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We develop a framework that allows a description of measurements in Hilbert spaces that is smaller than
their natural representation. This description, which we call a “squashing model,” consists of a squashing map
that maps the input states of the measurement from the original Hilbert space to the smaller one, followed by a
targeted prescribed measurement on the smaller Hilbert space. This framework has applications in quantum key
distribution, but also in other cryptographic tasks, as it greatly simplifies the theoretical analysis under adversarial
conditions.
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I. INTRODUCTION

Measurements are an essential part of quantum mechanics.
In quantum communication, among other fields, various
measurements are used to extract information from signals.
In quantum cryptographic contexts measurement results often
allow the inference of how third parties are correlated with
the obtained data. Usually, the quantum advantage of these
communication protocols is demonstrated in theoretical proto-
cols utilizing abstract qubit systems, or other low-dimensional
systems. However, in physical realizations of quantum com-
munication protocols, no qubit systems are available; instead,
one resorts to optical implementations where the signals and
measurements are described on infinite-dimensional Hilbert
spaces corresponding to optical modes.

In the realm of quantum optics experiments, we are used to
the idea of approximating these infinite-dimensional systems
easily by lower-dimensional descriptions, e.g., describing
parametric down-conversion experiments only on the level
of vacuum and single-photon pairs. We can do this because
we can handle the approximations well on a theoretical level
such that theoretical predictions and experimental verifications
coincide with high precision.

In quantum cryptographic situations, such as quantum key
distribution (QKD) or quantum coin tossing [1–4], this is not
good enough. In such contexts, we would have to account
for the information that an arbitrary third party could gain
about our measurement data. Since experimental verification
of third-party information is not possible, we need to be able
to provide rigorous bounds on such compromised information.
One possibility is to do full calculations in the infinite-
dimensional Hilbert spaces [5,6]. Often, this is technically
challenging. The other possibility is to do truncations to
finite-dimensional subspaces. These can not be in the form
of approximations, but as truncations that also hold under
adversarial conditions. Again, there are two possibilities. The
traditional way would be to provide exact bounds on the effect
of truncations and to extend the theoretical qubit analysis to
accommodate the effects of the truncation. This approach has
been followed, for example, in Ref. [7] in the context of a
specific application, while a more general framework of this
approach has recently been formulated in Ref. [8]. Here, we

show a second way, which was already postulated in Ref. [9],
where the term “squashing” was coined for this approach. The
squashing method performs a truncation of the Hilbert space
in such a way that provides a direct link between the optical
implementation and the abstract low-dimensional protocol,
without the necessity to amend the theoretical analysis in
the truncated Hilbert space. In the context of QKD, this
approach means that for a generic QKD protocol with a
Bennett-Brassard 1984 (BB84) [1] polarization encoding, we
can assume without loss of generality that single photons enter
the detection device of the receiver.

Thus, our approach allows a truncation of high-dimensional
Hilbert spaces to some low-dimensional target space that
also holds under adversarial conditions, as they occur in
cryptographic contexts. We build on our earlier work [10]
that gave a well-defined notion of a squashing map that allows
us to clarify the role of the squashing assumption. Note that
Tsurumaru and Tamaki [11,12] independently investigated
squashing models and Semenov and Vogel [13] pointed out
an important application of squashing models in the context
of experiments measuring the Bell parameter.

A rough idea of what a squashing model does is represented
in Fig. 1. Each physical measurement device B provides
some basic distinguishable events for an input state ρin, which
usually has its support on a high-dimensional Hilbert space.
All possible events that can be triggered by the states in
the high-dimensional Hilbert space will formally correspond
to a positive operator-valued measure (POVM) FB . If one
would feed the measurement device with states from some
low-dimensional Hilbert space, then typically the number of
possible events will be smaller. We refer the corresponding
POVM as to target POVM and denote it by FQ. Often,
however, the events produced by the states from the high- and
low-dimensional Hilbert spaces can be related by a classical
postprocessing, which is applied to the basic events. A typical
example in QKD is a processing of double clicks occurring
in the BB84 protocol. The basic events after a particular
(classical) postprocessing form a coarse-grained list of events,
which then are described by a POVM FM . We refer to
the combination of basic events and postprocessing as the
full measurement. This classical postprocessing will be an
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FIG. 1. The full measurement FM (above) has a general optical
input ρin, which is first measured by a receiver’s measurement device
B, followed by classical postprocessing. The squashed measurement
(below) has the same general optical input ρin, which is then squashed
by a map SQUASH to a smaller Hilbert space, followed by a
fixed physical measurement FQ. It is required that both of these
measurements produce the same output statistics for all ρin.

essential tool in making squashing models work. A squashing
model provides an equivalent but simplified description of
the full measurement FM on the high-dimensional Hilbert
space in terms of the measurement FQ on the low-dimensional
Hilbert space. The map SQUASH or squashing map (see
Fig. 1) provides a direct link between the measurements
on the high-dimensional and the truncated Hilbert spaces.
Formally, the squashing map takes a state ρin as input and
outputs a “squashed” state ρout on the truncated Hilbert
space. The squashing model is an equivalent description of
the full measurement FM in terms of the squashing map
and a target measurement FQ on a squashed state ρout. All
elements (basic measurement FB , target measurement FQ, and
classical postprocessing) need to be specified in order to form a
well-posed question for the existence of a squashing model. A
typical choice for the target measurement will be the restriction
of the full measurement to a single-photon input, although our
framework is not limited by this particular choice.

In this article, we first extend the formalism introduced
in Ref. [10] and provide a rigorous framework for how to
find a squashing model for a particular measurement device
and which general steps can be used in order to simplify
the analysis. For example, we show how to enforce the
existence of squashing maps by choosing the postprocessing
that introduces additional noise. Second, we review previous
results involving the squashing model for the measurement
devices which are used in optical implementations of the
BB84 [10] and six-state [10,11] QKD protocols with an active
detection scheme. Third, we discuss several generalizations
of these measurement devices and provide squashing models
for them. For instance, we present a squashing model for a
generalization of the qubit measurement devices with the pas-
sive detection scheme to qudit measurement devices [14–16]
and prove that there exists a squashing model for this
generalized device. We also consider squashing models for

the measurements that accept different temporal modes and
are employed in the phase-encoded BB84 (PEBB84) protocol.

This paper is organized as follows. The first part
(Secs. II–IV) is devoted to the general framework and
discussion of the general properties of the examples presented
in the second part (Secs. V–X). Some technical details relevant
for our investigations are given in the Appendices.

In Sec. II, we fix the notation and define the quantities that
will be frequently used. We will define the squashing model
as well. In Sec. III, we present general strategies for finding a
squashing map for a general measurement device and discuss
possible issues such as nonpositivity of the squashing map.
Subsequently, in Sec. IV, we consider common properties of
typical linear optical measurement devices, which simplify
the construction of the squashing model. In particular, we
discuss how the usage of threshold detectors helps to truncate
infinite-dimensional Hilbert space of an optical mode and
the consequences it has for the application of the general
framework to concrete examples.

In Secs. V–VII, we apply the presented theory in order to
construct squashing models for several optical measurement
devices. These include active measurement devices from the
BB84 QKD protocol (Sec. V), from the six-state protocol
(Sec. VI), biased active and passive measurements from the
BB84 protocol, and passive measurement from the six-state
QKD protocol (Sec. VII). In Sec. VIII, we present a squashing
model for measurement devices that can be used in the optical
implementation of qudit QKD protocols. In Sec. IX, we
consider squashing models in the time domain, where the
incoming state can carry multiple photons that are distributed
over several time modes. We show that this generalization
does not affect the existence of a squashing model. Finally, in
Sec. X we discuss the squashing model for the measurement
device from the phase-encoded BB84 (PEBB84) protocol.
This refines the security analysis of the corresponding QKD
protocol, which was performed in Refs. [17,18].

II. NOTATION AND STATEMENT OF THE PROBLEM

We first make some preliminary definitions so that we
can define a squashing model explicitly. HM denotes a
high-dimensional Hilbert space. Basic and full measurements
on a state ρM ∈ B(HM ) are described by POVMs FB and
FM , respectively. HQ denotes the low-dimensional Hilbert
space (i.e., the target Hilbert space). The measurement on
the states ρQ ∈ B(HQ) (the target measurement) is described
by the POVM FQ. Elements of the corresponding POVM
are denoted by F

(i)
X with X ∈ B,M,Q, and the indices i

run over the set of outcomes for each of the measurements.
Observed probabilities for measurement outcomes are given
by p

(i)
X = Tr(F (i)

X ρ).
Moving forward to the formal definition of a squashing

model, we need to explicitly state what classical postprocess-
ing means. The classical postprocessing is applied to the basic
measurement outcomes and allows, for example, to combine
different outcomes into one (which we call coarse graining).
More precisely, it defines the full measurement by using the
basic measurement events such that the POVM FM contains the
same number of elements as the target POVM FQ. Otherwise,
the problem of finding a squashing model is not well defined.
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Formally, the postprocessing can be described as a stochas-
tic matrix P (

∑
i Pij = 1,∀ j ) which acts on the vector

of probabilities of the basic measurement outcomes. The
entries of the matrix Pij = p(i|j ) are given by the conditional
probabilities which describe the redistribution of the outcomes
of the POVM FB with index j into events of the full
measurement POVM FM with index i.

Summarizing the above discussion, we have the following.
Definition 1. Classical postprocessing: Let �pbas be the vector

of the outcome probabilities of the basic measurement B. We
say that a classical postprocessing (CPP) scheme is defined if
there exists a stochastic matrix P such that

�p = P �pbas, (1)

and the number of the outcome probabilities pj coincides with
the number of events provided by the target POVM FQ.

It is not hard to see that the postprocessing can be considered
as a linear transformation of the POVM elements

F
(i)
M =

∑
j

PijF
(j )
B , (2)

where we require that �p = Tr(ρF i
M ) describes the vector of

outcome probabilities of the full measurement FM .
In our discussion, we will not add a postprocessing step to

the target measurement, as the choice of target measurement
is usually motivated by circumstances. A typical example
of this is when a security proof may exist for a fixed given
measurement, which one then typically considers as a target
measurement in the context of the squashing model. As the
target measurement is given by a particular POVM, it may
already be a combination of some target measurements and
fixed postprocessing of the target events. An example of this
situation will be discussed in Sec. X, where we construct
a squashing model for the measurement device used in the
phase-encoded BB84 QKD protocol and will group certain
target measurement events into one (outside clicks).

We will fix the notation and define the CPP and then we
will give the formal definition of a squashing model.

Definition 2. Squashing model: Let FB and FQ be the
POVMs that describe outcomes of a measurement performed
by a physical device B on states in high- and low-dimensional
Hilbert spaces, respectively. Let P be a CPP scheme that
defines a full measurement POVM FM . Then, we say that
there exists a squashing model for the device B and the CPP
P if there exists a map �B such that

(1) for any state ρM the linear constraints

Tr
(
F

(i)
M ρM

) = Tr
(
F

(i)
Q �B[ρM ]

)
, ∀ i (3)

are satisfied;
(2) �B is a completely positive (CP) map; we call it a

“squashing map”.
Remark 3. Linear constraints on POVM elements: We

introduce the adjoint map �
†
B to find that Eq. (3) implies

Tr
(
F

(i)
M ρM

) = Tr
(
�

†
B

[
F

(i)
Q

]
ρM

)
, ∀ i. (4)

This has to hold for any state ρM . Therefore,

�
†
B

[
F

(i)
Q

] = F
(i)
M , ∀ i = 1, . . . ,NQ, (5)

which can be seen as linear constraints on the map �
†
B . The

adjoint map has to satisfy

�
†
B[1Q] = 1M, (6)

which is the unital property of the adjoint of the squashing map
and assures that �B is completely positive and trace preserving
(CPTP).

In order to gain more insight into the formal definition of the
squashing model, we make a few more remarks. The definition
of the squashing model consists of two essential parts. In order
to provide a squashing model for a given measurement device
B, a particular low-dimensional Hilbert space must be chosen.
Second, one has to agree on a meaningful postprocessing, as
defined in Definition 1. The classical postprocessing can be
seen as a freedom available to search for a squashing model.
That is, the postprocessing fixes the full measurement and
has to satisfy the linear constraints in Eq. (3), which has to
be fulfilled by the squashing map �B . In fact, as we will
see later on, for any choice of the POVMs FB and FQ there
always exists a CPP scheme for which a squashing model
exists. However, as we will also see, such a squashing model
may not be meaningful and would correspond to a very noisy
outcome of the measurement. The squashing map �B has to
be a CPTP map. Therefore, its existence, given the constraints,
can be investigated by exploiting the Choi-Jamiołkowski
isomorphism [19,20]. Note that variations of squashing models
that require only positive but not completely positive maps
have been investigated and utilized in Ref. [21].

III. GENERAL STRATEGY TO FIND
A SQUASHING MODEL

The formal definition of the squashing model already
provides some intuition for how to investigate the question
of whether a squashing model exists for a given measurement
device. The goal of this section is to provide a step-by-step
strategy to search for a squashing map for any particular case.

A. Basic and target POVMs

In our considerations, we always assume that the exact
physical model of the actual measurement device is known, so
the POVM FB is fixed. The choice of the target measurement
depends on the choice of the truncated Hilbert space and is
always motivated by circumstances. For example, a theoretic
analysis of a communication protocol with a specific POVM
FQ might already exist and we would like to link an optical
implementation with basic events FB to this analysis. So, the
main choice that has to be made to set up a well-defined search
for a squashing map is that of the postprocessing of the basic
events into the full measurement events.

B. Constraints on CPP schemes

We pointed out before that any valid classical postprocess-
ing scheme has to assure that the number of events of the
full and the target measurements coincide. There are further
limitations on what types of classical postprocessing that can
lead to a successful squashing map. We note that the set of the
target POVM elements F

(i)
Q may be linearly dependent which
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means that there may exist some complex numbers αi , such
that

NQ∑
i=1

αiF
(i)
Q = 0. (7)

Each set of POVM elements of the corresponding basic mea-
surement add up to the identity on the operator space. This also
means that the full measurement (including postprocessing)
must have the same linear dependency. This has implications
for the postprocessing of the basic events, as this linear
dependence has to be respected by the postprocessing P one is
looking for. Due to the linearity of �

†
B and the linear constraints

in Eq. (5), we can write∑
i

αiF
(i)
Q = 0 ⇔

∑
i

αiF
(i)
M = 0 ⇔

∑
i,j

αiPijF
(j )
B = 0. (8)

The simplest example of the situation where the target POVM
elements are linearly dependent is the qubit measurement in the
BB84 QKD protocol. There, the sum of the elements of either
basis is proportional to the identity operator and therefore it is
not hard to find scalars αi such that Eq. (7) holds.

