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Entangling power of two-qubit gates on mixed states
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The ability to reach a maximally entangled state from a separable one through the use of a two-qubit unitary
operator is analyzed for mixed states. This extension from the known case of pure states shows that there are at
least two families of gates which are able to give maximum entangling power for all values of purity. It is notable
that one of this gates coincides with a maximum discording one. We give analytical proof that such gate is indeed
a perfect entangler at all purities and give numerical evidence for the existence of the second one. Furthermore,
we find that there are other gates, many in fact, which are perfect entanglers for a restricted range of purities.
This highlights the fact that many perfect entangler gates could in principle be found if a thorough analysis of
the full parameter space is performed.
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I. INTRODUCTION

Entanglement is a nonlocal resource which has been widely
investigated [1] and applied to quantum information tasks such
as quantum communication [2], quantum computation [3–5],
and quantum teleportation [6]. For many years it was thought
to be the main source of quantum advantage with respect
to classical information and computation tasks. However,
in recent years a new figure of merit for quantumness, the
quantum discord [7], has attracted much attention as another
possible, inequivalent, source of advantage (see Ref. [8] for
a review on this measure). Because it is not anymore clear
where the source of advantage lies, it is of theoretical interest
to check what could be the main differences between these two
measures and their application to quantum information tasks.
Since they coincide for pure states, the crux of this situation
might revolve around mixed states, and therefore it is of crucial
interest to move to the realm of mixed states.

The problem of finding the unitary operators which are able
to produce maximum entanglement from two-qubit separable
pure states was intensively studied some years ago by several
authors (see, for example, Refs. [9–17]), but the extension
to mixed states has remained largely unexplored [18]. In the
multiqubit scenario, creation of large scale W states through
fusion by using Toffoli and Fredkin (three-qubit) gates [19,20]
and transformation of Dicke states of any size through tailored
gates has been proposed also in the pure-state setting [21],
while it would be of interest to extend these results to mixed
states. Also recently, the generation of maximum quantum
discord by two-qubit gates was studied in Ref. [22], where
they found one family of gates able to generate maximum
discord from classical-classical states (i.e., states ρ

μ
cc. with

purity μ = Tr[(ρμ
cc.)2]) valid for all purities (i.e., all possible

values of mixedness). This family included the
√

SWAP gate. In
addition, it was found that other gates could produce maximum
discord for whole ranges of purities, such as, for example, the
CNOT gate which is perfect discorder for all purities except
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for the range of rank-2 states. With these intriguing results in
mind, one might wonder whether those gates are also perfect
entanglers and why. We set out to give a first step in answering
this question.

In this work we will show analytically that the perfect
discorder gate found in Ref. [22] is also a perfect entangler
for all purities. Furthermore, we will also show that the gates
which were found to be perfect discorders only for partial
range of purity in Ref. [22] are still perfect entanglers for
the same range. This is an amazing coincidence, considering
that entanglement and discord are two measures with a very
different definition, and is worthy of further work, since
probably some fundamental insight can be gained from its
study.

We will also provide strong numerical evidence that the
family of perfect entangler gates to which the CNOT gate
belongs are indeed so for all range of purities. In addition,
we will discover many more families which are able to reach
maximum entanglement for partial ranges of purity, something
which highlights the need for a more thorough investigation.

II. ENTANGLING POWER OF A UNITARY

Despite several definitions have been used in the literature,
we will focus in the following:

EPμ(U ) = max
ρ

μ
sep

EF

[
Uρμ

sepU
†], (1)

where ρ
μ
sep is a separable state of purity μ (i.e., Tr[(ρμ

sep)2] = μ)
and EF (ρ) is the entanglement of formation of ρ:

EF (ρ) = min
pk,ρk

∑
k

pkE(ρk), (2)

i.e., the minimum average entanglement of all possible
ensemble decompositions of ρ, where by E(.) the entropy of
entanglement E(ρAB) = S(ρA) = S(ρB) is meant, with S(.)
being the von Neumann entropy. This measure gives the
maximum value of entanglement that can be achieved by a
given unitary U from any possible separable state of purity
μ (purity is not changed by unitaries). Any two-qubit unitary
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operator can be expressed in Cartan form [13] by

