONS

In this section we want to illustrate the natural relation
between Majorana fermions and the finite-dimensional, p = 2,
representation of the Weyl algebra defined in the previous
section. This fact allows a generalization of the Majorana
concept to higher-dimensional representations, p > 2, in terms
of quantum degrees of freedom called Weyl parafermions or,
simply, parafermions.

The operators

�i ≡ Vi

⎛⎝i−1∏
j=1

Uj

⎞⎠ , 	i ≡ ViUi

⎛⎝i−1∏
j=1

Uj

⎞⎠ = �iUi, (26)

define an alternative set of generators of the Weyl algebra
Wp(M), as follows from the inverse relations

Ui = �
†
i 	i, Vi = �i

⎛⎝i−1∏
j=1

	
†
j�j

⎞⎠ . (27)

The new generators satisfy

�i�j = ω�j�i, 	i	j = ω	j	i, for i < j, (28)

�i	j = ω	j�i, for i � j, (29)

and

�
p

i = 1 = 	
p

i , �
p−1
i = �

†
i , 	

p−1
i = 	

†
i . (30)

Regarded as quantum degrees of freedom, the �i, 	i are
collectively called parafermions [3,22]. We will come back to
the physical meaning and the context in which parafermionic
excitations emerge later in this section.

In the mathematical literature, the algebra realized by
parafermions [38] is known as a generalized Clifford algebra
[39–41]. This is in part because parafermions generate the
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standard Clifford algebra for the special case p = 2. Let

ai ≡ �i, ibi ≡ −	i, for p = 2. (31)

Then, from Eq. (26),

ai = σx
i

⎛⎝i−1∏
j=1

σ z
j

⎞⎠ , bi = σ
y

i

⎛⎝i−1∏
j=1

σ z
j

⎞⎠ , (32)

so that a
†
i = ai, b

†
i = bi , and Eqs. (28)–(30) can be recast in

the form most familiar for a Clifford algebra

{ai,aj } = 2δi,j , {bi,bj } = 2δi,j , {ai,bj } = 0. (33)

Regarded as quantum degrees of freedom, the operators ai, bi

are known as Majorana fermions, or just Majoranas for short, in
recent condensed matter and quantum computation literature
[16,18,24,42,43].

There is one key piece of information that sets a drastic
divide between p = 2 and p � 3. Following the relations

ai = Ci + C
†
i , ibi = Ci − C

†
i , (34)

Majoranas can be combined to yield creation C
†
i and annihila-

tion Ci operators of fermionic particles,

{Ci,C
†
j } = δi,j , {Ci,Cj } = 0 = {C†

i ,C
†
j } (35)

(i,j = 1, . . . ,M). It is textbook knowledge that this algebra,
i.e., the canonical anticommutation relations of Eq. (35),
determines completely the Fock space for indistinguishable
fermions with M available orbitals [44]. So even though
Majorana fermions are not particles (not even in the effective
sense of Landau quasiparticles), they are tightly linked to
fermionic particles and the associated fermionic Fock space.
In Sec. V we will show that there exists a Fock space
representation of parafermions for all p. The associated in-
distinguishable particles satisfy unconventional exclusion and
exchange statistics. We call these particles Fock parafermions.

Parafermions can be defined in more than one spatial
dimension, provided one establishes an order for the set of
indices labeling the Weyl generators. Suppose for concreteness
that Weyl generators Vr ,Ur are placed at each site r of a
hypercubic lattice of finite extent M in each of its d spatial
directions, that is, r = (m1, . . . ,md ) with mμ = 1, . . . ,M ,
μ = 1,2, . . . ,d. Then the sites r can be ordered, for example,
lexicographically. In particular, in d = 2 dimensions,

(1,1) < (1,2) < · · · < (1,M) < (2,1) < · · ·
· · · < (M,M − 1) < (M,M).

Once an order is established, parafermions can be defined as

�r = Vr

∏
x<r

Ux, 	r = VrUr

∏
x<r

Ux, (36)

in any number of spatial dimensions, and still satisfy the
generalized Clifford algebra of Eqs. (28) and (29) with
respect to that chosen order. For the special case p = 2,
these considerations together with Eq. (34) lead directly to
the Jordan-Wigner transformation for Majorana fermions in
more than one space dimension [23].

Parafermions have a specially transparent physical inter-
pretation in one dimension where they arise in the study of

self-dual clock models [2,3]. The simplest instance is the
vector Potts [45], or p-clock, model [2,3]

HVP[hi,Ji] = −1

2

[
M∑
i=1

hi Ui +
M−1∑
i=1

Ji ViV
†
i+1 + JM VM

]
+ H.c. (37)

The boundary term JM (VM + V
†
M ) enforces boundary condi-

tions chosen to showcase the presence of an exact symmetry,
not of the Hamiltonian but rather of the model’s bond algebra
of interactions [3,46]. Let

r(i) = M + 1 − i. (38)

denote the reflection through the system’s midpoint. Then the
mapping

U1

d−→ V

†
r(1) = V

†
M, (39)

Ui


d−→ V
†
r(i)Vr(i)+1, i = 2, . . . ,M, (40)

ViV
†
i+1


d−→ Ur(i), i = 1, . . . ,M − 1, (41)

VM


d−→ Ur(M) = U1, (42)

local in the model’s interactions (or more precisely, bonds [3]),
induces an algebra isomorphism 
d. According to the general
theory of dualities developed in Ref. [3], the mapping 
d is
unitarily implementable. This means that there exists a unitary
transformation Ud such that

O 
d−→ Ô, Ô ≡ 
d(O) = UdOU†
d (43)

for any operator O.
The importance of these observations follow from the effect

of the duality mapping on the vector Potts hamiltonian. Since

HVP[hi,Ji]

d−→ HVP[h∗

i ,J
∗
i ], (44)

with dual couplings

h∗
i ≡ Jr(i), J ∗

i ≡ hr(i), (45)

it follows that

HVP[h∗
i ,J

∗
i ] = Ud HVP[hi,Ji]U†

d. (46)

That is, any pair of vector Potts Hamiltonians associated to
points {hi,Ji} and {h∗

i ,J
∗
i } in coupling space are isospectral.