Using the vectorization of the POVM elements, it is
convenient to rewrite Eq. (8) as∑

i

αivec
(
F

(i)
M

) = 0 ⇔
∑
i,j

αiPij vec
(
F

(j )
B

) = 0, (9)

where the vectorization vec(· · · ) gives an isomorphism be-
tween the linear bounded operators and vectors in correspond-
ing spaces. Considering vec(F (i)

B ) for any i as an ith column
of a matrix and writing �α = (α1, . . . ,αNQ

)T gives FQ�α = 0 ⇔
FM �α = 0 ⇔ FB(PT �α) = 0. In summary, we have the follow-
ing observation.

Observation 4. Valid CPP schemes: A valid postprocessing
that allows for the existence of a squashing map is a stochastic
matrix such that its transpose maps the null space of the matrix,
built from the vectorizations of the basic POVM elements F(i)

B ,
onto the null space of the matrix, built from the vectorizations
of the target POVM elements F(i)

Q :

PT : Null(FQ) → Null(FB). (10)

Note that this condition incorporates both the validity of a CPP
scheme, as stated in Definition 1, and the requirement that the
linear dependencies of the POVM elements on the truncated
and initial Hilbert spaces has to be respected. Hence, if this
condition is satisfied, then there always exists a linear map
connecting the full and the target measurements.

C. Determining the existence of a squashing map:
Complete positivity

The last constituent of a squashing model is the positivity
of the squashing map (the linear map from the previous
section). In order to check for positivity, we employ the
Choi-Jamiołkowski isomorphism [19,20]

τ ≡ 1Q ⊗ �
†
B(|ψ+〉〈ψ+|) � 0, (11)

where τ is called the Choi matrix and |ψ+〉 = 1√
dQ

∑
i |i〉|i〉

is a normalized maximally entangled state. This isomorphism

is formulated directly from the action of the adjoint map �
†
B .

The property of complete positivity of the map �
†
B is then

equivalently expressed by the positivity of the corresponding
Choi matrix.

The linear constraints on the map �
†
B are best expressed

in terms of the so-called natural representation τR (see
Appendix A for details). The direct link between the full
and the target measurements in the natural representation is
given by

τRvec
(
F

(i)
Q

) = vec
(
F

(i)
M

)
. (12)

Note that this automatically includes the condition for the map
�

†
B to be unital, as can be checked by summing over the index i.
As a consequence, one can reformulate the problem of look-

ing for a completely positive squashing map as a special in-
stance of semidefinite programming (feasibility problem) [22]:

Find τ � 0, s.t. τRvec
(
F

(i)
Q

) = vec
(
F

(i)
M

)
. (13)

It is clear from the provided construction that the positivity of
the Choi matrix (and therefore of the squashing map) crucially
depends on the choice of the classical postprocessing. In fact,
as we will see in the next section and in Sec. VI C, if positivity
is not achieved by the basic measurement it can be always
repaired by choosing another valid postprocessing, although
this will typically be at some price in terms of protocol
performance.

D. Enforcing existence of squashing maps
by noisy postprocessing

In this section, we point out two important facts: (i) We
can always find a squashing model for any pair of target and
basic measurements by choosing a suitable (although very
noisy) postprocessing which we call a trivial squashing model
(Proposition 5). (ii) Despite the fact that this trivial squashing
model might, at first sight, appear useless, we can use its com-
pletely positive squashing map in order to restore the positivity
of another squashing map that appears to be nonpositive and
therefore construct a nontrivial squashing model. That will be
the essence of the restoring theorem (Theorem 7).

To be more specific, we provide an example for how a noisy
squashing model can be used and then turn to the general
case. A typical situation where we look for squashing models
has the property that the target measurement corresponds to a
restriction of the basic measurement to some simple subspaces,
for example, those of single-photon signals. In these cases,
one will usually try to make a smart choice of postprocessing,
namely, such that the postprocessing retains this property, i.e.,
the restriction of the full measurement to the specified sub-
spaces results in the target measurement. An example of such a
CPP scheme arises in the context of the six-state measurements
(defined in Sec. VI) where one makes a random assignment
of double clicks (when two detectors fire simultaneously),
while keeping the single-click events unchanged. As we will
see, the squashing map constructed for this CPP scheme is
not completely positive (Sec. VI B). However, this positivity
problem can be overcome by statistically mixing the smart
postprocessing (where single-click events are unchanged) with
a noisy postprocessing that will also reassign single-click
outcomes (see Sec. VI C).
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FIG. 2. Squashing map �ρfix that disregards the input and outputs
a fixed state ρfix, which is prepared by a device D.

To start out, we introduce a postprocessing which allows
the existence of a trivial squashing model.

Proposition 5. (Trivial squashing map): Let F
(i)
B be any

complete set of POVM elements that characterize the basic
measurement and let F

(j )
Q be some complete set of POVM

elements that characterize the target measurement. Let the
classical postprocessing be such that it redistributes all basic
events according to some a priori fixed probabilities, which
are derived from a density matrix ρfix as p

(i)
Q = Tr(ρfixF

(i)
Q ) and

which do not depend on the input state. Then, there always
exists a squashing model such that its map �ρfix acts trivially
on any input state ρin, i.e., �ρfix [ρin] = ρfix.

Proof. The statement of the proposition is a link between
positivity of a squashing map for any type of basic and target
measurements and a certain classical postprocessing. An idea
of how such a postprocessing scheme can be constructed, and
which squashing map it corresponds to, is presented in Fig. 2.
We apply a postprocessing which ignores the measurement
result and assigns an outcome with fixed a priori probabilities
p

(i)
Q = Tr(ρfixF

(i)
Q ) compatible with some fixed quantum state

ρfix. We define a map �ρfix such that �ρfix [ρin] = ρfix for any
ρin. By construction, this map is completely positive and fulfills
the linear constraints of Eq. (5). �

Before we show how this type of the squashing map is
useful, we need to point out an important property of its Choi
matrix.

Remark 6. Properties of the Choi matrix for the trivial
squashing map: The minimum eigenvalue of the Choi matrix
of the trivial squashing map �ρfix is proportional to the
minimum eigenvalue of the state ρfix with the coefficient of
proportionality 1/dQ, where dQ is the dimension of the target
Hilbert space HQ.

Proof. As defined in Proposition 5, �ρfix [ρ] = ρfix for any
ρ. Therefore, the adjoint map �†

ρfix
must satisfy

Tr(ρfixO) = Tr
(
ρ�†

ρfix
[O]

)
(14)

for any bounded operator O. This implies that

�†
ρfix

[O] = Tr(ρfixO)1M (15)

which is reminiscent of the completely depolarizing map.
Then, the Choi matrix of the adjoint map is explicitly given by

τρfix = 1Q ⊗ �†
ρfix

(|ψ+〉〈ψ+|) = 1

dQ

∑
ij

|i〉〈j | ⊗ �†
ρfix

[|i〉〈j |]

= 1

dQ

∑
ij

〈j |ρfix|i〉|i〉〈j | ⊗ 1M = 1

dQ

ρT
fix ⊗ 1M, (16)

and so the assertion follows. �

It is clear that choosing such a postprocessing and con-
structing such a squashing model is not very clever because
one loses all useful data from the performed measurement and
eventually winds up with a squashing model that produces
only noise. Nevertheless, this tool turns out to be very useful
in particular cases. In fact, as we will see now, Proposition 5
and Remark 6 together imply that a positive squashing map
can always be found by introducing some amount of noise on
the measurement data.

Theorem 7. Restoring theorem: Let F
(i)
B and F

(i)
Q be the

basic and the target POVM elements of the corresponding
measurement devices, respectively. Let τ be a Choi matrix,
such that for classical postprocessing P the linear constraints
in Eq. (13) are satisfied, but τ � 0. Then, there exists a state
ρfix and another postprocessing P ′ with intermediate amount
of the added noise p, which provides a squashing map with
the Choi matrix

τ ′(p) = (1 − p)τ + pτρfix (17)

that is positive semidefinite whenever p and ρfix are chosen
according to

λmin(τ ′) � (1 − p)λmin(τ ) + pλmin(ρfix)/dQ � 0. (18)

Proof. First we note that due to Proposition 5, a completely
noisy postprocessing exists that allows for a completely
positive squashing map. Now, we look for an intermediate
postprocessing that introduces less noise and where the
corresponding Choi matrix is still positive. This intermediate
postprocessing will be chosen as a probabilistic mixture of
the postprocessing P and the noisy postprocessing Pnoise from
Proposition 5:

P ′ = (1 − p)P + pPnoise. (19)

For the full measurement POVM elements, this implies

F
′(i)
M = (1 − p)F (i)

M + pF
(i)
noise,M, (20)

so that we can construct an adjoint of the squashing map

�′†[F (i)
Q

] = (1 − p)�†[F (i)
Q

] + p�†
ρfix

[
F

(i)
Q

]
. (21)

The choice of the ρfix is of crucial importance here. We choose
ρfix to have a full rank, so that the eigenvalues of the Choi
matrix in Eq. (16) are all strictly positive.

For p = 1, the squashing map �′ is completely positive
(Proposition 5). For the rest of the parameter values, we
investigate the positivity of τ ′ = 1Q ⊗ �

′†(|ψ+〉〈ψ+|), which
satisfies

τ ′(p) = (1 − p)τ + pτρfix

and where τρfix is given explicitly by Eq. (16). Since the second
term in the last equation is strictly positive, which is guaranteed
by our choice of ρfix and Remark 6, there exists a value of p

that is smaller than the trivial value p = 1 and for which we
still find τ ′ � 0 and therefore a nontrivial complete positive
squashing map �′.

The amount of noise p that guarantees the positivity of τ ′
can be determined by comparing the minimal eigenvalue of τ

(which is negative) and the minimal eigenvalue of ρfix (which
is positive). It follows from one of Weyl’s inequalities (see, for
example, Chap. III.2 in Ref. [23]) that the minimum eigenvalue
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of the sum of Hermitian matrices is lower bounded by the sum
of the minimal eigenvalues of each term which implies the
positivity condition in Eq. (18):

λmin(τ ′) � (1 − p)λmin(τ ) + pλmin(ρfix)/dQ � 0.

�
To close the section, we comment on the nontriviality of the

map constructed in the last theorem. The existence of a positive
τ ′(p) for some p < 1 implies that there exists a CPP scheme
that allows a physical map which preserves some quantum
properties of the input state (a specific example will be given
in Sec. VI C). This is especially important to know for appli-
cations such as verification of entanglement, which has, for
example, applications as necessary conditions for QKD [24].

IV. REDUCTIONS FOR SQUASHING MODELS
FOR LINEAR OPTICAL DEVICES WITH

THRESHOLD DETECTORS

The description of a general linear optical measurement
device, that is, a device in which input modes undergo
a linear transformation before entering detectors, can be
rather complicated. A full description should include several
different degrees of freedom. For example, incoming light
can consist of several spatially separated or overlapping wave
packets with an arbitrary number of photons, each with its
various polarization or frequency. However, we restrict our
analysis to measurement devices that only respond to particular
degrees of freedom. This means that they are invariant in
their statistics with a change in degrees of freedom they
do not measure. Specifically, in what follows, we consider
measurement devices that can have different statistics given a
change in photon number and polarization (Secs. V–VIII) or
in time (see Sec. IX) or in photon number and relative phase
between two spatial modes (Sec. X). This implies that these
measurement devices are invariant under changes in all other
degrees of freedom, such as frequency.

The existence of common attributes in optical measurement
devices makes the application of the general framework
discussed in the previous sections easier. The fact that one
usually uses threshold detectors turns out to be especially
helpful. As we will see shortly, this allows us to decompose
the Hilbert space of the incoming signal and to construct
the squashing map for N -photon input states for each N =
0,1,2,3, . . . independently. This will be the first reduction for
the linear optical measurement devices.

In addition, we show that for a special type of basic and tar-
get measurements, there exists a particular CPP scheme that al-
lows further decomposition in each of the N -photon subspaces
that substantially simplifies the squashing-model analysis.

A. Quantum nondemolition (QND) measurements
and N-photon subspaces

One essential trick in managing the analysis of squash-
ing models connecting infinite-dimensional mode spaces to
finite-dimensional target measurements consists of exploiting
the fact that the basic POVM elements of linear optical
measurement devices with threshold detectors commute with
the POVM elements of the QND measurement of the total
number of photons. This allows the reduction of the problem

of analyzing input states on an infinite-dimensional Hilbert
space to the problem of analyzing input states on an infi-
nite number (N = 0,1,2,3, . . .) of finite-dimensional Hilbert
spaces independently. Formally, we can write

QND : ρ →
∞⊕

N=0

ρN. (22)

Based on what was laid out above, we can assume without
loss of generality that the squashing map first performs a
QND measurement of the total photon number, thus turning
the input state into a block-diagonal form with respect to the
photon-number subspaces. It implies that we can check for the
existence of a squashing model for each subspace separately.
An important note here is that a CPP scheme has to be fixed
before we start to search for a squashing model on the infinite
family of finite-dimensional Hilbert spaces. Each of these
squashing models has to share a common CPP scheme.

All of the above can be summarized as follows.
Observation 8. Reduction 1, QND: For a linear optical

measurement device with threshold detectors, any squashing
map has a block-diagonal form with respect to the photon-
number subspaces:

�[ρ]
QND= �

[ ∞⊕
N=0

ρN

]
=

∞⊕
N=0

�N [ρN ]. (23)

Note that for any N , the map �N is characterized by the
same target measurement and its adjoint maps the target POVM
elements onto the full measurement POVM elements projected
onto the N -photon subspace. One immediate consequence
of the QND measurement is the fact that one can split
off the vacuum component and only consider states with
N � 1. Indeed, for N = 0, one can always choose �0[ρ0] =
|vac〉Q〈vac|, where |vac〉 is the vacuum state in the target
Hilbert space. Therefore, the squashing map will output a
vacuum state whenever the outcome of the QND measurement
is zero and we can restrict ourselves to the case where N �= 0:

∞⊕
N=0

�N [ρN ] = |vac〉Q〈vac| ⊕
∞⊕

N=1

�N [ρN ]. (24)

This will be referred to as the vacuum flag structure of
the squashing map. Note that the map �0 is applied if and
only if the outcome of the QND measurement is 0. Later on
in Sec. VII D we will become acquainted with another map,
which outputs a vacuum state on the target Hilbert space, no
matter what the input is. This “vacuum map” should not be
confused with the vacuum flag, whose sole role is to split off
the vacuum component of the signal.