U = (L1 ⊗ L2)Uc(αx,αy,αz)(L3 ⊗ L4), (3)

Uc(αx,αy,αz) = exp

⎛
⎝−i

∑
k=x,y,z

αkσk ⊗ σk

⎞
⎠ , (4)

where σk are the usual Pauli matrices and Li are local rotations.
Since entanglement is not increased by local operations, we
can assign equivalence classes to every unitary having the
same Cartan kernel Uc; that is, the entangling power of a
given unitary is a function of its 3-vector (αx,αy,αz) only.
Furthermore, this vector has the following symmetries:

(a) Uc(π/2 + αx,αy,αz) =
loc

Uc(αx,αy,αz).

(b) Uc(π/4 + αx,αy,αz) =
loc

Uc(π/4 − αx,αy,αz).

where we write =
loc

for unitaries which are equivalent apart from

local rotations [13]. Furthermore, these properties are valid for
all angles independently. Using both properties the range for
these parameters can be restricted to

π/4 � αx � αy � αz. (5)

Also,

Uc(−αx,αy,αz) =
loc

Uc(αx,αy,αz), (6)

because −αx =
loc

π/2 − αx =
loc

π/4 + (π/4 − αx) =
loc

π/4 −
(π/4 − αx) = αx .

The final ingredient consists of the knowledge of the mixed
states which have maximum entanglement for a given purity,
so-called MEMS (maximally entangled mixed states) [14].
They are of the form

ρME(γ,ϕ) =

⎛
⎜⎜⎝

g(γ ) 0 0 γ

2 e−iϕ

0 1 − 2g(γ ) 0 0
0 0 0 0

γ

2 eiϕ 0 0 g(γ )

⎞
⎟⎟⎠ , (7)

where

g(γ ) =
{
γ /2, γ � 2/3
1/3, γ < 2/3,

(8)

and the phase ϕ is a rotation of one of the qubits around axis
z by an amount −2ϕ which is irrelevant for entanglement (we
include it for later reference). Note that the case g(γ ) = γ /2
corresponds to a rank-2 density matrix, while the case g(γ ) =
1/3 corresponds to a rank-3 matrix. Interestingly, we should
realize that ρME(γ,ϕ) coincides with the maximally discordant
mixed states [23] (see also Ref. [24]) ρMD(a,b,ϕ) when 2/3 �
γ � 1, which means that for values of 5/9 � μ � 1, MEMS
and MDMS have the same form.

Finally we can assess one of our main results:
Theorem. Uc(π/8,π/8,χ ), ∀ χ is a global two-qubit

entanglement generator, i.e., it has maximum entangling power
for all values of purity. The source separable states that this
gate needs to act upon are ρ(R2) and ρ(R3) (denoting that they
generate the respective MEMS of given rank 2 and 3), so that

for γ � 2/3 (i.e., 5/9 � μ � 1)

Uc

(
π

8
,
π

8
,χ

)
ρ(R2)U †

c

(
π

8
,
π

8
,χ

)
= ρME(γ,π/2), (9)

ρ(R2) =
(

1 − γ

γ

)
⊗

(
0

1

)
, (10)

and for 0 � γ � 2/3 (i.e., 1/3 � μ < 5/9), we get

Uc

(
π

8
,
π

8
,χ

)
ρ(R3)U †

c

(
π

8
,
π

8
,χ

)
= ρME(γ,π/2), (11)

ρ(R3) =

⎛
⎜⎜⎜⎜⎝

1
3 − γ

2
1
3

0
1
3 + γ

2

⎞
⎟⎟⎟⎟⎠ . (12)

This result can be obtained by direct evaluation and shows
that, for general purities, Uc(π/8,π/8,χ ) reaches the MEMS
states, thus becoming a global perfect entangler.

We can also show that when 0 � γ � 1/
√

3 (i.e., 1/3 �
μ � 1/2),

Uc(π/4,0,χ )ρcU
†
c (π/4,0,χ ) = ρME(γ,π/2), (13)

with ρc =

⎛
⎜⎜⎜⎜⎝

1
3 + γ

2
1
6

i
6

−i
6

1
6

1
3 − γ

2

⎞
⎟⎟⎟⎟⎠ , (14)

which has zero entanglement for the given γ range, thus
showing that for this range (coinciding with the range of perfect
discording power in Ref. [22]) it is a perfect entangler.