In more physical terms, the vector Potts model is self-dual.
Now that we understand the model’s self-duality in detail

we can restore conventional open boundary conditions by set-
ting JM = 0. By restoring conventional boundary conditions
we also recover the the model’s global Zp symmetry,

Qp =
M∏
i=1

Ui, [HVP[JM = 0],Qp] = 0. (47)

The dual Hamiltonian however

HVP[h∗
1 = 0] = Ud HVP[JM = 0]U†

d (48)

is not globally symmetric, but rather has a boundary symmetry
as can be checked explicitly. From the point of view of the
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duality transformation this follows because

Qp


d−→ V
†

1 , (49)

and so V
†

1 must commute with HVP[h∗
1 = 0]. This localized

symmetry is an elementary example of a holographic symme-
try [47], that is, a boundary symmetry dual to a bulk symmetry.
As explained in Ref. [47], holographic symmetries are valuable
stepping stones in the search for interacting zero-energy edge
modes and generalized order parameters for topologically
ordered quantum phases of matter.

Since the duality mapping 
d is an isomorphism, the dual
variables

V̂i ≡ 
d(Vi), Ûi ≡ 
d(Ui) (50)

satisfy all the relations expected of a set of Weyl generators.
Moreover, in view of this paper’s notation for the vector
Potts model [45], the quantum variable Vi is associated to
the model’s order parameter. Hence it is conventional to call
the Vi order variables, and the

V̂i = 
d((ViV
†
i+1) . . . (VM−1V

†
M )VM ) = Ur(i) . . . U1 (51)

disorder variables (see Ref. [3] for the relation of disorder
variables to disorder parameters). Recalling the definition of
parafermions, Eq. (26), we see that (V̂M+1 ≡ 1)

�i = ViV̂r(i)+1, 	i = ViV̂r(i), i = 1, . . . ,M. (52)

That is, in one-dimension, parafermions arise as the product of
an order with a disorder variable. This remarkable connection
between self-duality and parafermions was first noticed in the
early days of the operator product expansion, in the context of
classical statistical mechanics [21,48], and later extended to
quantum clock models in Ref. [3].

In closing, let us notice that the Zp-symmetric (JM = 0)
vector Potts model can be rewritten as a local (quadratic)
Hamiltonian of parafermions,

HVP = −1

2

[
M∑
i=1

hi �
†
i 	i +

M−1∑
i=1

Ji 	i�
†
i+1

]
+ H.c. (53)

IV. WEYL ALGEBRAS, PARAFERMIONS, AND
SELF-DUAL REPRESENTATIONS OF THE BRAID GROUP

Majoranas may emerge as effective excitations or localized
zero-energy modes in some topologically ordered electronic
phases of matter, and several current experiments on nanowires
are specifically designed to hunt for them [49–51]. Starting
with the key observation that Majoranas realize a two-
dimensional representation of the braid group [18], protocols
have been developed to braid Majoranas and experimentally
achieve, with some degree of topological protection, (nonuni-
versal) Clifford gates [17,24,52].

Since Majorana fermions are but the special p = 2 instance
of parafermions, it is natural to search for platforms and proto-
cols that exploit parafermions with p > 2 for fault-tolerant
quantum information processing [1,4,5]. A necessary first
step in this direction is to find parafermionic representations
of the braid group. As a general rule, these representations
should be as physically motivated as possible to foster
experimental realization. Two conditions come immediately

to mind: the representations should be unitary and local in
terms of parafermions. These conditions are motivated by
general features of the quantum control model of quantum
computation. We will add to this list of generic conditions a
third one specific to parafermions: the representations should
be self-dual.

As explained in previous sections, the link between
parafermions, order, and dual disorder variables offers one
of the most compelling physical realizations of parafermions.
In the following we will outline a systematic search of
parafermionic representations of the braid group, for all values
of p, that transform in a natural way, Eq. (63), under duality.
These are the self-dual representations of the braid group
alluded to. One of our goals is to obtain the most natural family
of representations of the braid group that includes Ivanov’s
Majorana representation as a special case. Our approach
reveals important differences between representations with
odd p and those of the form p = 2n, n = 1,2, . . . , which
includes Ivanov’s representation. For odd p, the self-dual
family includes the Gaussian representations first introduced
in Refs. [26,27]. As shown in Ref. [53], these representations
are in fact arising in recent platforms for braiding parafermions
[4,5].

In this paper, by Artin braid group, or simply braid group,
we mean the group BL with L − 1 generators σk and standard
braid relations [9]

BL = 〈σ1, . . . ,σL−1 | σkσk+1σk = σk+1σkσk+1,

σkσl = σlσk if |k − l| � 2〉, (54)

associated to the quantum-mechanical description of L in-
distinguishable anyons moving in the infinite plane R2. The
mapping

σk �→ σL−k, k = 1, . . . ,L − 1, (55)

preserves all the braiding relations and so induces an automor-
phism of BL that we will have the occasion to use later in this
section.

Next we search for unitary representations of the braid
group B2M+1 of the form

ρ
(p)
sd (σ2i−1) = 1√

p

p−1∑
m=0

αmU
†m
i , i = 1, . . . ,M, (56)

ρ
(p)
sd (σ2i) = 1√

p

p−1∑
m=0

βm(ViV
†
i+1)m, i = 1, . . . ,M − 1,

(57)

ρ
(p)
sd (σ2M ) = 1√

p

p−1∑
m=0

βm(VM )m. (58)

The complex parameters αm,βm, m = 0, . . . ,p − 1, are con-
strained by two requirements: unitarity,(

ρ
(p)
sd (σk)

)† = ρ
(p)
sd

(
σ−1

k

)
, (59)

and the braiding relations

ρ
(p)
sd (σk)ρ(p)

sd (σk+1)ρ(p)
sd (σk) = ρ

(p)
sd (σk+1)ρ(p)

sd (σk)ρ(p)
sd (σk+1).