B. Reduction for natural CPP schemes

For measurement devices with threshold photodetectors, for
which the target measurement can be described as a restriction
of the basic measurement to the single-photon subspace, the
smart choice of a CPP scheme is such that the scheme does not
affect the events which could have come from single-photon
signals. These events are single clicks. Separating the single
clicks from the rest of the events in this way will lead to a CPP
scheme which assigns all multiclicks to some single clicks
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FIG. 3. Action of the squashing map for the special type of CPP
scheme preserving the single-click events. The squashing map can be
modeled as a photon-number measurement followed by a projective
measurement onto a subspace spanned by the pure states that can
trigger only single-click events. The number of such states does not
depend on the photon number N � 1. Depending on the outcome
of these measurements, one either proceeds with a low-dimensional
squashing operation �P

N or outputs a completely mixed qubit state.

without performing any operation on single-click outcomes, so
that overall full measurement POVM elements are of the form

F
(i)
M = F

(i)
B,single +

∑
j

PijF
(j )
B,rest. (25)

For generic linear optical devices, F
(i)
B,single has a form of

a rank-1 projector on some state |�(i)
B,single〉. If we denote a

space spanned by single-click states by P = span{|�(i)
B,single〉},

then any state from its orthogonal complement P⊥ triggers
a multiclick with certainty. If the projection on P commutes
with full measurement POVM elements, we can investigate
the existence of the squashing map for P and P⊥ separately.
Schematically, this situation is represented in Fig. 3.

In summary we have the following observation.
Observation 9. Reduction 2: Single-click subspace: If a

linear optical device with threshold photodetectors is such
that

(i) the reduction of the basic POVM elements to a
single-photon subspace provides target measurement POVM
elements, and

(ii) the projection on the space P , spanned by the states
that can trigger only single-click events, commutes with the
full measurement POVM elements,
then there exists a CPP scheme that allows a decomposition of
the squashing map of the form

�N = �P,N + �P⊥,N . (26)

Both �P,N and �P⊥,N map N -photon states to states on the
same target Hilbert space and fulfill the same set of linear
constraints.

V. SQUASHING MODEL FOR A MEASUREMENT
DEVICE USED IN THE BB84 QKD PROTOCOL

In this section, we consider a measurement device which
is used in the optical implementation of the most prominent
QKD protocol: the BB84 protocol [1]. This device has
been introduced in Ref. [10] as a standard example used to
introduce squashing models. We start off by providing a short
background on the measurement device in the BB84 QKD
protocol, where an observer actively makes the choice of the
measurement basis.

FIG. 4. Active detection scheme. The observer possesses two
detector modules and a polarization rotator, which is used to actively
choose one or the other detector module. The detector modules are
made up of polarizing beam splitters that are able to discriminate two
orthogonal linearly polarized modes and ideal threshold detectors for
each mode.

A. Active detection scheme for the BB84 measurement

In the active detection scheme for the BB84 measurement,
the observer has two detector modules, each adjusted to one of
the polarization bases α (see Fig. 4). Before the measurement
is performed, one has to decide which detector module will be
used. This represents the active nature of the detection scheme.

Note that there is no notion of an a priori probability
distribution that governs the choice of the measurement basis
yet, i.e., the observer has no classical “coin” at his disposal and
therefore no randomness for the basis choice. A measurement
with such randomness will be discussed in Sec. VII A.

Each detector module is a polarization analyzer and consists
of two detectors monitoring two outputs of a polarizing beam
splitter, which is able to discriminate between two orthogonal
polarizations of linearly polarized light. In every measurement,
the observer will register four different events: no click (vac),
single-click (sc) in one of the detectors, and two different
double clicks (dc), when both detectors (“0” and “1”) fire.
Assuming ideal threshold detectors, no photon losses and no
dark counts, the observed events are described by the following
POVM elements:

Fvac =
∑

α=+,×
|0,0〉α〈0,0|,

F i,α
sc =

∞∑
N=1

|N〉i,α〈N |, (27)

Fα
dc =

∞∑
N0,N1=1

|N0,N1〉α〈N0,N1|,

where |N〉i,α denotes a state with N photons in the mode i of
the α-polarized incoming light (cf. Ref. [5]). Note that for each
choice of α, one has a complete set of POVM elements and no
classical probability that may describe the basis choice.

B. BB84 measurement: Reduction of the squashing model

We start off by defining target POVM elements. These
correspond to a measurement on zero- and single-photon
Hilbert spaces and are given by [cf. Eq. (27)]

Fvac =
∑

α=+,×
|0,0〉α〈0,0|,

F
(0,α)
1 = |1,0〉α〈1,0|, (28)

F
(1,α)
1 = |0,1〉α〈0,1|,
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where α ∈ {+,×} is a label for the basis choice of the
polarizing beam splitter.

For a general input state, we apply reductions from Sec. IV
in order to reduce the problem. First, in virtue of what is
discussed in Sec. IV A, we consider an input state of the BB84
measurement device that contains N photons and by using the
flag structure of the vacuum events, we split off the vacuum
component. This also simplifies the target space and makes it
a space of a qubit with the following POVM elements:

F
(0,α)
1 = |1,0〉α〈1,0|, F

(1,α)
1 = |0,1〉α〈0,1|. (29)

Second, the target POVM elements [Eq. (29)] are restrictions
of the general basic POVM elements to the single-photon
subspace. Therefore, we can apply the results of Sec. IV B
and choose a CPP scheme that does not affect the single clicks
in order to be able to decompose �N into �P,N and �P⊥,N .

To perform this decomposition, we fix the CPP scheme
by randomly (with equal probability) assigning each of
the double-click events to a single-click event within the
same basis. It follows directly from Eq. (27) that the full
measurement POVM elements on the N -photon subspace are

F
(b,α)
N = F

(b,α)
sc,N + 1

2
Fα

dc,N

= (−1)b

2
(|N,0〉α〈N,0| − |0,N〉α〈0,N |) + 1N

2
, (30)

where b ∈ {0,1} corresponds to the 0 or 1 outcome of the
detection module, and |l,k〉α is a two-mode Fock state with
photon numbers l and k with respect to the polarization mode
basis α. It is straightforward to see that the restriction of these
elements to the N = 1 subspace exactly reproduces the target
POVM elements.

Now, we see that the full measurement POVM elements
in Eq. (30) have the same structure of the POVM elements
in Eq. (25). Moreover, projections on the spaces P =
span{|N,0〉α,|0,N〉α}α=+,× and P⊥ commute with the full
measurement POVM elements and therefore we can apply
Observation 9 in order to search for a squashing map in P and
P⊥ separately.

C. BB84 measurement: Positivity of the squashing map

For any N � 1 we can choose �P⊥,N to be a trivial map
�	fix from Proposition 5 and the choice 	fix = 1Q/2. This is in
accordance with the chosen CPP scheme, i.e., the probability
condition in Eq. (3) is fulfilled. Thus, we have determined the
squashing map on the space P⊥ and all that is left to find is a
squashing map for the subspace P , whose dimension in this
case does not exceed 4 (it is 2 for N = 1, 3 for N = 2, and 4
for N � 3).

As we mentioned in Sec. III, we need two ingredients for
this: (i) we need to construct a linear map preserving linear
dependencies as in Eq. (8) and (ii) we need this map to be
completely positive.

We start off by writing the linear constraints, which are
respected by the chosen CPP scheme,

�
†
P,N

[
F

(b,α)
1

] = F
(b,α)
P,N , α ∈ {+,×} (31)

where F
(b,α)
1 are the target measurement POVM elements as in

Eq. (29) and F
(b,α)
P,N are the full measurement POVM elements

restricted to the subspace P . Using Eqs. (29) and (30), it is not
hard to see that the linear dependencies are satisfied:

F
(0,α)
1 + F

(1,α)
1 = 1Q ⇔ F

(0,α)
P,N + F

(1,α)
P,N = 1P,N , ∀ α. (32)

Therefore, there exists a linear map �
†
P,N as in Eq. (31).

The complete positivity of �
†
P,N is proven by directly

checking the non-negativity of the Choi matrix. First, we use
the decomposition of the maximally entangled state in terms
of Pauli matrices

|ψ+〉〈ψ+| = 1

4

(
1Q ⊗ 1Q +

∑
α=x,y,z

σ T
α ⊗ σα

)
. (33)

Therefore, the Choi matrix is given explicitly by

τP,N = 1 ⊗ �
†
P,N (|ψ+〉〈ψ+|)

= 1

4

(
1Q ⊗ 1M +

∑
α=x,y,z

σ T
α ⊗ �

†
P,N (σα)

)
. (34)

Second, we note that the Pauli matrices σx and σz can be written
in terms of the target POVM elements: σα = F

(0,α)
1 − F

(1,α)
1 ,

α = x,z. The action of the �
†
P,N on σy , however, is not fixed

by our linear constraints and we can use this freedom in order
to enforce the positivity of the Choi matrix τP,N .

For the upcoming discussion, it is convenient to decompose
τP,N = τP,N,fix + τP,N,open, with

τP,N,open = σT
y ⊗ �

†
P,N (σy). (35)

In order to check the positivity of τP,N , we will consider its
matrix representation M(τP,N ) using the nonorthogonal basis
vectors

{|ψi〉 ⊗ |j 〉}j=0,1, |ψi〉 ∈ {|N,0〉α,|0,N〉α}α=+,×. (36)

The matrix M(τP,N,fix) only has real entries [its explicit
form is given by Eq. (C1)]. The properties of the ma-
trix M(τP,N,open) = σT

y ⊗ M(�†
P,N (σy)) can be specified fur-

ther: first, without loss of generality, we can assume that
M(τP,N,open) only has real entries. If there exists a complex so-
lution M(τP,N,open) for M(τP,N,fix) + M(τP,N,open) � 0, then
its complex conjugate is also a solution. Then, by linearity the
equal weighted average is also a solution and it is a real matrix.
Second, since the open part τP,N,open is Hermitian (otherwise
the Choi matrix would have complex eigenvalues), we can
write M(�†

P,N (σy)) = iS where S is some skew-symmetric
matrix with six real entries as free parameters. These free
parameters can be found such that M(τP,N ) � 0 holds [see
Eq. (C3)]. Therefore, there exists a positive τP,N which maps
the specified target measurements to the corresponding full
measurements.

This implies that there is a squashing map on the space P ,
which is completely positive and fulfills the linear constraints
in Eq. (31). As pointed out above, the squashing map on
the complementary space P⊥ also exists. Therefore, for the
choice of the classical postprocessing we made, we provided
a squashing map for the target measurement in Eq. (29).
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This squashing map has been found also by Tsurumaru and
Tamaki [11].

In summary in this section, we proved the following.
Theorem 10. Squashing model for BB84 measurement with

active basis choice: There exists a squashing model with the
qubit target measurement for the BB84 measurement with
active basis choice and random equiprobable assignment of
double clicks to one of the outcomes (i.e., independent from
how often one decides to choose one or the other basis).

VI. ACTIVE DETECTION SCHEME
FOR A SIX-STATE MEASUREMENT

In this section, we will focus on a squashing model for a
measurement device which is used in optical implementations
of the six-state QKD protocol [25]. The six-state measurement
is similar to the BB84 measurement, except that there is a third
setting to the polarizing beam splitter which splits photons
according to a circular basis (labeled as y). The measurement
basis is chosen actively by the observer.

A. Six-state measurement: Reduction of the squashing model

In full analogy to the BB84 measurement, we want to make
use of the reductions in Sec. IV. First of all, we reduce the
problem and consider N -photon incoming signals for N =
1,2, . . . . For the six-state measurement device, we choose the
target measurement to be a measurement on the zero- and
single-photon Hilbert spaces. After splitting off the vacuum
component, the target POVM elements are

F
(0,α)
1 = |1,0〉α〈1,0|, F

(1,α)
1 = |0,1〉α〈0,1|, (37)

with α ∈ {x,y,z}.
As with the BB84 measurement, these POVM elements are

restrictions of the basic POVM elements, which suggests to
choose the same type of classical postprocessing as we did for
the BB84 protocol: the postprocessing of double-click events
is randomly assigned again to either single-detection events.
The probabilities of the “0” and “1” assignments are equal:
p = 1

2 . This CPP scheme fixes the full measurement POVM
elements to

F
(b,α)
N = (−1)b

2
(|N,0〉α〈N,0| − |0,N〉α〈0,N |) + 1N

2
. (38)

This CPP scheme allows us to apply the second reduction
and restrict our search to a six-dimensional subspace P

spanned by {|N,0〉α,|0,N〉α}, α = x,y,z, and its complement
P⊥. Similarly to the active BB84 measurement, the projections
onto P and P⊥ commute with the full measurement POVM
elements in Eq. (38).

B. Six-state measurement: Squashing map

The linear constraints on the squashing map in the six-
dimensional subspace P are given by

�
†
P,N

[
F

(b,α)
1

] = F
(b,α)
P,N , α ∈ {x,y,z}. (39)

In this case, one can follow the calculation for the BB84
protocol. The only difference is that the matrix τP,N , that
represents the squashing map, is completely determined by the
linear constraints since the measurement operators F

(b,α)
1 form

a complete basis for their Hilbert space. However, it can be
easily seen that �P,N can not be positive. First, we can write
the adjoint squashing map τP,N = 1 ⊗ �

†
P,N (|ψ+〉〈ψ+|) as

before. Since the qubit measurements of the six-state protocol
are complete, we can write

τP,N = 1 ⊗ �
†
P,N (|ψ+〉〈ψ+|)

= 1

4

(
1Q ⊗ 1P,N +

∑
α=x,y,z

σ T
α ⊗ (

F
(0,α)
P,N − F

(1,α)
P,N

))
.