We can now ask, is Uc(π/8,π/8,χ ) the only perfect entan-
gling gate for all purities? The question is rather nontrivial in
an algebraic sense, and we will only give numerical evidence
that in fact it is not, although the problem remains open and
is left for future investigation. Our numerical evidence will
consist of two complementary approaches: first we produce
random states of product form and of classical-classical form
and evaluate their performance for several gates; second,
we produce arbitrary gates (restricted to αz = 0) plus local
rotations in several axes and apply them to the MEMS states
to check whether they can produce separable states for all
purities. Finally, we will allow for αz �= 0 to check the validity
of the found gates for more general kernels.

III. NUMERICAL EVIDENCE

A. Performance of specific gates

We begin by considering random states of these two forms

ρμ
cc =

∑
i,j

pi,j |αi〉〈αi | ⊗ |βj 〉〈βj |, μ =
∑
i,j

p2
i,j , (15)

ρμ
pro = ρA ⊗ ρB, (16)
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FIG. 1. (Color online) Entangling power versus purity for
Uc(π/8,π/8,0) (red dots), Uc(π/4,0,0) (blue inverted triangles),
Uc(π/4,π/4,0) (pink triangles), and Uc(0.1π,0,0) (dark green di-
amonds), based on classical-classical states. We have discretized |αi〉
and |βj 〉 using steps of 0.1π for each gate at any purity μ, and
generated 1000 random samples for pi,j for a pattern of |αi〉 and
|βj 〉. We see that when μ ∈ [1/3,5/9], the EP(Uc(π/8,π/8,0)) curve
overlaps the theoretical curve for MEMS, which agrees with our
analytical result. The loose deviation of the EP(Uc(π/8,π/8,0)) curve
from that of MEMS when μ > 5/9 is due to the small probability of
obtaining product states when generating classical-classical states.

with |αi〉, |βj 〉 being a local orthogonal basis, pi,j being
probability distributions at purity μ, and ρA, ρB being
individual (mixed) states of each qubit. The first states are
called classical-classical in the literature of quantum discord
and are a subset of separable states (separable states do not
need |αi〉 and |βi〉 to be orthogonal basis). We scan these
states (for details see captions of Figs. 1 and 2) for the gates
U (π/8,π/8,0), U (π/4,0,0), U (π/4,π/4,0), and U (0.1π,0,0)
as shown in the figures. We make use of the explicit formula
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FIG. 2. (Color online) Entangling power versus purity based on
product states ρ = ρA ⊗ ρB . Noting that μ = μA × μB we consider
all possible combinations of μA and μB by steps of 0.01 and generate
more than one million state samples for each purity. When γ �
2/3, all four gates perform poorly, while the perfect overlapping of
the MEMS and EP(Uc(π/8,π/8,0)) curves when μ > 5/9 serves as
confirmation of our analytical result.

of entanglement of formation (EOF) for two qubits, which is
obtained through the well-known concurrence [25].

When a two-qubit system reaches a level of mixture (here
μ = 1/3), the entanglement disappears [26]; therefore, the
simulation was only run over the interval 1/3 � μ � 1. In
developing the numerical evaluation, we considered ρcc and
ρpro separately. We first explored the performance of EPμ(Uc)
acting on ρcc. In Fig. 1, we can see that Uc(π/8,π/8,0) is
a perfect entangler at low purity intervals (1/3 � μ � 5/9)
since the EPμ(Uc) curve overlaps with the EOF of the
MEMS. However, when μ enters the [5/9,1] interval, the
EPμ(Uc(π/8,π/8,0)) curve loosely deviates from the curve
for the theoretical maximum. If we let EPμ(Uc) act on ρpro,
however, we see in Fig. 2 that Uc(π/8,π/8,0) possesses
excellent entangling power when μ enters [5/9,1], since the
EPμ(Uc(π/8,π/8,0)) curve closely matches the theoretical
line.