(60)
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Unitarity implies the set of equations (the overbar denotes
complex conjugation)

p−1∑
m=0

αq+mᾱm =
p−1∑
m=0

βq+mβ̄m =
{
p if q = 0
0 otherwise . (61)

The braiding relations on the other hand require that

αr

∑
m+n=q (mod p)

ωrmβmβn = βq

∑
m+n=r (mod p)

ωqmαmαn,

(62)

(r,q = 0, . . . ,p − 1).
We call (the representation associated to) any nontrivial

solution of Eqs. (61) and (62) a self-dual representation
of the braid group. Self-dual representations are physically
distinguished because they transform in a natural fashion under
the duality mapping Ud described in Sec. III. By this we mean
the following. The duality transformation Ud can be combined
with the automorphism of the braid group Eq. (55) to define
out of any given self-dual representation a new representation
ρD ,

ρD(σk) ≡ Ud ρ
(p)
sd (σr(k)+M )U†

d (63)

[r(k) was defined in Eq. (38)]. The point we want to emphasize
is that ρD is again of the self-dual form,

ρD(σ2i−1) = 1√
p

p−1∑
m=0

α∗
mU

†m
i , i = 1, . . . ,M, (64)

ρD(σ2i) = 1√
p

p−1∑
m=0

β∗
m(ViV

†
i+1)m, i = 1, . . . ,M − 1, (65)

ρD(σ2M ) = 1√
p

p−1∑
m=0

β∗
m(VM )m, (66)

with dual couplings

α∗
m = βm, β∗

m = αp−m, m = 0, . . . ,p − 1. (67)

A self-dual representation of B2M can be obtained by
dropping ρ

(p)
sd (σ2M ). From the point of view of measurement-

assisted topological quantum computation, these representa-
tions are the most interesting ones because they are local and
quadratic in terms of parafermions,

ρ
(p)
sd (σ2i−1) = 1√

p

p−1∑
m=0

αm(	†
i �i)

m, (68)

ρ
(p)
sd (σ2i) = 1√

p

p−1∑
m=0

βm(	i�
†
i+1)m. (69)

They are also reducible, since they commute with the Zp

charge operator Qp of Eq. (47). It is useful to notice that the
projectors Pq = P 2

q = P
†
q onto the sectors of total Zp charge

ωq can be computed as

Pq = 1

p

p−1∑
m=0

ω̄mqQm
p . (70)

Self-dual representations have two very useful general
properties. First, recall the relative prime decomposition of
p, Eq. (13), and suppose we have self-dual representations
ρ

(rj )
sd with coefficients α

(rj )
m ,β

(rj )
m , m = 0, . . . ,rj − 1. Then one

can exploit the canonical embedding, Eq. (22), to transform
the self-dual representations ρ

(rj )
sd of dimensions rj to self-dual

representations of dimension p,

ρ
(rj )
sd ↪→ ρ

(p)
sd,j

, (71)

with

ρ
(p)
sd,j

(σ2i−1) = 1√
rj

rj −1∑
m=0

α
(rj )
m (U †

i )mp/rj , (72)

ρ
(p)
sd,j

(σ2i) = 1√
rj

rj −1∑
m=0

β
(rj )
m (ViV

†
i+1)mp2/r2

j . (73)

A key characteristic of these embedded representations is
the absence of certain powers of the Weyl generators in the
expansion of ρ

(p)
sd,j

, that is, the vanishing of some of the
coefficients αm and/or βm.

Second, the tensor product of two self-dual representations
of dimensions p1, p2 is canonically isomorphic to a self-dual
representation of dimension p1p2, provided p1,p2 are relative
primes. We can state this property most elegantly in terms of
the mapping ∼= of Eq. (14),

ρ
(p1)
sd ⊗ ρ

(p2)
sd

∼= ρ
(p1p2)
sd . (74)

This canonical identification preserves a very important
property. Suppose neither ρ

(p1)
sd nor ρ

(p2)
sd contain vanishing

coefficients. Then ρ
(p1p2)
sd on the right-hand side of Eq. (74)

contains no vanishing coefficients either.
The next crucial task is to actually find self-dual representa-

tions, that is, solutions of Eqs. (61) and (62). We will focus on
solutions without vanishing coefficients, since we know that
solutions with vanishing coefficients have an interpretation in
terms of embedded representations.

A. p odd

For p = 3,5, . . . odd it is convenient to impose the extra
constraint

αm = βm, m = 0, . . . ,p − 1. (75)

Then there exist 2p solutions with no vanishing coefficients.
However, it suffices to consider only the conjugate pair of
solutions

αm = βm =
{
ωm(m−1)/2

ω̄m(m−1)/2 . (76)

Any other one of the remaining 2(p − 1) determines a self-dual
representation equivalent to one of these two. Furthermore, if
p is a prime of the form p = 4n + 1, the two solutions of
Eq. (76) determine unitarily equivalent representations.

The special role of p = 4n + 1 prime can be understood
as follows. The sequence of odd primes can be split into two
subsequences of the form 4n + 1 (5,13,17, . . . ) and 4n + 3
(3,7,11, . . . ). Also, for p prime (and only for p prime), the
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set of remainders modulo p, Zp = 0,1, . . . ,p − 1, becomes a
discrete field under modular addition and multiplication. But
the polynomial equation x2 + 1 ≡ 0 (modulo p) has a solution
in Zp only if p belongs to the 4n + 1 sequence.

Note that the Gaussian representation of the braid group
described in Ref. [26] can be reinterpreted as a self-dual
representation with αm �= βm. The Gaussian representation
[26,27] is defined for any p odd as

ρ
(p)
G (σk) = 1√

p

p−1∑
m=0

ωm2
um

k , k = 1, . . . ,L − 1, (77)

(we change the normalization relative to Ref. [26]) in terms of
L − 1 generators uk satisfying

u
p

k = 1, k = 1, . . . ,L − 1, (78)

ukuk+1 = ω2 uk+1uk, k = 1, . . . ,L − 2, (79)

and commuting otherwise. There exists a faithful, irreducible
representation of these relations in terms of Weyl generators,

uk �→
⎧⎨⎩U

†2
i if k = 2i − 1, i = 1, . . . ,M

ViV
†
i+1 if k = 2i, i = 1, . . . ,M − 1

VM if k = 2M

(80)

with L = 2M + 1 as before. Then the Weyl realization of the
Gaussian representation is self-dual,