(40)

As in the BB84 case, we can directly apply �
†
P,N to the second

subsystem that does the map F
(b,α)
1 → F

(b,α)
P,N . In this case,

the Choi matrix τP,N is completely fixed and has no free
parameters since the linear constraints in Eq. (39) have to
be respected.

However, the matrix τP,N has negative eigenvalues. By
writing τP,N in a basis of nonorthogonal vectors, which is
analogous to that for the BB84 measurement device in Eq. (36),

{|ψi〉 ⊗ |j 〉}j=0,1, |ψi〉 ∈ {|N,0〉α, |0,N〉α}α=x,y,z, (41)

we can calculate the minimum eigenvalues directly. For
example, in the three-photon subspace, the state

|θ−〉 = 1√
2

(|3,0〉z ⊗ |1〉 − |0,3〉z ⊗ |0〉) (42)

has the property that 〈θ−|τ3|θ−〉 < 0, which obviously violates
the positivity condition of the squashing map. Therefore, we
conclude that for the choice of the classical postprocessing we
made there is no complete positive squashing map onto target
measurement given by Eq. (37).

C. Alternative classical postprocessing and completely
positive squashing map

As we mentioned in Sec. III D, the lack of complete
positivity of the squashing map is not always a big obstacle
and can be overcome by introducing some additional noise
to the measurement data. This is done by choosing another
CPP scheme. We will apply this trick for the six-state active
measurement device and show that the amount of noise one
needs to introduce is tolerable in QKD implementations.

We start by describing an alternate classical postprocessing.
This will be a mixture of the old postprocessing and the
completely noisy postprocessing that corresponds to the
random assignment of an outcome regardless of which basic
event occurred [cf. Eq. (19)]. For this type of postprocessing,
there is a positive squashing map �	fix with ρfix = 1Q/2
(cf. Theorem 7 and Remark 6).

We use Eq. (17) with dQ = 2 and ρfix = 1Q/2 to achieve
the Choi matrix for squashing map

τP,N,new(p) = (1 − p)τP,N + p

4
1Q ⊗ 1P,N , (43)

where τP,N is from Eq. (40). In order to check the positivity
of τN,new(p), we can again represent it in the basis of Eq. (41)
as a 12 × 12 matrix of the parameters N and p, and show the
positivity of its eigenvalues for p � 1

3 . The proof is given in
Appendix D.
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Next, we point out a connection between the parameter
p and an additional penalty bit-error rate e in the six-state
protocol, which one needs to introduce in order to ensure the
positivity of the squashing map.

Remark 11. Connection between white-noise parameter and
bit-error rate: The white-noise parameter p corresponds to the
double-bit-error rate which one needs to introduce as a penalty
for a positive squashing map to exist. That is, p = 2e.

Proof. The essential point for this is the fact that for the old
full measurement POVMs we have

F
(0,α)
N,old + F

(1,α)
N,old = 1N . (44)

Substituting this equation in Eq. (43) will result in

F
(0,α)
N,new = (1 − p/2)F (0,α)

N,old + p

2
F

(1,α)
N,old,

(45)
F

(1,α)
N,new = (1 − p/2)F (1,α)

N,old + p

2
F

(0,α)
N,old.

This relates the full measurement POVM elements after ad-
ditional noisy postprocessing to the elements before the post-
processing. This relation concerns one particular measurement
basis and can be interpreted as an additional bit flip with prob-
ability e = p/2 after all double clicks have been assigned. �

It follows from the last remark that we need to add 16.67%
of noise to our data in order for the squashing map of the
six-state protocol to be completely positive. To summarize,
we showed that the following statement holds.

Theorem 12. Squashing model for six-state measurement
with active basis choice: There exists a squashing model with
a qubit target measurement for the six-state measurement
with active basis choice (no matter how often one chooses
to measure in one of the three bases) for the CPP scheme
that randomly (with equal probability) assigns the double
clicks to single clicks and flips the single click bit values with
probability 1

6 .
To conclude this section, we point out that the recent results

by Ma and Lütkenhaus [26] allow us to say that this penalty
error rate only needs to be used to estimate the amount of
privacy amplification necessary for the protocol. As a matter of
fact, we do not actually need to flip any bits and can therefore
effectively reduce the amount of information leaking to the
eavesdropper. In this case, the squashing model can be used for
the protocol with one-way classical communication and one
can provide a secret key rate for an error rate up to 6.43% if one
uses the infinite-key-limit formula r = 1 − h(Q) − IE(Q′)
[see Eq. (A6) in Ref. [27]] with Q′ = (1 − pflip)Q + pflip(1 −
Q), where Q is a bit-error rate and pflip the flip probability from
Theorem 12.

VII. EXTENSIONS OF SQUASHING MODELS, BIASED
ACTIVE BB84 MEASUREMENT, PASSIVE BB84

AND SIX-STATE MEASUREMENTS

This section is devoted to several generalizations of the
ideas that were laid out in Secs. IV–VI. First, we investigate a
biased active BB84 measurement. Then, we turn our attention
to the passive detection scheme (defined below) for the BB84
and six-state measurement devices. Such devices are also often
used in practical implementations of QKD protocols, which is
often motivated by the fact that a passive detection scheme

requires fewer random bits and typically allows higher clock
rates (see, e.g. [28,29]).

A. Biased active BB84 measurement

We start off by generalizing the squashing model for the
BB84 measurement to a device where the observer chooses the
measurement basis according to classical probabilities p+ and
p× such that p+ + p× = 1. That is, the active “at will” choice
of the observer is replaced by a random number generator. This
will result only in a coefficient in front of the POVM elements
in Eq. (27):

Fvac =
∑

α=+,×
pα|0,0〉α〈0,0|,

F i,α
sc = pα

∞∑
N=1

|N〉i,α〈N |, (46)

Fα
dc = pα

∞∑
N0,N1=1

|N0,N1〉α〈N0,N1|,

and will not affect the rest of the argument we made in Sec. V.
Therefore, we have the following theorem.

Theorem 13. Squashing model for biased active BB84
measurement: There exists a squashing model for the biased
active BB84 measurement for which the basis choice is made
according to classical probabilities p+ and p× such that
p+ + p× = 1.

B. Passive detection scheme for the BB84 measurement

In this section, we will present the details for the passive
BB84 measurement. The passive six-state measurement can
then be generalized straightforwardly. In the passive BB84
measurement, the observer uses a measurement device pre-
sented in Fig. 5. The whole measurement device consists of
two detection modules that correspond to two detection bases.
Both detection modules are positioned at the two output ports
of a 50:50 beam splitter. This measurement outputs a bit value
and a basis choice.

Interestingly, this type of detection scheme is more sensitive
to the signals containing more than one photon. Indeed,
because of the 50:50 beam splitter [cf. Eq. (B2)] the POVM

FIG. 5. The device for the passive BB84 measurement. Here, it
consists of two detection modules, located at the output ports of a
50:50 beam splitter. Each detection module corresponds to one of the
polarization bases.
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elements will take the form (see also [5])

Fvac = 1

2

∑
α=+,×

|0,0〉α〈0,0|,
(47)

F i,α
sc =

∞∑
N=1

(
1

2

)N

|Ni〉α〈Ni |, i = 0,1

Fα
dc = 1

2

∞∑
N0,N1=1

|N0,N1〉α〈N0,N1|,
(48)

Fcc = 1

2
1 +

∑
α=+,×
i=0,1

∞∑
N=1

(
1 − 1

2N

)
|N〉i,α〈N |,

where “sc,” “dc,” and “cc” denote single clicks, double clicks
within the same detection module, and cross clicks between
different modules, respectively.

C. Relation between active and passive measurement
devices via switching

A closer comparison of Figs. 4 and 5 reveals an important
relationship between the two detection schemes. First note that
the single-click POVM elements are the same (up to an N -
dependent coefficient) for both detection schemes. As we will
see shortly, this can be crucial for the positivity of the squashing
map. In fact, an active detection scheme can be generally
represented as a part of the passive detection scheme with a
beam splitter which acts as a probabilistic classical switch.

Indeed, the initial beam splitter is only rerouting all photons
in one direction or the other direction or splitting up the
photons. So, we can think of it like a classical switch which
either decides between the two polarization bases like in an
active scheme, or splits up the photons thus creating cross
clicks. The probability for the first two cases is the same, so
we can combine them into the problem of active detection in
Fig. 6. Therefore, we can think of the passive detection scheme
as of a scheme consisting of two parts: with probability p(N )
the system chooses to apply an active detection setup, and
with probability 1 − p(N ) the system chooses to create a cross

FIG. 6. Active detection scheme as a part of the passive detection
scheme. Any passive detection that is due to an input beam splitter
can be thought of as a switching between active detection and a cross
click. The probability of switching depends only on the number of
photons N entering the measurement device.

click. To give an example, for the passive BB84 measurement
in Fig. 5 we have p(N ) = 1

2N + 1
2N = 1

2N−1 . As we will see now,
this structure turns out to be very useful for the construction of
squashing models and especially for choosing the right CPP
scheme for passive detection devices.

D. Squashing model for the passive BB84 measurement

According to the previous section, we can rely on our
knowledge of the active detection scheme and consider the
cross-click events separately. As it turns out, since there exists
a squashing model for the active detection scheme (see Sec. V),
we can either discard all cross clicks or assign them to some
bit value with some probability.

To be more precise, let us define two different CPP schemes
for the part of the squashing model that deals only with cross
clicks (cf. Fig. 6) and hence leads to two different overall
squashing maps

�discard
N,passive = 1

2N−1
�N,active +

(
1 − 1

2N−1

)
�vac,

(49)

�
keep
N,passive = 1

2N−1
�N,active +

(
1 − 1

2N−1

)
�1Q/2,

where the vacuum map �vac disregards the input and forwards
a vacuum state to the target measurement [not to be confused
with the vacuum flag (see the closing remark in Sec. IV A)].
We refer to �discard

N,passive as the squashing map corresponding to
the overall postprocessing that discards all cross clicks and
we refer to �

keep
N,passive as the squashing map that corresponds

to the CPP scheme with random (in this case with equal
probabilities, because of the passive target measurement)
assignment of cross clicks. Note that in principle we can
choose the assignment of cross clicks according to some other
(nonuniform) probability distribution. It will only mean that
we would need to change ρfix in �ρfix accordingly, but it will
not affect the positivity of the squashing map, as long as ρfix

corresponds to a physical state.
Finally, the positivity of both passive maps in Eq. (49) for

the BB84 case follows from the positivity of the maps on the
right-hand side of Eq. (49), which is in contrast to the six-state
measurement considered in the next section. To summarize,
we have the following theorem.

Theorem 14. Squashing model for the passive BB84
measurement: For the passive BB84 measurement, there is
a squashing model with a qubit target measurement no matter
what the classical postprocessing of the cross clicks is, as long
as there is a squashing model with a qubit target measurement
for cross-click events.

E. Passive six-state measurement

For the six-state measurement device with the passive
detection scheme, we can use the same argument as we did
in the last section for the BB84 measurement device. Here,
however, we can not rely on the positivity of the squashing
map for the active part of the model because as we learned in
Sec. VI the map is not completely positive. In virtue of this
we can not simply discard all cross clicks and we have to fall
back to their random assignment. We still will be using the
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map �N,active, although it is not physical, as a tool to show the
complete positivity of the overall map (see following).

Assuming that we assign cross clicks with equal probabili-
ties, we have the overall squashing map of the type

�
keep
N,passive = 1

3N−1
�N,active +

(
1 − 1

3N−1

)
�1Q/2. (50)

The positivity of this squashing map will be, as per usually,
investigated in terms of its Choi matrix:

τ
keep
N,passive = 1

3N−1
τN,active +

(
1 − 1

3N−1

)
1Q ⊗ 1N

4
. (51)

Note that the chosen CPP scheme allows us to apply
Reduction 2 here (Observation 9) and consider the Choi matrix
only on the single-click subspace P : τP,N,passive. The positivity
of τP,N,passive was discussed in Eq. (43) where we concluded
that this matrix is positive whenever p(N ) = 1 − 1/3N−1 and
takes values p(N ) ∈ [1/3,1], which is the case for any N � 2.
Therefore, all eigenvalues are positive and we have shown the
following.

Theorem 15. Squashing model for the passive six-state
measurement: For the passive six-state measurement device
there exists a squashing model if the classical postprocessing
randomly assigns (with equal probability) the double clicks to
a bit value within the same basis where the double click has
occurred, and assigns the cross clicks randomly (with equal
probability) to one of the possible bit values.

VIII. PASSIVE MULTISTATE QUDIT MEASUREMENT
DEVICE FOR PRIME-DIMENSIONAL HILBERT SPACES

In the previous section, we discussed squashing models for
measurement devices for which it was self-evident to choose a
qubit measurement as the target measurement. A possible way
to generalize the results of Secs. V and VI is to consider a qudit
measurement device as the target instead. Here, we present a
general result for the passive detection scheme in the case of a
qudit target measurement, with d being a prime number. Note
that we only consider passive devices since this generalization
includes the six-state measurement device, for which an active
choice does not work (see Sec. VI). We will be setting the stage
by recapitulating some known facts about mutually unbiased
bases (MUBs), and the reader who is familiar with this notion
can skip the next section without losing the thread of the paper.

A. Background on mutually unbiased bases

First, we recall the definition of MUBs.
Definition 16. MUB: Let {|ψ1〉 . . . |ψd〉} and {|φ1〉 . . . |φd〉}

be two orthonormal bases in the Hilbert space Cd . These bases
are called mutually unbiased if

|〈ψi |φj 〉| = 1√
d

, ∀ i,j. (52)

The existence of a d + 1 MUB, if d is a prime number,
was proven in Ref. [30]. The proof is constructive. Each basis
consists of the eigenvectors of

Zd,Xd,XdZd,Xd (Zd )2, . . . ,Xd (Zd )d−1, (53)

where Zd and Xd are generalized Pauli matrices with the
properties

Zd |j 〉 = wj |j 〉, Xd |j 〉 = |(j + 1) mod d〉, (54)

where ω is the dth root of unity. The basis of Zd is referred to as
the standard basis. It is possible to represent all other matrices
in Eq. (53) in terms of the standard basis. This gives an explicit
relationship between different bases representations

Zk
d =

d−1∑
i=0

ωik|1〉i,0〈1|,

(
XdZ

α
d

)k =
d−1∑
i=0

ωαk[i+ 1
2 (k−1)]|1〉i+k,0,i〈1| (55)

=
d−1∑
i=0

ωik|1〉i,α+1〈1|,

where α = 0, . . . ,d − 1.
One more fact that we will be using quite often is that the

operators

Zα
d ,

(
XdZ

α
d

)k
, α = 0, . . . ,d − 1, k = 1, . . . ,d − 1 (56)

form a basis in the space of all operators acting on the Hilbert
space of a qudit B(Hd ).