In a numerical evaluation with classical-classical states, the
possibility of generating a direct product state is small, so it is
easy to understand that in Fig. 1, the gate U (π/8,π/8,0) is not
able to fully reach MEMS states for 2/3 � γ � 1, since the
ideal source state is ρ(R2), which is a product state. In the same
way, in Fig. 2 such gate performs very poorly for 0 � γ � 2/3
because a product state cannot reproduce the ideal source (a
classical-classical state) ρ(R3).

Based on both numerical simulations, however, we can say
that Uc(π/8,π/8,0) has maximal entangling power and serves
as perfect entangler at any purity μ when acting on zero-
entanglement states, which supports our analytical proof.

We note that Uc(π/4,π/4,0) and Uc(π/4,0,0) (kernel of the
CNOT) have the same entangling power but it is much smaller
than that of Uc(π/8,π/8,0). Finally, the gate Uc(0.1π,0,0)
performs very badly.

B. Are there more global perfect entanglers?

We inquire next about the existence of other global perfect
entanglers through a complementary approach, namely: we
take the MEMS states, apply a given gate (rather its inverse U

†
c )

and check whether they can achieve a separable state for any γ .
If they cannot, they are not global, and we store the proportion
of the γ range in which the gate is a perfect entangler. This
problem is involved both algebraically and numerically, since
we need to check the condition EF [U †

c (L†
A ⊗ L

†
B)ρME(LA ⊗

LB)Uc] = 0 considering all possible local rotations LA and
LB (each of them parametrized by two independent angles).
We restrict ourselves first to local rotations in the z axis; the
result is shown in Fig. 3 for gates Uc(αx,αy,0). It is observed
that only αx = π/8, αy = π/8 is a global perfect entangler,
while many of the gates (see orange plateau) can perform
as perfect entanglers only for 2/3 of the range. The value
2/3 we observe in this figure can be understood if we do the
same analysis but only storing the range γ restricted by ranks
(not shown). That is, we separate the ranges 2/3 � γ � 1
(rank 2) and 0 � γ < 2/3 (rank 3) and observe that the orange
plateau in Fig. 3 is a global perfect entangler for rank 3, while
for rank 2 only (αx = π/8,αy = π/8) is global. The orange
plateau consists of gates in the neighborhood of αx + αy =
π/4 such as Uc(π/4,0,0). We also stress the notable fact that
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FIG. 3. (Color online) We evaluate Uc(αx,αy,0) with an addi-
tional local rotation in the z axis (which is scanned, see main text)
acting on the MEMS. For each value of {αx,αy} we calculate for how
many values of γ (in proportion) such gate can reach a separable
state. We see that only αx = π/8, αy = π/8 reaches all purities for
the full range of γ , while many of the gates (see orange plateau) can
perform as perfect entanglers only for rank-3 states (not shown).

gates Uc(χ,χ,0) are never perfect entanglers (except when
χ = π/8).

Performing the same analysis but instead with local
rotations in the x axis (not shown), it turns out that gates
Uc(χ,π/4,0) are also global perfect entanglers ∀ χ . When
local rotations are done around y axis we observe that
Uc(π/4,χ,0) is global perfect entangler, as it should be, since
the labels x,y,z are arbitrary. Furthermore, we checked other
combinations of local rotations, namely about local axes (x,y),
(x,z), and (y,z), and only corroborated the latter gates.

With this complementary approach we have discovered a
new global perfect entangler gate, Uc(π/4,χ,0). We can now
ask: is this gate [and the Uc(π/8,π/8,0) one] performing
as well if we pick a different αz? To answer this question,
we assign the values αz = π/16,π/8,π/6,π/4 and evaluate
numerically again with local rotations. This analysis extracts
only the gates Uc(π/4,0,αz), Uc(0,π/4,αz) (with the former
values of αz) as global perfect entanglers. That is, the only com-
binations which are global perfect entanglers are Uc(π/4,0,χ )
and Uc(π/8,π/8,χ ) with all possible permutations of the
indices.