ρ
(p)
G (σ2i−1) = 1√

p

p−1∑
m=0

αmU
†m
i , i = 1, . . . ,M, (81)

ρ
(p)
G (σ2i) = 1√

p

p−1∑
m=0

βm(ViV
†
i+1)m, i = 1, . . . ,M − 1, (82)

ρ
(p)
G (σ2M ) = 1√

p

p−1∑
m=0

βm(VM )m, (83)

with

βm = ωm2 = α2m (mod p), m = 0, . . . ,p − 1. (84)

Unlike our previous solution, Eq. (76), the Gaussian solution
has αm �= βm, but the two sets of coefficients are connected
by a permutation. The reason is that, since p is assumed to be
odd, 2 and p are relative primes. Then, the mapping

m �→ 2m (mod p), m = 0, . . . ,p − 1, (85)

is one to one and onto, that is, a permutation.
The fact that the Gaussian representation is self-dual could

potentially have practical implications, since there exist recent
proposals to realize the Gaussian representation of B2M in
mesoscopic arrays [5,53].

B. p = 2n, n = 1,2, . . .

While we have reasons to believe that self-dual representa-
tions with p = 2n follow a pattern analogous to the one found
for p odd, it remains an open problem to find the nontrivial
solutions of Eqs. (61) and (62) for arbitrary p = 2n. For small
n it is possible to solve the equations by elementary algebra.
Again we impose the extra constraint Eq. (75).

For n = 1, that is, p = 2, we find only two solutions

α0 α1

1 i

1 −i
(86)

They define unitarily equivalent self-dual representations.
Recalling the connection between Majorana fermions and
parafermions for p = 2, we obtain that our self-dual repre-
sentation reduces to the Majorana representation

ρ
(2)
sd (σ2i−1) = 1 ∓ biai√

2
, ρ

(2)
sd (σ2i) = 1 ∓ ai+1bi√

2
(87)

first described in Ref. [18]. (The two signs correspond to the
two unitarily equivalent representations of the table above.)
This representation of the braid group amounts to a Fock
representation, since it can be rewritten in terms of creation
and annihilation operators for ordinary fermions,

ρ
(2)
sd (σ2i−1) = 1 ∓ i(2C

†
i Ci − 1)√
2

,

ρ
(2)
sd (σ2i) = 1 ± i(C†

i Ci+1 + C
†
i+1Ci + Ci+1Ci + C

†
i C

†
i+1)√

2
.

Notice the emergence of the anomalous pairing term CiCi+1 +
C

†
i C

†
i+1.

Let us illustrate in passing the notion of embedded rep-
resentation. Suppose for example that p = 2q, with q odd.
Then from Eqs. (72) and (86) we obtain the p-dimensional
representations

ρ
(2q)
sd (σ2i−1) = 1 ± iU

†q
i√

2
= 1 ± i(	†

i �i)
q

√
2

, (88)

ρ
(2q)
sd (σ2i) = 1 ± i(ViV

†
i+1)q√

2
= 1 ± i(	i�

†
i+1)q√

2
, (89)

with only two nonvanishing coefficients.
For n = 2, that is, p = 4, we find two classes of solutions,

each class containing four possible sets of coefficients,

α0 α1 α2 α3

1 i −1 i

1 −i −1 −i

1 −1 1 1
1 1 1 −1

α0 α1 α2 α3
1 i 1 −i

1 −i 1 i

1 1 −1 1
1 −1 −1 −1

. (90)

The representations in a given class are unitarily equivalent.
Moreover, the representation associated to the left class of
solutions are unitarily equivalent the product representation
ρ

(2)
sd ⊗ ρ

(2)
sd .

The conclusion of the previous paragraph suggests an
interesting conjecture. It may be that for arbitrary n, p = 2n,
there exist n classes of solutions of Eqs. (61) and (62), with one
class at least unitarily equivalent to the product representation

ρ
(2)
sd ⊗ · · · ⊗ ρ

(2)
sd (n factors). (91)

If this is true, it poses a potentially nontrivial constraint on
that class of representations ρ

(2n)
sd . The reason is that the
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representation ρ
(2)
sd has finite period 8,(

ρ
(2)
sd (σk)

)8 = ρ
(2)
sd

(
σ 8

k

) = 1, ∀k. (92)

It follows that the product representation (91) has period 4 for
n even, or period 8 for n odd. If one exists, the same must hold
for an equivalent self-dual representation ρ

(2n)
sd .

C. General p

It will be easy to construct interesting solutions for arbitrary
p once the special case p = 2n is completely solved. The
reason is that an an arbitrary p can always be decomposed
as p = 2nq, with q odd. This is fortunate, because 2n and q

are by definition relative primes, and so it is possible to use
Eq. (74) to obtain a self-dual representation (with no vanishing
coefficients) for any p,

ρ
(2n)
sd ⊗ ρ

(q)
sd

∼= ρ
(2nq)
sd . (93)

The resulting representation on the right-hand side will not in
general satisfy the extra condition Eq. (75), even if ρ

(2n)
sd and

ρ
(q)
sd do satisfy it individually. Especially interesting are the

representations obtained for p = 4q combining our solutions
by this procedure.

V. FOCK PARAFERMIONS

The Majorana representation of the braid group Eq. (87) is
one of the most studied in physics [16,18]. We think this is
in part because it has a Fock space interpretation in terms
of ordinary fermions, Eq. (88). The key point is that this
interpretation immediately suggests the right quantum state of
matter to naturally support this type of braiding: electron vacua
with anomalous pairing. These observations are typically
summarized in the literature as conditions for the emergence
of Majorana fermions in condensed matter systems [16,24].

Parafermions with p � 3 offer a natural generalization of
the Majorana braiding paradigm. As we established in the
previous section, there exist a variety of representations of the
braid group naturally linked to parafermions through Eqs. (68)
and (69). There also exist proposals to realize parafermions as
zero-energy modes [34] in mesoscopic arrays [4,5,8]. Hence
the following question becomes relevant: Do particles with
exotic p exclusion, θ = 2π/p-exchange statistics, and a well
defined associated Fock space exist? In this section we will
answer this question in the affirmative by introducing Fock
spaces Fp(M) of indistinguishable particles satisfying the
required statistical conditions (M is the number of available
orbitals). We call these particles Fock parafermions. For p = 2,
Fock parafermions are just ordinary fermions, but for p > 2
they are anyons with unconventional exclusion and exchange
statistics. One of our goals is to obtain an expansion of
parafermions in terms of creation and annihilation operators of
Fock parafermions in order to link our self-dual representations
of the braid group to actual particles rather than just modes.