B. Description of the measurement device: Basic measurement

The measurement device for the multistate protocol is
schematically represented in Fig. 7. It measures in d + 1
different polarization bases. For each basis there are d different
polarization states that are detected by one of d threshold
photodetectors in a corresponding detection module Mα ,
α = 0, . . . ,d. Note that the described measurement device
contains the passive six-state measurement, if one assigns
pα = 1

3 for α ∈ {x,y,z}.

FIG. 7. Scheme of the measurement device for the qudit QKD
protocol (where d is a prime number). After passing the input
beam splitter, which distributes the signals into d + 1 arms with
probabilities pα with α = 0, . . . ,d , the input state is measured in
one of the d + 1 mutually unbiased bases. Each basis measurement
contains d different threshold photodetectors corresponding to d

different polarization states within the basis α. There are d(d + 1)
polarization states in total.
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From now on, we will consider the situation where pα =
1/(d + 1) for all α = 0, . . . ,d (possible generalizations will be
considered in the closing part, VIII E, of this section). Since
our measurement device contains threshold photodetectors, we
can perform a QND measurement of the number of photons
and split off the vacuum component first (see Observation 8).
Hence, we can restrict ourselves to inputs containing N � 1
photons. In the N -photon subspace, the basic POVM elements
have the following form (see Appendix E for more details):

F
i,α
N = (d + 1)−N |N〉i,0〈N |,

F α
mc,N = (d + 1)−N

(
1N −

d∑
i=1

|N〉i,0〈N |
)

, (57)

Fcc,N =
(

1 − 1

(d + 1)N−1

)
1N,

with i = 1, . . . ,d and |N〉i,α is adopted to describe an event
of the detection of N photons in the detector i of the detection
module Mα . From the structure of the basic POVM elements,
it is evident that we have to distinguish between multiclicks
(mc) Fmulti,N and cross clicks (cc) Fcc,N . The multiclicks
happen when different detectors within the same detection
module (i.e., the same basis choice) have a click and is a
generalization of a double click for d = 2. Cross clicks occur
when several detectors in at least two different measurements
modules (two different bases) have a click.

C. Target measurement, classical postprocessing,
and full measurement

The target POVM elements can be easily deduced when
we restrict to a single-photon input state [note the analogy to
Eq. (37) for the six-state measurement]:

F
i,α
1 = 1

d + 1
|1〉i,0〈1|, α = 0, . . . ,d; i = 0, . . . ,d − 1.

(58)

It is not hard to see that the target POVM elements are single-
photon restrictions of the basic POVM elements in Eq. (57).
Therefore, we choose a CPP scheme that does not affect single-
click basic POVM elements. Following the same lines as the
BB84 and the six-state squashing models, we choose the CPP
scheme as follows:

(i) Single clicks are mapped to the same single clicks.
(ii) Multiclicks are assigned equally randomly to one of

the dit values in the same module Mα .
(iii) Cross clicks are assigned with probability 1/d(d + 1)

to one of the outcomes of the measurement Mα .
The chosen CPP scheme and Eq. (57) imply the following

form of the full POVM measurement elements:

F̃
i,α
N = F

i,α
N + 1

d
Fα

mc,N + 1

d(d + 1)
Fcc,N . (59)

D. Positivity of the squashing map �N

To start off, we note that the chosen postprocessing scheme
allows us to use the results of Sec. IV B and precede the
squashing map by a projection on the d(d + 1)-dimensional
space P = span{|Ni〉α} because the projection on this

space commutes with full measurement POVM elements
(Observation 9).

All states in the orthogonal complement P⊥ will produce
either multiclicks or cross clicks. In this case, the squash-
ing map will output a completely mixed qudit state 1d/d:
�P⊥,N [ρN ] = 1d/d for all ρN . Therefore, we have constructed
a squashing map on the subspace P⊥. What is left to construct
is a completely positive �P,N . The adjoint of the squashing
map must satisfy the linear constraints (3) and (4):

�
†
P,N

[
F̃

i,α
1

] = F̃
i,α
P,N . (60)

We have the following result.
Lemma 17. Complete positivity of �

†
P,N : On the Hilbert

space of interest there exists a completely positive map �P,N

which fulfills the linear constraints in Eq. (60).
Proof. The proof consists of two steps. First, one has

to construct a map �
†
P,N that fulfills the linear constraints.

Second, one needs to prove its complete positivity. To begin
with, we note that Eq. (60) defines the map �

†
P,N on all target

POVM elements F̃
i,α
1 = F

i,α
1 , which form a basis in B(Hd ).

This completeness is a starting point for the construction of
the squashing map �P,N . As �

†
P,N is linear, this defines its

action on any input operator. In the second step, we need to
prove that the squashing map is completely positive. The proof
is technical, and can be found in Appendix F. �

This lemma finishes the construction of the squashing
model for the qudit measurement device with a uniformly
distributing input beam splitter.

Theorem 18. Squashing model for the passive multi-state
qudit measurement: There exists a squashing model for the full
(d + 1 MUBs) passive multistate qudit measurement device
for all prime numbers d.

E. Possible generalizations

In the concluding part of this section, we make some
remarks about possible ways to generalize the results for
the MUB measurement device. First of all, one may want
to allow for different input beam-splitter ratios and choose
pα �= 1/(d + 1). In the following remark, we point out that
it is not possible if one wants to keep the CPP scheme of
Sec. VIII C unchanged, i.e., where the multiclicks and cross
clicks are uniformly distributed.

Remark 19. For the CPP scheme chosen in Sec. VIII C
(uniform distribution of the multiclicks and cross clicks) the
linear constraints (60) are fulfilled if and only if the output
probabilities of the input beam splitter in Fig. 7 are all equal,
i.e., pα = 1/(d + 1) for all α.

Proof. See Appendix G.
Note that this remark does not contradict the existence of

a squashing model for the passive BB84 measurement, as the
CPP scheme used there is not a special case of the CPP scheme
of Sec. VIII C. The other possible extension of the result of
Theorem 18 is to choose the input beam splitter such that
pα are uniformly distributed over k < d + 1 output arms and
pα = 0 for the rest of the beam-splitter outputs (this situation
would include the BB84 measurement device). However, we
do not have an analytic proof that a squashing model for such
situation exists and leave it as an open question.
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IX. SQUASHING MODEL FOR TIME MODES

So far, we have provided examples in which squashing
models take multiple-photon signals to single-photon ones.
However, there are other degrees of freedom in experimental
measurements that we have not accounted for in the squashing
models considered so far. For example, measurements typ-
ically accept signals over a time window, whose responses
from the measurement (such as detector clicks) are grouped
together into what is called an event. During the time window
of a detection event, it is possible that a measurement receives
signals in multiple time modes. In this section, we address the
question of the existence of squashing models for measurement
devices that accept multiple time modes. First, we provide
a squashing model for the multi-time-mode active BB84
measurement device. Based on this result, we prove the
existence of the squashing model for the multi-time-mode
six-state measurement. Finally, in accordance with Theorem
14, we apply the squashing model of the multi-time-mode
active BB84 measurement to the multi-time-mode passive
BB84 measurement. Note that the following results will apply
to any collection of spatial-temporal modes a detector might
be susceptible to, not only time modes.

As we will show, a measurement device that receives an
input in many time modes can be thought of as many copies of
that same measurement device, each measuring with the same
setting (for example, the same basis) and each receives a single-
time mode, followed by a suitable postprocessing in order to
combine the single-mode devices into the full device. There-
fore, it is important to distinguish between two essential groups
of basic events (see Fig. 8): single-time-mode events and multi-
time-mode events. Note that single-detector clicks and multi-
detector clicks can correspond to a multi-time-mode event.

The situation seems to become rather cumbersome because
in general it is unclear what classical postprocessing one

FIG. 8. Overall classical postprocessing for the multi-time-mode
squashing model. The overall vacuum or “no-click” event is only
registered if all single-time mode measurements output a “no-click”
event. If the click pattern in the single-time-mode representation of the
multi-time-mode measurement contains only 0’s (1’s) or vacuum, it is
recorded as an overall 0 (1). Any other click pattern is recorded as an
overall double click. The classical postprocessing randomly assigns
the overall double clicks to the value 0 or 1 in the corresponding basis
with equal probability.

should choose. However, if the structure of the measurement
device is such that it has a single-time-mode squashing
model for a specific classical postprocessing, then there
exists an overall classical postprocessing such that a multi-
time-mode squashing model exists. We have the following
theorem.

Theorem 20. Multi-time-mode squashing model for the
active BB84 measurement: There exists a squashing model
with a single-mode qubit target measurement for the multi-
time-mode active BB84 measurement, no matter how often
one chooses to measure in either basis.

Proof. The proof relies on the fact that there exists a
squashing model for the single-time-mode device and in
particular on the orthogonality of the single-click and double-
click subspaces (see Sec. V B).

Classical postprocessing in the time domain. The classical
postprocessing in the time domain is defined by grouping
events that come from single-time-mode measurements. If
there is no click in any of the single-time-mode measurements,
we assign an “overall” vacuum to this event. We use “overall”
to mean the output of this first step in the classical postprocess-
ing. If the outcome of every single-time-mode measurement
is either 0 (1) or no click, we assign it to an overall 0 (1).
To any other click pattern we assign an overall double click.
These four types of events from a multimode measurement are
then forwarded to the classical postprocessing that allows a
single-time-mode squashing model.

In summary, the overall classical postprocessing for
the multi-time-mode active BB84 measurement device is
(cf. Fig. 8) as follows:

(i) If there is no click in any of the single-mode devices,
then we call the overall event a “no-click.”

(ii) If each single-mode device the event is either 0 (1) or
“no click,” and there is at least one click event, we call the
overall event 0 (1).

(iii) In the case of any other click pattern, we call the event
an “overall double click.”

(iv) The overall single clicks and vacuum events remain
unchanged.

(v) The overall double clicks are assigned with probability
1
2 to 0 or 1.

CP map for the classical postprocessing in the time domain.
In order to prove that there is a CP map that preserves the struc-
ture of the incoming state and is compatible with the provided
classical postprocessing, we note that according to Sec. IV A
we can (without loss of generality) perform a QND measure-
ment of the photon number on each of the single-time modes.

Schematically, the CP map on the overall system can be
constructed by the composition of CP maps as shown in Fig. 9.
After the QND measurement is done on each of the single-time
modes, we combine all time modes into one single-time mode.
This is done via a unitary map UJC that depends on the outcome
of the QND measurements. It is applied to consecutive pairs
of single-time modes (see Fig. 9). The first single-time mode
is then forwarded directly to a flag measurement (defined
shortly), whereas the second is an input to the next UJC. This
flag measurement is a projection on the vacuum state of the
first M − 1 time modes and is performed after the map UJC

has been applied on the M − 1 and M single-time modes.
Depending on the outcome of this measurement, a particular

012325-14



SQUASHING MODEL FOR DETECTORS AND . . . PHYSICAL REVIEW A 89, 012325 (2014)

FIG. 9. The CP map compatible with the time-mode classical
postprocessing. In the first step, the number of photons is determined
in every mode by performing a QND measurement. Then, a unitary
map Uk

JC is applied to the adjacent modes k and k + 1. This map can be
realized via a Jaynes-Cummings interaction, while the atomic degrees
of freedom are traced out afterwards. Last is a flag measurement
performed on the first M − 1 time modes. The state of mode
M is forwarded as input to the single-time-mode squashing map.
Depending on the outcome of the flag measurement, either �P or
�P⊥ is applied.

single-time-mode squashing map is applied to the state in time
mode M .

To explain this in more detail, the map UJC can be described
by using the Jaynes-Cummings model. This map is unitary but
depends on the total photon number in each mode (without
this knowledge it is impossible to perform the map). The
crucial property of this map is that it preserves the structure
of the particular type of incoming states independent of their
polarization α = +,× (cf. Appendix A in Ref. [6]):

U
I,II
JC [|NI ,0〉α〈NI ,0| ⊗ |NII ,0〉α〈NII ,0|]
= |0,0〉α〈0,0| ⊗ |NI + NII ,0〉α〈NI + NII ,0|,

U
I,II
JC [|0,NI 〉α〈0,NI | ⊗ |0,NII 〉α〈0,NII |]
= |0,0〉α〈0,0| ⊗ |0,NI + NII 〉α〈0,NI + NII |. (61)

Thus, we conclude that any state that produces an overall single
click will be mapped to either one of four states:

|0,0〉α〈0,0|⊗(M−1) ⊗
∣∣∣∣∣

M∑
k=1

Nk,0

〉
α

〈
M∑

k=1

Nk,0

∣∣∣∣∣ ,
(62)

|0,0〉α〈0,0|⊗(M−1) ⊗
∣∣∣∣∣0,

M∑
k=1

Nk

〉
α

∣∣∣∣∣0,

M∑
k=1

Nk

〉
.

Therefore, if the outcome of the flag measurement is vacuum
we know with certainty (due to the unitarity of the map UJC)
that the incoming multi-time-mode state would have produced
a single click in any single-time-mode measurement. If the
outcome of the flag measurement is not the vacuum, then we
know with certainty (again due to unitarity) that the incoming
state would have produced an overall double click in the multi-
time-mode measurement. By virtue of this, we proceed with
the single-time-mode squashing map �P from Sec. V if the
flag signals vacuum, and �P⊥ otherwise.

Note that this procedure is compatible with the overall CPP
scheme since the CP map in the time domain preserves the
structure of the single-click subspace as it can be deduced
from Eqs. (61) and (62). Since we are given that there is a
squashing model for the single-time-mode measurement, we
conclude the proof. �

Note that the generalization of this result to other mea-
surement devices is not straightforward. On one hand, for
qudit measurement devices, the first part of the proof holds
regardless of whether or not one measures in MUBs. Then, one
needs the final single-mode squashing map to exist in order to
claim the existence of the overall map. On the other hand, for
most of the passive devices, one would need to come up with
a flag that can distinguish between double and cross clicks,
because CPP schemes for these devices usually distinguish
between these types of clicks (see Sec. VII D).