Surprisingly, however, we find a region of gates
Uc(αx,αy,π/6) which, up to the numerical precision of the
parameter scan, seem to be perfect entanglers for rank 3;
they are shown in Fig. 4. These gates, although not global,
emphasize the difficulty of finding general perfect entangling
gates when all parameters in the problem are considered.
Therefore, the question of exhausting all possible perfect
entangler gates, global or not, remains an open problem for
future investigation.

IV. DISCUSSION

We have investigated the problem of finding the maximum
amount of entanglement that can be produced by a two-qubit
unitary operator from any separable state. The problem is
reduced to finding such entangling power for the equivalence

FIG. 4. (Color online) Evaluation of Uc(αx,αy,π/6) with addi-
tional local rotations in (x,y) axis (for qubits A, B respectively), only
for rank-3 states. A large region of gates exists with perfect entangling
power for this rank.

classes dictated by the three parameters αx,αy,αz, due to
the fact that entanglement is unchanged by local rotations
and because unitary operators can be split by Cartan de-
composition into such rotations and a nonlocal (two-qubit)
kernel. We were able to show analytically that all gates
with kernel Uc(π/8,π/8,χ ) are global perfect entanglers,
i.e., one can always find a separable state for each possible
purity such that this gate promotes the latter to a maximally
entangled mixed state (MEMS) of the given purity. It is
hard to fail noticing that this gate was also shown to be a
global perfect discorder (i.e., produces maximum quantum
discord [7]), which is a curious fact which deserves further
investigation.

We performed two complementary numerical investiga-
tions to complement our analytical results: first, we produced
many random states of product and classical-classical form,
thereby testing several gates. We found that the gate above is,
within these source families of separable states which do not
exhaust all possible separable states, a global perfect entangler,
while other gates [like Uc(π/4,0,0) and Uc(π/4,π/4,0)] did
not a priori seem to be perfect entanglers for all purities, but
only for a given range. Second, we went the other way around:
start with the MEMS states, perform local rotations on them
and apply all possible gates Uc(αx,αy,0), then check whether
a separable state can be obtained. With this procedure, always
limited by computational difficulty due to many parameters,
we found that the gates with kernel Uc(π/4,χ,0) are also
global perfect entanglers. It should be stressed that this finding
was not obtained with the numerical evaluation of Figs. 1
and 2; meaning that MEMS cannot be reached either from
product or classical-classical states. This might be the reason
why discording power, as defined in Ref. [22], cannot be
reached for high purities with such gate, but it does for
entangling power (considering that discord and entanglement
have the same value for this range of MEMS [27]). In addition,
we found several families of gates that, although not global,
are perfect entanglers reaching the rank-3 MEMS, such as the
neighbors of Uc(χ,π/4 − χ,0) (see Fig. 3) and a whole region
of gates of the form Uc(αx,αy,π/6) (see Fig. 4).
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Although the problem of finding all global perfect entangler
gates is very hard both analytically and numerically, we believe
we have made a step forward in finding some of them, which
might be of help in devising experimental setups which can
take advantage of mixed states as a source for producing
entanglement. At the same time, it can help understand the
theoretical difference between several quantumness measures
as entanglement or discord, and help gain insight into the
different hierarchies of gates in terms of production of
quantum advantage for quantum computation. It would be
of interest too to include the use of mixed states in the
multipartite entanglement scenario, since at the experimental
level stochastic preparation of states, losses, and imperfections,
will limit the purity of available states.

Our work is thus a first attempt to quantify the power of
two-qubit gates in generating entanglement in mixed states,
thus providing a way to specifically analyze entanglers for
general purity values. The power of Uc(π/8,π/8,χ ) gates
to produce maximum entanglement along with discord can

provide some unique experimental utilization of such gates in
quantum computation and other areas.
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86, 032321 (2012).
[18] J. Batle, A. R. Plastino, M. Casas, and A. Plastino, Phys. Lett.

A 307, 253 (2003).
[19] S. Bugu, C. Yesilyurt, and F. Ozaydin, Phys. Rev. A 87, 032331

(2013).
[20] C. Yesilyurt, S. Bugu, and F. Ozaydin, Quantum Inf. Process.

12, 2965 (2013).
[21] T. Kobayashi, R. Ikuta, S. K. Özdemir, M. Tame, T. Yamamoto,
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