A. Fock space of Fock parafermions

In this paper we propose to construct the Fock space of
of indistinguishable, independent particles in terms of two
fundamental pieces of information:

(i) the state space of a single particle H (the available
orbitals), and

(ii) a rule to multiply N single-particle states to generate
an N -body state with the correct exchange and exclusion
statistics.

Hence a Fock space is a state space (a Hilbert space defined
over the field of the complex numbers C) endowed with a
physically motivated, associative multiplication. Once a Fock
space is specified in this fashion, the unintuitive in general
algebra of creation and annihilation operators can be derived
systematically. In particular, we will see that the algebra of
creation and annihilation operators for Fock parafermions
displays a variety of unconventional features that would have
been extremely hard to guess a priori.

Let us start by specifying the single-particle state space H
by choosing a basis of orthonormal orbitals φ1, . . . ,φM , and
suppose for now that the Fock parafermions are independent
particles for this choice of orbitals (we can always add
interactions later). Then we can specify a many-body state by
stating that there are n1 Fock parafermions occupying orbital
φ1, n2 Fock parafermions occupying orbital φ2 and so on.
We can formalize this recipe by organizing the occupation
numbers into a unique object, the ordered list (n1, . . . ,nM ),
and assigning to this list a unique (up to a phase that we ignore
in the following) many-body state,

(n1, . . . ,nM ) �→ |n1, . . . ,nM〉. (94)

Then the general structure of the Fock space is

Fp(M) =
⊕
N=0

Linear Span

{
|n1, . . . ,nM〉|

M∑
r=1

nr = N

}
,

(95)

with inner product

〈n1, · · · ,nM |n′
1, · · · ,n′

M〉 =
M∏
i=1

δ(ni,n
′
i). (96)

The inner product is strongly physically motivated. It guaran-
tees that states with distinct orbital occupations are orthogonal.

This minimal description of the Fock space of Fock
parafermions contains no statistical information. First, the
range

ni = 0,1, . . . ,nE, i = 1, . . . ,M,

of the occupation numbers cannot be specified until we
determine the exclusion statistics of Fock parafermions. We
call the not necessarily finite integer nE � 2 the exclusion
parameter. Second, the state of a system of independent Fock
parafermions is uniquely specified (up to a phase) by the
mapping Eq. (94). In this formalism, the notion of exchanging
two Fock parafermions has no mathematical representation.
Thus the present description ofFp(M) contains no information
on the exchange statistics of Fock parafermions. In the
following we will use the abbreviated notation

|ni〉 = |0, . . . ,0,ni,0, . . . ,0〉,
|ni,nj 〉 = |0, . . . ,0,ni,0, . . . ,0,nj ,0, . . . ,0〉,

and so on.
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To account for both aspects of particle statistics, we define
an associative multiplication × in Fock space in two steps.
First, the rule

(|ni = 1〉)m ≡ |ni = m〉 (97)

[by definition,

(|ni = 1〉)m ≡ |ni = 1〉 × · · · × |ni = 1〉(m times)]

allows us to describe algebraically the process of adding Fock
parafermions to any fixed orbital. In light of this definition, the
mathematical role of the exclusion parameter becomes clear:
the exclusion parameter nE � 2 is the smallest integer such
that

(|ni = 1〉)nE = |ni = nE〉 = 0. (98)

Second, the requirement of consistency with the exchange
rules for parafermions, Eqs. (28) and (29), suggests the
definition

|ni〉 × |nj 〉 = ωninj |nj 〉 × |ni〉 ≡ |ni,nj 〉 for i < j (99)

(ω = eiθ , θ = 2π/p) for combining two different orbitals
with arbitrary occupation. This multiplication rule captures
the exchange statistics of Fock parafermions.

With these definitions, we see that any state in Fock
space can be generated by multiplying single-particle states
as follows

|n1, . . . ,nM〉 = (|1,0, . . . ,0〉)n1 × · · · × (|0, . . . ,0,1〉)nM .

(100)

Hence we see that the Fock vacuum

|0〉 ≡ |n1 = 0, . . . ,nM = 0〉
= (|1,0, . . . ,0〉)0 × · · · × (|0, . . . ,0,1〉)0 (101)

plays the distinguished role of multiplicative identity,

|n1, . . . ,nM〉 × |0〉 = |0〉 × |n1, . . . ,nM〉 = |n1, . . . ,nM〉.
(102)

Finally, we need to specify the exclusion parameter nE
for Fock parafermions. Remarkably, nE is determined by the
exchange angle θ , the basic physical considerations leading to
the inner product Eq. (96), and the following assumption: any
state |�〉 in Fock space that commutes with every other state
|
〉 ∈ Fp(M) is a scalar multiple of the Fock vacuum,

|�〉 × |
〉 = |
〉 × |�〉, ∀|
〉 ⇒ |�〉 = α|0〉, α ∈ C.

(103)

We can understand this assumption as the algebraic statement
reflecting the uniqueness of the Fock vacuum. Later we will
see that this assumption implies any operator in Fock space that
commutes with every parafermionic creation (or annihilation)
operator is a scalar multiple of the identity operator.

The determination of nE starts with the observation that

|ni = p〉 × |nj 〉 = |nj 〉 × |ni = p〉, (104)

thanks to Eqs. (97) and (99), and ωp = 1, and so the M states
|ni = p〉 satisfy

|ni = p〉 = αi |0〉, i = 1, . . . ,M, (105)

according to our assumption, Eq. (103). But since these states
contain p particles,

0 = 〈0|ni = p〉 = αi. (106)

It follows that

|ni = p〉 = (|ni = 1〉)p = 0. (107)

We conclude that nE = p, i.e., Fock parafermions satisfy p

exclusion and 2π/p exclusion. Thus, the dimension of the
Fock space of Fock parafermions is

dimC Fp(M) = pM. (108)

In the mathematical literature, the algebra Fp(M) is known
as the p-Grassmann algebra with M generators [39,41]. Its
many-body interpretation seems to have gone unnoticed up to
now, for reasons discussed in Sec. VI. Let us notice in closing
that F2(M) is just the standard Fock space of indistinguishable
fermions with M available orbitals [44,54]. This will become
self-evident in the next section when we compute the algebra
of creation and annihilation operators associated to Fp(M).