Nonetheless there are two important corollaries from
Theorem 20.

Corollary 21. There is a squashing model with a qubit target
measurement for the multimode active six-state measurement
with noisy postprocessing.

Proof. The proof repeats the proof of Theorem 20 until the
point where one needs to apply the single-time-mode squash-
ing map. In this case, the map from Sec. VI C is applied. �

Corollary 22. There is a squashing model with a qubit target
measurement for the multimode passive BB84 measurement
with a CPP scheme that discards all cross-click events.

Proof. Since all cross-click events are thrown away, it is
sufficient to have the same flag as in the multimode active
BB84 measurement. More precisely, the squashing map is a
sequence of three maps. First, all cross clicks are projected onto
a multimode vacuum state. Second, the Jaynes-Cummings map
is applied and a flag measurement is done. Third, depending
on the flag measurement, the squashing map for the single-
time-mode active BB84 measurement is applied. �

X. SQUASHING MODEL FOR THE UNBALANCED
PHASE-ENCODED BB84 (PE BB84)

MEASUREMENT DEVICE

In the case of the unbalanced phase-encoded BB84 mea-
surement device (PE BB84), the relevant information is always
encoded in the phase between two different time modes that
enter a Mach-Zehnder interferometer (see Fig. 10). This phase
usually takes one of four values φ0 = 0,π/2,π,3π/2, which is
motivated by the corresponding QKD protocol (cf. Ref. [17]).
The long arm of the interferometer has a lossy phase modulator,
which can be adjusted to φ = 0,π/2 and whose loss is modeled
by a beam splitter with transmittance t . The signals pass
through the interferometer and then the modes are detected
by two threshold detectors with equal efficiencies η [see
Fig. 10(a)]. Each of the two detectors can accept signals in
three different time windows containing the modes (b1,b4),
(b2,b5), and (b3,b6), respectively. Due to the structure of the
device it is clear that the relevant information about the phase
is contained in the second time window since clicks in this
time window correspond to the interference between the first
and the second input time modes.

The question of the existence of a squashing model for
the unbalanced PE BB84 measurement is also practically
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FIG. 10. (Color online) The PE BB84 measurement device.
(a) Model of the device with imperfections: Two input modes
a carrying a relative phase φ0 = 0,π/2,π,3π/2 pass through a
Mach-Zehnder interferometer with a lossy phase modulator in the
longer arm (adjusted to either φ = 0 or π/2), and finally give rise
to six output modes b, detected by two threshold detectors of equal
efficiency η. (b) Equivalent model of the device with no imperfections
but with some predetection loss, which is absorbed in the channel
and is modeled by a beam splitter with transmittance η/2ξ , and an
unbalanced input beam splitter ξ = 1/(1 + t).

motivated. A change in the loss of the phase modulator
changes the measurement operators. For example, this implies
that for the purpose of a security proof, the lossless version
of the device, which is equivalent to the polarization BB84
measurement (see Sec. X A), can not be used anymore.

In order to not deal with losses and inefficient threshold de-
tectors directly, we can always consider detection by a lossless
interferometer with ideal threshold detectors but unbalanced
input beam splitter due to the loss in the phase modulator and
additional predetection loss due to the originally inefficient
threshold detectors (cf. Ref. [17]). Such a measurement device
is presented in Fig. 10(b). Since we are not interested in any
predetection losses but solely in the mode of operation of the
measurement device, we ignore the loss that is described by
the beam splitter with transmittance η/2ξ and consider the

ideal Mach-Zehnder interferometer with an unbalanced input
beam splitter with transmittance ξ .

The POVM elements of the PE BB84 measurement device
can be described by the mode operators bi that are related to
mode operators ai of the incoming signal (cf. Ref. [17]). The
input-output relations (up to an unimportant overall phase) for
the modes of interest are

b1 =
√

ξ

2
a1, b2,φ = e−iφ

√
(1 − ξ )

2
a1 −

√
ξ

2
a2,

b3 =
√

(1 − ξ )

2
a2, b4 =

√
ξ

2
a1, (63)

b5,φ = e−iφ

√
(1 − ξ )

2
a1 +

√
ξ

2
a2, b6 =

√
(1 − ξ )

2
a2.

Having these relations in mind, one can draw a connection
to the usual polarization measurement. It is not hard to see that
the measurements in the middle time window for different
settings of φ correspond to polarization measurements in
two conjugate bases. Moreover, if one combined clicks in
the first and in the third time windows, one would perform
a measurement that corresponds to the measurement in
the standard basis in the polarization measurement device.
Formally, for a lossless phase modulator (t = 1), we have the
following POVM elements:

F
2,0
Q = 1

2 |−〉〈−|, F
5,0
Q = 1

2 |+〉〈+|, (64)

F
2,π/2
Q = 1

2 |y+〉〈y+|, F
5,π/2
Q = 1

2 |y−〉〈y−|, (65)

F 1
Q + F 4

Q = 1
2 |0〉〈0|, F 3

Q + F 6
Q = 1

2 |1〉〈1|, (66)

where F
T,φ

Q is the POVM element on single-photon input in
the time window T and for the phase modulator set to φ.
Equations (64) and (65) establish the formal connection of the
lossless PE BB84 measurement (in the case where only events
from the second time window are taken into account) to the
active polarization BB84 measurement.

A. Target POVM elements and connection to the passive
BB84 measurement device

We choose the target measurement to be the full measure-
ment restricted to the single-photon and vacuum input. Since
the useful events are detected in the second time window, we
group the target POVM elements as follows:

F
2,φ

Q = |1〉2,φ〈1|,
F

5,φ

Q = |1〉5,φ〈1|, (67)

Fout,Q =
∑

i=1,3,4,6
φ=0, π

2

|1〉i,φ〈1|.

The reason why we write the POVM elements here in terms
of the output operators b will be more apparent in Sec. X C,
where we consider N -photon input states.

In terms of the input states, which we denote by
|0〉= a

†
1|vac〉 and |1〉 = a

†
2|vac〉, respectively, the POVM
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element for the outside clicks can be rewritten as

Fout,Q = (1 − ξ )|0〉〈0| + ξ |1〉〈1| = F
2,φ

Q + F
5,φ

Q , ∀ φ. (68)

This leads us to useful relations between the target POVM
elements and the Pauli matrices σα , α = x,y,z:

1√
ξ (1 − ξ )

(
F

2,0
Q − F

5,0
Q

) = σx,

1√
ξ (1 − ξ )

(
F

2, π
2

Q − F
5, π

2
Q

) = σy, (69)

1

2ξ − 1
(2Fout,Q − 12) = σz.

B. Classical postprocessing scheme for the PE BB84
measurement device

For a general input state with an undetermined number of
photons in the input modes, the basic detection events can
be characterized by means of patterns of clicks on the two
threshold detectors over the three time windows. The total
number of different events for each choice of the phase φ of the
modulator is 26 = 64. As we demonstrated at the beginning of
this section, we can consider a lossless PE BB84 measurement
device (cf. Fig. 10) by introducing some additional loss to the
channel and an unequal-ratio input beam splitter. It means that
a “no-click” pattern never occurs if the incoming signal was
not in a vacuum state. Therefore, for two phase settings of
interest φ = 0 and π/2, we have 126 possible basic events.

In what follows, we describe a basic event by a phase setting
φ and a click pattern C := (c1,c2,c3,c4,c5,c6), where each ci

is either 0 or 1 (no click or click) and the index i corresponds
to the index of the output optical mode (see Fig. 10). This
combination of indices provides an exact description of which
detector has clicked and when.

Since our target measurement is a restriction of the basic
measurement to the single-photon subspace, we are interested
in a CPP scheme where single clicks are preserved and the
rest of the postprocessing involves only multiple clicks. This
postprocessing needs to be valid in the terms that were set in
Sec. III B.

Using the linear dependency of the target POVM elements
in Eq. (68) we performed an exhaustive numerical search for
a valid CPP scheme. There are many CPP schemes that are
allowed by the linear dependencies. Here, we present the
only postprocessing that, as we will show shortly, allows a
completely positive squashing map:

(1) Single clicks in either of the detectors in the sec-
ond time window for either basis choice [i.e., events with
C = (0,1,0,0,0,0) or C = (0,0,0,0,1,0)] are assigned to the
corresponding single-photon events.

(2) Simultaneous clicks in the two detectors in only the
second time window for either basis choice [i.e. events with
C = (0,1,0,0,1,0)] are assigned with probability 1

2 to each of
the single-photon measurement outcomes for the same setting
of the phase φ.

(3) All events with clicks only in the first and the third time
windows (outside clicks) are assigned to an outside single-
photon measurement event.

(4) Any event with clicks in both the second and any of
the outer time windows is assigned with probability 1

2 to the

outside click event of the single-photon measurement event
and with probability 1

8 onto each of the four other events of
the single-photon measurement event.

C. Basic and full measurement POVM elements

Since the PE BB84 measurement device contains threshold
detectors, we can use the same argument as in Observation 8,
Sec. IV A, and consider the problem on the N -photon
subspace. From now on, we will only consider N -photon input
states. According to the properties of the target measurement
and the choice of the CPP scheme, we will distinguish between
the following basic POVM elements:

F
2,φ

N = |N〉2,φ〈N |,
F

5,φ

N = |N〉5,φ〈N |,

F
φ

in,dc,N =
N−1∑
k=1

|k〉2,φ〈k| ⊗ |N − k〉5,φ〈N − k|, (70)

Fout,N =
∑

φ=0, π
2

∑
mi�0∑

i=1,3,4,6 mi=N

|m1,m3,m4,m6〉φ〈m1,m3,m4,m6|,

Fin,out,N =1N − Fout,N −
∑

φ=0, π
2

(
F

φ

in,dc,N + F
2,φ

N + F
5,φ

N

)
.

The last three POVM elements correspond to a double click in
the second time window for the particular choice of the phase
φ, F

φ

in,dc,N , to any click not in the second time window, Fout,N ,
and to any cross click between the second and one or both
other time windows, Fin,out,N .

The complementarity condition gives us one more auxiliary
POVM element

Fin,N =
∑

φ=0, π
2

(
F

φ

in,dc,N + F
2,φ

N + F
5,φ

N

)
, (71)

where Fin,N is a POVM element corresponding to any click in
the second time window.

Note that neither Fin,N nor Fout,N depend on the setting of
the phase φ in the phase modulator. This can be seen if we
write these elements in terms of the incoming modes a1 and
a2:

Fin,N =
N∑

r=0

ξN−r (1 − ξ )r |r,N − r〉〈r,N − r|,
(72)

Fout,N =
N∑

r=0

ξ r (1 − ξ )N−r |r,N − r〉〈r,N − r|,

where |r,N − r〉 = 1√
r!(N−r)!

(a†
1)r (a†

2)N−r |vac〉. With this in
mind, we can write the full measurement POVM elements
as

F̃
b,φ

N = F
b,φ

N + 1

2
F

φ

in,dc,N + 1

8
Fin,out,N ,

F̃out,N = Fout,N + 1

2
Fin,out,N , (73)

φ = 0,
π

2
; b = 2,5.
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D. Positivity of the squashing map

With full measurement elements provided in Eq. (73), we
have that the adjoint of the squashing map �N has to fulfill the
following linear constraints:

�
†
N

[
F

b,φ

Q

] = F̃
b,φ

N ,

φ = 0,
π

2
; b = 2,5 (74)

�
†
N [Fout,Q] = F̃out,N .

As in the previous examples, we investigate the positivity
of the squashing map by investigating the positivity of the
corresponding Choi matrix τN = 1 ⊗ �

†
N [|ψ+〉〈ψ+|]. The

Choi matrix will have no free parameters since the target
POVM elements can be seen as an operator basis on the
target Hilbert space. Using the decomposition of the projector
|ψ+〉〈ψ+| in terms of Pauli matrices [see, e.g., Eq. (33)]
and employing the established connection between the Pauli
matrices and the target POVM elements [Eq. (69)], we have

4(1 ⊗ �
†
N )[|ψ+〉〈ψ+|]

= 12 ⊗ 1N + 1√
ξ (1 − ξ )

σx ⊗ (
F̃

2,0
N − F̃

5,0
N

)
− 1√

ξ (1 − ξ )
σy ⊗ (

F̃
2, π

2
N − F̃

5, π
2

N

)
+ 1

2ξ − 1
σz ⊗ (2F̃out,N − 1N )

= 12 ⊗ 1N + 1√
ξ (1 − ξ )

σx ⊗ (
F

2,0
N − F

5,0
N

)
− 1√

ξ (1 − ξ )
σy ⊗ (

F
2, π

2
N − F

5, π
2

N

)
+ 1

2ξ − 1
σz ⊗ (Fout,N − Fin,N ). (75)

Here, we used the classical postprocessing equation (73) in
order to write the last equation in terms of the basic POVM
elements.

When we write the basic POVM elements in terms
of input mode operators a1,a2 [Eqs. (63)], we can show
that F

b,φ

N = 2−N |Nb〉〈Nb| where |Nb〉 is a normalized vec-
tor. Moreover, from the same equations it follows that
|〈N2|N5〉|2 = (2ξ − 1)2N . Therefore, the traceless opera-
tor F

2,φ

N − F
5,φ

N = (|N2〉〈N2| − |N5〉〈N5|)/2N of rank 2 has
eigenvalues ±

√
1 − (2ξ − 1)2N .

From Eq. (72) it follows that

Fout,N − Fin,N

=
N∑

r=0

(
ξ r

(1 − ξ )r−N
− (1 − ξ )r

ξ r−N

)
|r,N − r〉〈r,N − r|.

(76)

With these relations in mind, we can easily calculate the
minimal eigenvalue of the Choi matrix in Eq. (75) numerically
for any finite number N of incoming photons. We use
Eq. (76) in order to represent the last term in Eq. (75) as
an (N + 1) × (N + 1) matrix.
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FIG. 11. (Color online) Minimum eigenvalue λmin(t,N ) of the
Choi matrix τN of the adjoint squashing map �

†
N for the PE BB84

measurement device as a function of the loss t in the phase modulator
in the long arm of the Mach-Zehnder interferometer. While for N = 2
the minimal eigenvalue of τN stays constantly zero, it becomes strictly
positive for N > 2 and any t ∈ (0,1].

In Fig. 11, we present the minimum eigenvalue of the Choi
matrix as a function of the loss in the phase modulator t [recall
that ξ = 1/(1 + t)] for different numbers of incoming photons
N . One can readily see that for any t ∈ (0,1], λmin(t,N ) is
non-negative. In fact, the minimum eigenvalue of the Choi
matrix is strictly positive for any N > 2. Moreover, it is clear
from our numerics that λmin(t,N ) is a nondecreasing sequence
in N for any t ∈ (0,1], i.e., λmin(t,N + 1) � λmin(t,N ) for all
t ∈ (0,1].

We will underpin our numerical findings by investigating
asymptotical behavior of λmin(t,N ) analytically. We derive a
lower bound on the minimal eigenvalue of the Choi matrix τN

in two steps. First, as in the proof of Theorem 7, we again use
Weyl’s inequalities in order to derive a lower bound on the
sum of the Hermitian matrices in Eq. (75). Second, we use the
fact that λmin(A ⊗ B) � λmin(A)λmin(B). After some algebra,
the bound for all N is given by

4λmin[t,N ] � 1 − 2(1 + t)

2N
√

t

√
1 −

(
1 − t

1 + t

)2N

−
(

1
(1+t)N−1 − tN

(1+t)N−1

1 − t

)
=: fN (t). (77)

The function fN (t) is a monotonically increasing sequence
of N for any t ∈ (0,1], i.e., fN+1(t) − fN (t) � 0. Moreover, it
holds that limN→∞ fN (t) = 1. Therefore, for any ε there exists
an N0 such that for any N > N0, |fN (t) − 1| < ε. Since N0

is finite and for any finite N0 one can calculate the minimum
positive eigenvalue of the Choi matrix explicitly, it follows
that, for all N > N0,

4λmin(t,N ) � 1 − ε � 0, (78)

which concludes the proof of the positivity of the adjoint of the
squashing map �† and implies the existence of the squashing
model for the PE BB84 measurement device with a lossy phase
modulator.
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XI. APPLICATION OF SQUASHING MODELS
TO QKD PROTOCOLS

In this section, we shortly explain the application of
squashing models for QKD. We start with the standard
usage, followed by an advanced application, first put forward
in Ref. [26], which provides slightly better key rates for
various protocols. In the end, we exemplify their difference
for a BB84 protocol suffering from additional double-click
events on the receiver’s side. We demonstrate the standard
usage of squashing models in the security analysis of QKD
using entanglement-based QKD protocols, but all results
straightforwardly apply also to prepare-and-measure schemes
that do not use physical entanglement.

Let us start with a quick review of the essentials about
QKD: An entanglement-based QKD protocol is realized in
two phases: in a first phase, the quantum phase, the two
legitimate parties Alice and Bob perform measurements on
their share of tripartite pure states, which can be thought of as
being prepared by the adversary, Eve. In a subsequent second
phase, the classical communication phase, Alice and Bob use
an authenticated public channel to create a shared secret key
from their data. The classical communication phase includes,
typically, a sampling of their jointly correlated data that have
been created in the quantum phase, a key map, error correction,
and privacy amplification. The key map fixes which part
of the data becomes key material. In our formulation, we call
these data X and we assume without loss of generality that
they are in Alice’s hand. In error correction, Alice and Bob
exchange additional information about X using their available
data to make sure that also Bob has a copy of the key material.
At this stage, the adversary could still be correlated with
X, thus having information about it. Privacy amplification
turns the key material X into a secret key K by applying
some privacy amplification function out of a predefined set
of functions. The resulting key can be shown to be arbitrarily
close to a perfectly secure key. For our purpose, we do not need
to deal with the exact security statement, or with finite-size
effects in QKD. Instead, we deal only with the secret-key rate
in what is known as the infinite-key limit.

In the security analysis, we can calculate the guaranteed
achievable secret-key rate R as number of secret-key bits per
bit of key material X as

R :=
(

inf
ρABE∈�ABE

S(X|E)

)
− δleak, (79)

where S(X|E) is the conditional von Neumann entropy of
Eve on the key material X, minimized over a set of potential
underlying states ρABE (which can be thought of without
loss of generality as pure states). This set is constrained
by Alice’s and Bob’s observations during sampling in the
classical communication phase. Each state ρABE represents an
eavesdropping strategy which leads to particular conditional
states ρx

E in Eve’s hand conditioned on an element x of the
key material X. These states summarize that part of Eve’s
knowledge about the key material which stems from her
preparation of (or interaction with) the physical systems on
which Alice and Bob perform their measurements. The von
Neumann entropy S(X|E) is a function of these states and the
probability of occurrence of the elements of X, as influenced

by the public communication protocol. The last term δleak is
the information content about the key material X that leaks to
Eve during the classical communication phase, including, for
example, the number of bits per key material that have been
announced publicly during error correction.

Squashing models can now be used to simplify the
minimization calculation in the key-rate expression. This is
of particular importance for optical implementations of QKD
where, for example, Bob performs some type of photon-
counting measurements, which need to be described on the
infinite-dimensional Hilbert space of optical modes. Thus, the
set �ABF E can have a rather complex form: it is given by all
pure tripartite quantum states ρABE which satisfy the condition
that they give the observed correlations of data for Alice and
Bob (including postprocessing on Bob’s side).

Theorem 23. The key rate RF using the full measurement
can be lower bounded by a key rate using the target measure-
ment RT as

RF � RT :=
(

inf
ρABT E∈�ABT E

S(X|E)

)
− δleak, (80)

where ρABT E has now the lower-dimensional target system
BT as one component. The set �ABT E contains all such
density matrices which are again constrained by the observed
correlations for Alice and Bob. These constraints can now be
formulated using the target measurements.

The same statement can be made for the measurement on
system A if that measurement admits a squashing model.
To verify the theorem, we can follow a simple argument
which is illustrated in Fig. 12. As a first step, note that an
eavesdropping strategy against the full measurement protocol,
as represented by a state ρABF E and shown in Fig. 12(a), is
now equivalent to an eavesdropping strategy described by the
state (1A ⊗ �B ⊗ 1E)[ρABF E], as the squashing map is applied
to system BF without loss of generality before the target
measurement is being performed, as shown in Fig. 12(b). In
the next step, we enlarge the set of possible eavesdropping
strategies by directly admitting all density matrices of the
type ρABT E that are compatible with the observations, thereby
dropping the constraint that it must be obtained by applying
the squashing map � to the full system [see Fig. 12(c)]. As a
result of enlarging the set of allowed eavesdropping strategies
over which the infimum in Eq. (79) is taken, the resulting key
rate can only decrease.

Note that the above theorem applies to the full measure-
ments, that is, Bob performs the postprocessing on his basic
measurement results. Next, we draw the attention to the fact
that the above key rate can be improved, as shown by Ma and
Lütkenhaus in Ref. [26]. The motivation for this improvement
comes from the fact that the postprocessing of the basic
measurements helps to establish a squashing model to simplify
the evaluation of the conditional entropy S(X|E) over all
eavesdropping strategies. However, the same postprocessing,
typically, increases the amount of communication required
during error correction from δbasic

leak to δleak � δbasic
leak . The key

observation in Ref. [26] is that these two points can be
separated: we are allowed to use postprocessed data to
formulate constraints on ρABT E to evaluate S(X|E), but we
do not actually need to apply the postprocessing to our data,
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FIG. 12. Explanation of the standard squashing models applica-
tion in QKD: Case (a) represents a general attack against the full
measurement scheme, while case (b) shows the reformulation of the
same attack using the squashing model which results from enforcing
the application of the squashing map on system B of the general
attack. Case (c) then represents a general attack of the scheme using
the target measurement, which now clearly contains the case (b), and
thus case (a). Thus, the key rate of case (c) is a lower bound of the
key rate in case (a), as stated in Theorem 23.

as long as the key material variables X are not affected by the
postprocessing. Formally, we can state this as follows.

Theorem 24. For a QKD scheme, which uses basic measure-
ments, postprocessing of the basic measurements that leads to
full measurements and allows for squashing model with some
target measurement, we can find the key rate

R
imp
ABT

�
(

inf
ρABT E∈�ABT E

S(X|E)

)
− δbasic

leak . (81)

This key rate holds as long as the key material X is unaffected
by the postprocessing. It uses the squashing model to estimate
the term involving S(X|E), but shows a reduced value of the
term δbasic

leak which represents the amount of information on X

that leaks during the error correction phase of QKD based on
Bob’s basic measurement events.

To illustrate the effect, consider an example of the BB84 and
compare the key rates when one applies either Theorems 23
or 24. If we assume an initial symmetric data behavior of the

type

P (X,Y )=

⎧⎪⎨
⎪⎩

P (0,0) = P (1,1) = 1
2Psingle(1 − e),

P (0,1) = P (1,0) = 1
2Psinglee,

P (0,d) = P (1,d) = 1
2 (1 − Psingle),

(82)

with Psingle being the probability to obtain a single-click
event and e as the error rate within the single-click events.
Postprocessing that allows a squashing model for these
measurements involves a random assignment of double clicks
to the values 0 and 1, which will raise the error rate from e to
ePP := Psinglee + 1

2 (1 − Psingle). Using the squashing model,
we find

inf
ρABT E∈�ABT E

S(X|E) � 1 − h[ePP ],

where h[x] = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy function.

Now, let us have a look at the amount of error correction
we have to do, as quantified by δleak (with postprocessing)
and δbasic

leak (without postprocessing). Assuming that we can
reach the Shannon limit for error correction, we find δleak =
h(ePP ), while we have δbasic

leak = h[(1 − Psingle) + Psingleh2(e)].
Consequently, we find for the key rate according to
Theorem 23

RABT
= 1 − 2h[ePP ],

while we can find an improved key rate according to
Theorem 24

R
imp
ABT

= 1 − h[ePP ] − h[(1 − Psingle) + Psingleh2(e)],

which is a strict improvement of the rate due to the concavity
of the binary entropy function.

XII. CONCLUSION AND OUTLOOK

In this work, we have further developed the ideas of
Ref. [10]. We gave a rigorous definition of the squashing model
and precisely defined the role of classical postprocessing in this
setting. In summary, the squashing models give us a tool for
the truncation of Hilbert spaces under adversarial conditions.
More precisely, in the context of quantum communication
in the presence of an adversary that can tamper with the
transmitted signals by employing their high dimensionality, it
is equivalent to the scenario where one only performs the target
measurement instead of a high-dimensional measurement.
This undoes the adversary’s advantage because there is no in-
formation that can be gained by making a measurement on the
high-dimensional system above what can be gained from the
target measurement on the lower-dimensional system. Thus,
the squashing models can be effectively applied, for example,
in the optical implementations of QKD or coin tossing.

For QKD applications, we constructed squashing models
for various types of measurement devices, which are used in
optical implementations of corresponding QKD protocols. For
instance, this implies that a security proof of these protocols
can be generalized from single photons to the multiphoton
case.

Several generalizations can be made for results presented
in this work. First of all, it would be interesting to generalize
the results on the qudit measurement to the case where the
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input beam splitter has less than d + 1 output arms. Our
intuition strongly suggests that the squashing model might
exist if the number of output arms is strictly less than d + 1.
This is due to the fact that removing the output arms would
effectively introduce free parameters in the Choi matrix of
the squashing map, which is usually enough to guarantee
the complete positivity of the corresponding squashing map
(cf. active BB84 and six-state measurements). However, these
findings would heavily rely on numerical findings. It would be
therefore desirable to find some type of symmetry argument
that can be used to tackle this problem analytically.
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APPENDIX A

In this Appendix, we summarize some known facts about
the natural representation of superoperators. Further details on
this topic can be found in Ref. [31].

Remark A1. Equivalence of the natural and Choi-
Jamiołkowski representations. Let � be a superoperator
�(X) = Y , with X ∈ L(HA) and Y ∈ L(HB) being linear
operators. Let {|em〉} and {|fμ〉} denote orthonormal bases
in HA and HB , respectively. On the one hand, the natural
representation of � is defined as a map

�� : vec(X) → vec(�(X)), (A1)

where vec(X) denotes columnwise vectorization of matrix X.
�� is a linear operator �� ∈ L(HA ⊗ HA,HB ⊗ HB) which
can be represented by a matrix

��μm
νn

= 〈fμ,fν |��|em,en〉. (A2)

On the other hand, the Choi-Jamiołkowski representation is
defined by the map [19,20]

τ� : L[L(HA),L(HB)] → L(HA ⊗ HB) (A3)

and can be represented by a matrix

τ�nm
νμ

= 〈en,fν |τ�|em,fμ〉. (A4)

FIG. 13. Beam splitter presented as a four-port device with a0

and a1, b0 and b1 being the input and output modes, respectively.

One can readily see that �� is a reshuffled version of the τ�:

〈fμ,fν |τR
� |em,en〉 = 〈en,fν |τ�|em,fμ〉. (A5)

APPENDIX B

Beam splitters are well-studied objects in quantum optics
[32,33]. They are considered as four-port devices with two
input and two output ports (Fig. 13). For a beam splitter with
transmittance T and reflectivity R (R + T = 1), the following
relations between the input and output modes hold:

b0 = (
√

T a1 + eiα
√

Ra0),
(B1)

b1 = (
√

T a0 + ei(π−α)
√

Ra1),

provided an α phase shift between the reflected and transmitted
beams. Without loss of generality, one can set α = 0.

Both the transmittance and the reflectivity of the beam
splitter may depend on the frequency, direction of propagation,
and on the polarization of the incident light. For usual 50:50
beam splitter, the relations simplify to

b0 = 1√
2

(a0 + a1),

(B2)

b1 = 1√
2

(a0 − a1).