B. Creation and annihilation operators

By definition, a single application of a creation operator
for orbital i adds a particle in that orbital to any many-body
state. Our proposal is to define creation operators C

†
i of Fock

parafermions in terms of the multiplication of Fock states
introduced above. So let

C
†
i |n1, . . . ,nM〉 ≡ |ni = 1〉 × |n1, . . . ,nM〉

= ω̄
∑

j<i nj |n1, . . . ,ni + 1, . . . ,nM〉. (109)

Because we know the inner product from Eq. (96), we can
immediately compute the adjoint annihilation operators,

Ci |n1, . . . ,nM〉 = ω
∑

j<i nj |n1, . . . ,ni − 1, . . . ,nM〉. (110)

We can also define number operators as

Ni |n1, . . . ,ni, . . . ,nM〉 = ni |n1, . . . ,ni, . . . ,nM〉. (111)

The creation operators satisfy

C
†p
i = 0, C

†
i C

†
j = ωC

†
jC

†
i (i < j ), (112)

and analogous relations follow for the annihilation operators,

C
p

i = 0, CiCj = ωCjCi (i < j ). (113)

Creation and annihilation operators for different orbitals
commute up to a phase,

C
†
i Cj = ω̄CjC

†
i , CiC

†
j = ω̄C

†
jCi (i < j ). (114)

But what are the relations for Cs and C†s for a given orbital i?
Canonical fermions require one relation per orbital, Eq. (35).
In contrast, Fock parafermions require p − 1 relations,

C
†m
i Cm

i + C
p−m

i C
†(p−m)
i = 1, m = 1, . . . ,p − 1. (115)

This section’s relations summarize the algebra of creation and
annihilation operators of Fock parafermions. For p = 2, they
reduce to the standard fermionic algebra.

One of the landmark features of canonical fermions and
bosons, and also some algebraic frameworks for Abelian
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anyons [23], is the simple relation between the creation and
annihilation operators and number operators. This relation is
somewhat less simple for Fock parafermions since

Ni =
p−1∑
m=1

C
†m
i Cm

i . (116)

However, it is still true that Ni is the generator of U(1)
transformations. To see this, notice that[

C
†m
i Cm

i ,Ci

] = C
†m
i Cm+1

i − C
†m−1
i Cm

i (117)

from Eq. (115). It follows that

[Ni,C
†
i ] = C

†
i , [Ni,Ci] = −Ci. (118)

Any operator in Fock space has a normal form :O :, defined
implicitly as

O =:O : +〈0|O|0〉, :O : |0〉 = 0 = :O :†|0〉. (119)

Remarkably, the unconventional algebra of creation and anni-
hilation operators for Fock parafermions provides a systematic
way to compute :O : by repeated application of Eqs. (112)–
(115) to put all the creation operators to the left of every
annihilation operator. But for fermions (p = 2) a more efficient
procedure exists: the algorithm known as Wick’s theorem
[54]. We do not know whether some generalization of Wick’s
theorem exists that applies to Fock parafermions.

Let us note in closing that if one takes the view that the
orbitals denote sites on a lattice (localized orbitals), Fock
parafermions can be defined in any number of dimensions.
This point is directly linked to the analogous discussion for
parafermions around Eq. (36), and we will clarify it further in
Appendix.

VI. PARAFERMIONS IN FOCK SPACE

In this section we exploit the Fock parafermions just defined
to construct a Fock space representation of parafermions. This
construction will generalize the representation of Majoranas
in terms of ordinary fermions to all p.

Unfortunately, Eq. (34) as it stands suggests the wrong
starting point. Let κ ≡ eiπ/p, so that κ2 = ω. Then the
combination

χi ≡ �i + κ	i, (120)

satisfies [39,41]

χ
p

i = 0, χiχj = ωχjχi (i < j ). (121)

Moreover, for p = 2, χi = 2Ci and χ
†
i = 2C

†
i are proportional

to fermionic annihilation and creation operators. This suggest
that we set Ci ∝ χi, C

†
i ∝ χ

†
i , for all p. But this ansatz fails

to satisfy Eq. (115). This, in our opinion, seems to be the
reason why the algebra of creation and annihilation operators
described in this paper is significant. The natural candidates for
creation and annihilation operators associated to parafermions,
the χi of Eq. (120) long known in the literature [39,41], do not
satisfy the correct algebra (in particular, they cannot be normal
ordered) to grant a particle interpretation.

The correct starting point can be obtained from rewriting
Eq. (34), for p = 2, in the form

�i = ai = Ci + C
†
i , 	i = −ibi = Ci (−1)C

†
i Ci + C

†
i ,

(122)

which suggests the generalization

�i ≡ Ci + C
†p−1
i , 	i ≡ Ci ω

Ni + C
†p−1
i . (123)

This is the Fock representation of parafermions we have been
looking for, and a main result of this paper. It follows that clock
variables are related to Fock parafermions by the generalized
Jordan-Wigner transformation

Ui = ωNi , (124)

Vi = (
Ci + C

†(p−1)
i

)
ω̄

∑
j<i Nj . (125)

The number operator Ni can be eliminated from Eq. (123)
with the use of the identity

ωNi = 1 + (ω − 1)
p−1∑
m=1

ωm−1C
†m
i Cm

i , (126)

that reduces to the well-known (−1)C
†
i Ci = 1 − 2C

†
i Ci for

ordinary fermions (p = 2). Since, by Eq. (115),

CiC
†m
i Cm

i = C
†m−1
i Cm

i , (127)

we have that

�i = Ci + C
†p−1
i , (128)

	i = ωCi + C
†p−1
i + (ω − 1)

p−1∑
m=2

C
†m−1
i Cm

i . (129)

It is possible to invert Eq. (123) to obtain an expansion of
creation and annihilation operators for Fock parafermions in
terms of parafermions. This expansion follows most easily
from results obtained in the Appendix, so here we just quote
the expressions,

Ci = p − 1

p
�i − 1

p

p−1∑
m=1

ωm(m+1)/2 �m+1
i 	

†m
i ,

(130)

C
†
i = p − 1

p
�
†
i − 1

p

p−1∑
m=1

ω̄m(m+1)/2 	m
i (�†

i )m+1.