APPENDIX C

Here, we give explicit formulas for the matrix represen-
tations of the Choi matrices used for the squashing map
in the BB84 active basis measurement’s squashing model:
M(τP,N,fix) and M(τP,N,open). We also discuss how to solve
M(τ ) � 0 to ensure the complete positivity of the squashing
map. The Choi matrices are given by

M
(
F

(0,z)
P,N − F

(1,z)
P,N

) ≡ Mz =

⎛
⎜⎜⎝

1 0 s s

0 −1 −s (−1)N+1s

s −s 0 [1 − (−1)N ]s2

s (−1)N+1s [1 − (−1)N ]s2 0

⎞
⎟⎟⎠ ,

M
(
F

(0,x)
P,N − F

(1,x)
P,N

) ≡ Mx =

⎛
⎜⎜⎝

0 [1 − (−1)N ]s2 s −s

[1 − (−1)N ]s2 0 s (−1)N+1s

s s 1 0
−s (−1)N+1s 0 −1

⎞
⎟⎟⎠ ,

012325-21



O. GITTSOVICH et al. PHYSICAL REVIEW A 89, 012325 (2014)

M(1M ) =

⎛
⎜⎝

1 0 s s

0 1 s (−1)Ns

s s 1 0
s (−1)Ns 0 1

⎞
⎟⎠ ,

M
[(

�P
N

)†
(σy)

] ≡ iS = i

⎛
⎜⎝

0 x1 x2 x3

−x1 0 x4 x5

−x2 −x4 0 x6

−x3 −x5 −x6 0

⎞
⎟⎠ , (C1)

where xi , i = 1, . . . ,6, are real free parameters and s = 2−N/2. The overall 8 × 8 matrix, which needs to be positive, is then
given by

M(τP,N ) =
(

M(1N ) + Mz Mx + S

Mx − S M(1N ) − Mz

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 2s 2s 0 δNs2 + x1 s + x2 x3 − s

0 0 0 0 δNs2 − x1 0 x4 + s x5 + (−1)N+1s

2s 0 1 δNs2 s − x2 s − x4 1 x6

2s 0 δNs2 1 −s − x3 (−1)N+1s − x5 −x6 −1
0 δNs2 − x1 s − x2 −x3 − s 0 0 0 0

δNs2 + x1 0 −x4 + s −x5 + (−1)N+1s 0 2 2s (−1)N2s

s + x2 s + x4 1 −x6 0 2s 1 −δNs2

−s + x3 (−1)N+1s + x5 x6 −1 0 (−1)N2s −δNs2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C2)

where δN = 1 − (−1)N . The matrix M(τP,N ) is positive if and
only if each of its principal minors is positive. This fixes all
free parameters to be

x1 = x6 = δNs2,

x3 = x4 = −s, (C3)

x2 = (−1)Nx5 = s.

APPENDIX D

Here, we provide some technical details used for the
construction of the squashing model of the active six-state
measurement device for an intermediate postprocessing in
Sec. VI C. In particular, we show the positivity of the matrix
τP,N,new(p) from Eq. (43) for p � 1

3 . First of all, for small
integers N we observe that the critical value of p is equal
to 1

3 . For example, we need p to exceed this value for
N = 3 in order matrix to be positive. Then, one can check
directly that the matrix of τP,N,new(p = 1

3 ) is non-negative
for N = 1,2, . . . ,10. After this is done, one can use the
Gerschgorin disk theorem [34] in order to prove that all
eigenvalues strictly lie on the positive part of the real axis.
One can give an upper bound on each of the disk’s (there are
12 of them) radii. Each bound is a monotonically decreasing
function of N , and for N > 10 the union of 12 disks lies on the
part of the complex plane representing the eigenvalues of the
matrix Reλ > 0. This implies the positivity of the eigenvalues
since the matrix is Hermitian and all its eigenvalues are real.

APPENDIX E

Here, we derive the POVM elements for the qudit measure-
ment device from Sec. VIII. Formally, we will use b† and b to
describe creation and annihilation operators of the output and
a† and a to describe creation and annihilation operators of the

input of the measurement device from Fig. 7. Assuming that
the input state has N photons, we have the following POVM
elements in terms of output operators b† and b:

F
i,α
N = 1

N !
(b†i,α)N |0〉〈0|(bi,α)N,

F α
mc,N =

∑
mk>0∑
mk=N

d⊗
i=1

1

mk!
(b†i,α)mk |0〉〈0|(bi,α)mk , (E1)

Fcc,N = 1N −
d∑

α=0

(
Fα

mc,N +
d∑

i=1

F
i,α
N

)
.

Here, F
i,α
N denotes a single click in detector i of the detection

module Mα (basis α). Fα
mc,N denotes a multiclick for which

several detectors of the same detection module Mα have
clicked, whereas Fcc,N denotes any cross click between
different detection modules.

In order to write the POVM elements in terms of input
operators a† and a, one needs to know the input-output
relations for the linear optical network. For an unbiased version
[pα = 1/(d + 1) for all α] of the beam splitter in Fig. 7, the
input and output modes are connected by the Fourier matrix:

bα,q =
d∑

β=0

Uα,βaβ,q, with q = 1 . . . d

Uα,β = (d + 1)−
1
2 e

2πi
d+1 αβ. (E2)

Now, we can substitute these relations in Eq. (E1). We note that
on the input side only the mode aβ,q, q = 1 . . . d, is occupied.
Whence, we can project the rest of the a’s on the vacuum
state. After some algebra, the POVM elements in terms of
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input modes eventually become

F
i,α
N = (d + 1)−N |N〉i,α〈N |,

F α
mc,N = (d + 1)−N

(
1N −

∑
i

|N〉i,α〈N |
)

, (E3)

Fcc,N =
(

1 − 1

(d + 1)N−1

)
1N .

APPENDIX F

In this Appendix, we provide the proof of Proposition 17
from Sec. VIII.

Proof of Proposition 17. The positivity is checked by
proving that the Choi matrix of the map �

†
P,N is positive

semidefinite. If d is a prime number, the maximally entangled
state can be decomposed in the the chosen operator basis
{Zα

d ,(XdZ
α
d )k}α,k , α = 0, . . . ,d − 1, k = 1, . . . ,d − 1 [one

can see this after some algebra involving Eqs. (55)] as

|ψ+〉〈ψ+| = 1

d2
1d ⊗ 1d + 1

d2

d−1∑
k=1

Z−k
d ⊗ Zk

d

+ 1

d2

d−1∑
α = 0
k = 1

(
XdZ

−α
d

)k ⊗ (
XdZ

α
d

)k
. (F1)

Moreover, we point out that one can relate {Zα
d ,(XdZ

α
d )k}α,k

to the target POVM elements (58):

Zk
d = (d + 1)

d−1∑
i=0

ωikF
0,i
1 ,

(F2)(
XdZ

α
d

)k = (d + 1)
d−1∑
i=0

ωikF
α+1,i
1 .

We prove the positivity in two steps.
Step 1. N = 1: When the QND measurement signals that

one photon enters the measurement device, the squashing
map does not have to do anything and �† = 1. Clearly, it
is completely positive in this case.

Step 2. N � 2: When the QND measurement signals the
presence of more than one photon in the incoming signal, the
squashing map has to be nontrivial. The proof of its complete
positivity has several technical steps.

First of all, let us apply 1 ⊗ �
†
P,N to the second term in

Eq. (F1). We omit the overall factor of 1/d2 for brevity:

d−1∑
k=1

Z−k
d ⊗ �

†
P,N

[
Zk

d

]

=
d−1∑

r,s = 0
k = 1

(d + 1)2ω(s−r)kF̃
r,0
1 ⊗ F̃

s,0
P,N

= (d + 1)2

(
d

d−1∑
r=0

F̃
r,0
1 ⊗ F̃

r,0
P,N −

d−1∑
r,s=0

F̃
r,0
1 ⊗ F̃

s,0
P,N

)
,

(F3)

where we used the first relation in Eq. (F2) and the identity∑d−1
k=1 ω(s−r)k = dδrs − 1 for ω = e

2πi
d . From the form of the

basic POVM elements [Eq. (57)] and the form of the full
measurement POVM elements [Eq. (59)], it follows that

d−1∑
r=0

F̃
r,α
P,N = 1

d + 1
1P,N ∀ α. (F4)

Note that this can also be concluded by a simple normalization
argument: the POVM elements corresponding to clicks in
one of the detector modules should sum up to something
proportional to the identity. The coefficient of proportionality
is equal to the probability pα = 1/(d + 1) of the generalized
balanced input beam splitter.

Hence,

d−1∑
k=1

Z−k
d ⊗ �

†
P,N

[
Zk

d

]

= d(d + 1)2
d−1∑
r=0

F̃
r,0
1 ⊗ F̃

r,0
P,N − 1d ⊗ 1P,N . (F5)

Second, let us consider the action of 1 ⊗ �
†
P,N on the third

term in Eq. (F1), while omitting the overall factor of 1/d2

again for brevity:

d−1∑
α = 0
k = 1

(
XdZ

−α
d

)k ⊗ �
†
P,N

[(
XdZ

α
d

)k]

= (d + 1)2
d−1∑

r,s,α = 0
k = 1

ω(r+s)kF̃
r,−(α+1)
1 ⊗ F̃

s,α+1
P,N

= d(d + 1)2
d−1∑

r,α=0

F̃
r,−(α+1)
1 ⊗ F̃

d−r,α+1
P,N − d1d ⊗ 1P,N .

(F6)

Here, we used the second relation in Eq. (F2), the identity∑d−1
k=1 ω(r+s)k = dδd,r+s − 1 for ω = e

2πi
d , and Eq. (F4).

Putting Eqs. (F5) and (F6) together, we arrive at

d21 ⊗ �
†
P,N [|ψ+〉〈ψ+|]

= d(d + 1)2
d−1∑
r=0

F̃
r,0
1 ⊗ F̃

r,0
P,N

+ d(d + 1)2
d−1∑

r,α=0

F̃
r,−(α+1)
1 ⊗ F̃

d−r,α+1
P,N − d1d ⊗ 1P,N .

(F7)

The positivity of the last expression is proven by expanding
the full measurement POVM elements in terms of the basic
POVM elements. For that, we reformulate the first term in
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Eq. (F7). According to Eqs. (57) and (G2) for α = 0, we have

d(d + 1)2
d−1∑
r=0

F̃
r,0
1 ⊗ F̃

r,0
P,N

= d(d + 1)2
d−1∑
r=0

F̃
r,0
1 ⊗ F̃ r,0

any

+ (d + 1)

(
1 − 1

(d + 1)N−1

) d−1∑
r=0

F̃
r,0
1 ⊗ 1P,N

= d(d + 1)2
d−1∑
r=0

F̃
r,0
1 ⊗ F̃ r,0

any

+
(

1 − 1

(d + 1)N−1

)
1d ⊗ 1P,N , (F8)

where F̃ r,0
any = F

r,0
P,N + F 0

P,N/d and we used Eq. (F4) for the
qudit part (N = 1) of the tensor product.

For the second term in Eq. (F7), we have

d(d + 1)2
d−1∑

r,α=0

F̃
r,−(α+1)
1 ⊗ F̃ d−r,α+1

any

= d(d + 1)2
d−1∑

r,α=0

d

pd−αpα+1
F̃

r,−(α+1)
1 ⊗ F̃ r,α+1

any

+ (d + 1)

(
1 − 1

(d + 1)N−1

) d−1∑
r,α=0

F̃
r,−(α+1)
1 ⊗ 1P,N

= d(d + 1)2
d−1∑

r,α=0

F̃
r,−(α+1)
1 ⊗ F̃ r,α+1

any

+ d

(
1 − 1

(d + 1)N−1

)
1d ⊗ 1P,N , (F9)

where F̃ r,α+1
any = F

d−r,α+1
P,N + Fα+1

P,N /d.
Substituting Eqs. (F8) and (F9) into (F7) yields

d21 ⊗ �
†
P [|ψ+〉〈ψ+|]

= d(d + 1)2
d−1∑
r=0

(
F̃

r,0
1 ⊗ F̃ r,0

any +
d−1∑
α=0

F̃
r,−(α+1)
1 ⊗ F̃ r,α+1

any

)

+
(

1 − 1

(d + 1)N−2

)
1d ⊗ 1P,N . (F10)

While the first term on the right-hand side of the previous
equation is strictly positive, the eigenvalues of the second
one are all equal to 1 − 1

(d+1)N−2 and are non-negative for any
N � 2. This finishes the proof of the second step and of the
whole proposition. �

APPENDIX G

In this Appendix, we provide the proof of Remark 19 from
Sec. VIII.

Proof of Remark 19. First note that all basic POVM
elements for unequal probabilities pα generalize from

Eq. (57) to

F
i,α
N = pN

α |N〉i,α〈N |,

F α
mc,N = pN

α

(
1N −

∑
i

|N〉i,α〈N |
)

, (G1)

Fcc,N =
(

1 −
d∑

α=0

pN
α

)
1N.

According to the postprocessing [Eq. (59)], the full measure-
ment POVM elements then become

F̃
i,α
N = pN

α

⎛
⎝|N〉i,α〈N | − 1

d

d∑
j=1

|N〉j,α〈N |
⎞
⎠

+ (d + 1)pN
α + 1 − ∑d

β=0 pN
β

d(d + 1)
1N . (G2)

Let us consider the map �P⊥,N , which is applied when an
incoming N -photon state triggers the P⊥ flag, i.e., will with
certainty produce a non-single click. We assume that �P⊥,N

fulfils the linear constraints in Eq. (60). Then, the probability
of seeing a click in the ith detector of the detection module
Mα is given by

p(i,α) = Tr
(
ρ⊥

N F̃
i,α
N

) = Tr
(
�P⊥ [ρ⊥

N ]F̃ i,α
1

)
= Tr

(
1DF̃

i,α
1

)
d

= 1

d
, (G3)

where we used the fact Tr(A†B) = Tr(AB†). The same
probability can be reexpressed as

p(i,α) = Tr
(
ρ⊥

NP⊥F̃
i,α
N P

†
⊥
) = Tr

(
ρ⊥

N F̃
i,α
P⊥,N

)
. (G4)

By virtue of Eq. (G2),

F̃
i,α
P⊥,N = (d + 1)pN

α + 1 − ∑d
β=0 pN

β

d(d + 1)
1P⊥,N , (G5)

and hence

p(i,α) = (d + 1)pN
α + 1 − ∑d

β=0 pN
β

d(d + 1)
. (G6)

Finally, a direct comparison of Eqs. (G3) and (G6) implies that

(d + 1)pN
α + 1 − ∑d

β=0 pN
β

d(d + 1)
= pα

d
(G7)

must hold for any N and for any α. Taking the limit N → ∞
in the last equation, we immediately see that the only beam-
splitter ratio that respects the linear constraints is the one with
pα = 1/(d + 1). �
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