VII. FOCK PARAFERMIONS AND THE FRACTIONAL
JOSEPHSON EFFECT

In this section we show how to generalize Kitaev’s ideas on
Majorana zero-energy edge modes in fermionic quantum wires
[24] to parafermions, of potential relevance to edge modes
of fractional quantum Hall fluids. Consider the tight-binding
model

H =
∑

i

[
−t(C†

i Ci+1 + C
†
i+1Ci) − μ

(
Ni − p − 1

2

)

+ 1

2

(
	CiC

p−1
i+1 + 	C

p−1
i Ci+1 + H.c.

)]
, (131)
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with terms of strength 	 violating particle-number conser-
vation, hopping amplitude t , and chemical potential μ. This
model reduces to the original Kitaev wire of Ref. [24] when
p = 2. The terms that explicitly break the conservation of
particle number N = ∑

i Ni , present for 	 = 0, down to
a Zp symmetry ωN , create and annihilate clusters of p

Fock parafermions, which behave as hard-core bosons when
exchanged as a composite. When this discrete symmetry
is further spontaneously broken, for some suitable set of
couplings, then we have all the ingredients for a nontrivial
anyonic superconductor and associated edge modes. We next
show that a Josephson junction designed with two such
parafermionic wires will display the fractional Josephson
effect with period 2πp. The fractional Josephson effect thus
constitutes a key experimental signature of parafermionic
statistics [4,5].

Unfortunately, the edge modes of the simple Hamiltonian
H are hard to obtain analytically. Hence it is convenient to
obtain a simpler model where we have an analytic handle but
can nevertheless illustrate our main thesis, i.e., the existence
of a 2πp-periodic Josephson effect for Fock parafermions. All
that is needed on general grounds is that the edge modes should
enforce quasi-p-fold degeneracy. So consider the open chain
(t = 1 = 	)

HPf = −μ

M∑
i=1

(
Ni − p − 1

2

)
−

M−1∑
i=1

[(
Ci ω

Ni + C
†(p−1)
i

)
× (

C
†
i+1 + C

p−1
i+1

) + H.c.
]
. (132)

At μ = 0, the perfectly localized parafermions

�1 ≡ C1 + C
†(p−1)
1 , 	M ≡ CMωNM + C

†(p−1)
M (133)

are exact zero-energy modes of HPf, meaning that �1 and 	M

commute with HPf(μ = 0). From this perspective, this model
defines a more appropriate generalization of Kitaev’s wire than
the H above.

To study the fractional Josephson effect in this setting, we
define a Josephson junction as

HJ (ϑ2 − ϑ1) = H1(ϑ1) + Hlink + HM
2 +1(ϑ2), (134)

with

Hlink = C
†
M
2 +1

CM
2

+ C
†
M
2
CM

2 +1 (135)

and (α = 1,M
2 + 1)

Hα(ϑ) = −μ

α+ M
2 −1∑

i=α

(
Ni − p − 1

2

)

−
α+ M

2 −2∑
i=α

[(
e
i ϑ

p Ci ω
Ni + e

−iϑ
(p−1)

p C
†(p−1)
i

)
× (

e
−i ϑ

p C
†
i+1 + e

iϑ
(p−1)

p C
p−1
i+1

) + H.c.
]
. (136)

A gauge transformation shows that HJ depends only on the
phase difference ϑ2 − ϑ1 between the right and left part of
the junction with period 2π . The exact parafermionic edge
modes at μ = 0 are associated to level crossings among the
lowest lying energy levels. So, as long as p-arity (that is,

FIG. 1. Ground (filled black circles), first (filled gray circles), and
second (filled white circles) excited states energy levels [En(ϑ), n =
0,1,2] as a function of the phase difference ϑ between the left and
right parafermionic wires joined by a weak link. Energies are in units
of the hopping parameter t . This is the Josephson junction described
in the text with p = 3, and M = 6 sites. The top, middle, and bottom
figures correspond to the values μ = 0.00,0.43,0.63 of the chemical
potential. By varying the chemical potential one scans different
regimes with (μ = 0,0.43) and without (μ = 0.63) parafermionic
edge modes in the wires. The fractional Josephson effect observed,
for instance, in the top panel is a manifestation of existence of those
edge modes. Increasing μ eventually lifts the ground-state degeneracy
and removes the 2πp = 6π periodic Josephson effect.

the total number of Fock parafermions taken modulo p) is
conserved, the adiabatic evolution of the ground state driven
by the junction’s phase difference will only complete a full
period after 2πp cycles. We illustrate this result in Fig. 1 for
p = 3.

As the chemical potential is increased from its ideal value
μ = 0 the level crossings disappear and 2π periodicity is
recovered. Hence the chemical potential drives HPf into a
trivial phase without parafermionic edge modes. We illustrate
this effect in Fig. 1 for p = 3.
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APPENDIX: WEYL HARD-CORE BOSONS

In the main body of the paper we established dictionaries
[23] connecting Weyl generators to parafermions, Eqs. (26)
and (27), and Fock parafermions to parafermions, Eqs. (123)
and (130). In this Appendix we would like to combine
some of these results to obtain a Fock representation of
Weyl generators that helps in the derivation of Eq. (130).
A simple calculation reveals a new Fock space of particles
satisfying bosonic exchange statistics and p exclusion. We call
these particles Weyl hard-core bosons. The latter provide a
local Fock space description of Weyl generators, just like
Fock parafermions are best suited for the local Fock space
description of parafermions. The creation and annihilation
operators for Weyl hard-core bosons are connected to those of
Fock parafermions by a Jordan-Wigner-like transformation.

Consider expressing the Weyl generators in terms of
parafermions. From Eqs. (27) and (123)

Ui = �
†
i 	i = (

C
†
i + C

p−1
i

)(
Ci + C

†p−1
i

)
ωNi = ωNi , (A1)

which follows from p exclusion and Eq. (115), and [(ωNi )† =
ω̄Ni ]

Vi = �i

⎛⎝i−1∏
j=1

	
†
j�j

⎞⎠ = (
Ci + C

†p−1
i

)⎛⎝i−1∏
j=1

ω̄Nj

⎞⎠ (A2)

= Ci

i−1∏
j=1

ω̄Nj +
⎛⎝C

†
i

i−1∏
j=1

ωNj

⎞⎠p−1

= Bi + B
†p−1
i , (A3)

where we have introduced the creation and annihilation
operators

B
†
i ≡ C

†
i

i−1∏
j=1

ωNj , Bi ≡ Ci

i−1∏
j=1

ω̄Nj . (A4)

Noticing that

Ni =
p−1∑
m=1

C
†m
i Cm

i =
p−1∑
m=1

B
†m
i Bm

i , (A5)

we thus managed to express the Weyl generators in terms of
Bi , and B

†
i .

The key point is that these operators satisfy bosonic-type
commutation relations

[Bi,Bj ] = 0, [Bi,B
†
j ] = 0, [B†

i ,B
†
j ] = 0. (A6)

Furthermore,

B
p

i = 0 = B
†p
i , B

†m
i Bm

i + B
p−m

i B
†(p−m)
i = 1, (A7)

(m = 1, . . . ,p − 1) with number operators, Ni = ∑p−1
m=1

B
†m
i Bm

i , which are generators of U(1) transformations,

[Ni,Bi] = −Bi, [Ni,B
†
i ] = B

†
i . (A8)

These creation and annihilation operators are the Weyl hard-
core bosons alluded to at the beginning of this Appendix.
Just as for Fock parafermions, any operator polynomial in the
B

†
i ,Bi can be put in normal form just by repeated application

of the defining relations (A6) and (A7).
Equations (A6) and (A7) imply that the Fock space of Weyl

hard-core bosons describes bosonic θ = 0 exchange and p-
exclusion statistics,

|ni〉 × |nj 〉 = |nj 〉 × |ni〉 = |ni,nj 〉, (|ni = 1〉)p = 0.

Notice that in this case the exclusion and exchange statistics
are independent. This is clear since the latter depends on p

while the former is fixed.
Weyl hard-core bosons can be expanded directly in terms

of Weyl generators. Since

〈ni = m|V †
i Bi |ni = n〉 =

⎧⎨⎩0 if n �= m

0 if n = m = 0
1 if n = m = 1, . . . ,p − 1

,

(A9)

the diagonal operator V
†
i Bi can be expanded as V

†
i Bi =∑p−1

m=0 cmU
†m
i , with expansion coefficients cm =

tr(Um
i V

†
i Bi)/p. It follows that

Bi = p − 1

p
Vi − 1

p

p−1∑
m=1

ViU
†m
i , (A10)

or in matrix representation, as follows from Eq. (7),

B =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎟⎠,

(A11)

B† =

⎛⎜⎜⎜⎜⎝
0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

⎞⎟⎟⎟⎟⎠.

Notice that

BiUi = ωUiBi, UiB
†
i = ωB

†
i Ui. (A12)

We have now the elements to derive Eq. (130) of Sec. VI.
By combining Eqs. (A10) and (A4), and using the definition of
parafermions Eq. (36), we obtain Eq. (130). Fock parafermions
can be defined in any number of space dimensions by
exploiting the generalized Jordan-Wigner transformation

C†
r = B†

r

∏
x<r

U †
x, Cr = Br

∏
x<r

Ux, (A13)

with

Ux = ωNx = 1 + (ω − 1)
p−1∑
m=1

ωm−1B†m
x Bm

x . (A14)

Weyl hard-core bosons become the standard hard-core bosons
[23] (Ux = σ z

x = 1 − 2Nx) for p = 2, and Eq. (A13) reduces
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to the Matsubara-Matsuda transformation in any number of
dimensions.

We finally describe the mathematical connection between
Weyl hard-core bosons and an alternative description of
hard-core bosons, the g-ons introduced in Ref. [23], and later
on used in connection to the simulation of competition and
coexistence of magnetism and superfluid behaviors in cold
atoms and optical lattice systems [55]. Define

gi ≡ Bi N
1/2
i , g

†
i ≡ N

1/2
i B

†
i , (A15)

and let Wi = W 2
i = W

†
i denote the orthogonal projector onto

the subspace of states with maximal occupation p − 1 of
orbital i. The operators gi,g

†
i ,Wi (i = 1, . . . ,M) offer an

alternative, yet not a Lie algebra, description of hard-core
bosons with p exclusion that converges naturally to canonical
bosons in the limit p → ∞, and to standard hard-core bosons
for p = 2. Their algebra is completely specified [23] by the
relations

g
p

i = 0 = g
†p
i , (A16)

[gi,gj ] = 0 = [g†
i ,g

†
j ], (A17)

[gi,g
†
j ] = δi,j (1 − p Wi), (A18)

g
†
i Wi = 0 = Wi gi, (A19)

together with the already mentioned requirement that Wi be
an orthogonal projector. For any p, Ni = g

†
i gi . One may argue

that if the weak limit

w − lim
p→∞ Wi = 0 (A20)

holds, then gi,g
†
i converge to canonical bosons in the limit

p → ∞. A weak limit is established through the convergence
of matrix elements. The matrix elements of Wi should converge
to zero because, on one hand, there are no physical states
with infinite occupation number in Fock space, while on the
other hand, w − limp→∞ Wi would have the interpretation of
a projector onto the subspace of precisely such states.

Let us emphasize that g-ons with p exclusion are best
suited for the local Fock space description of spins of
dimension 2S + 1 = p. In contrast, an attempt to describe
Weyl generators in terms of g-ons would return hopelessly
complicated expressions (especially for relatively large p).
Conversely, an attempt to describe spins in terms of Weyl
hard-core bosons would again return complicated expressions
(especially for relatively large S).
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