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We investigate the connection between the concept of affine balancedness (a-balancedness) introduced by
M. Johansson et al. [Phys. Rev. A 85, 032112 (2012)] and polynomial local SU invariants and the appearance of
topological phases, respectively. It is found that different types of a-balancedness correspond to different types of
local SU invariants analogously to how different types of balancedness, as defined by A. Osterloh and J. Siewert,
[New J. Phys. 12, 075025 (2010)], correspond to different types of local special linear (SL) invariants. These
different types of SU invariants distinguish between states exhibiting different topological phases. In the case of
three qubits, the different kinds of topological phases are fully distinguished by the three-tangle together with
one more invariant. Using this, we present a qualitative classification scheme based on balancedness of a state.
While balancedness and local SL invariants of bidegree (2n,0) classify the SL-semistable states [A. Osterloh and
J. Siewert, New J. Phys. 12, 075025 (2010); O. Viehmann et al., Phys. Rev. A 83, 052330 (2011)], a-balancedness
and local SU invariants of bidegree (2n − m,m) give a more fine-grained classification. In this scheme, the
a-balanced states form a bridge from the genuine entanglement of balanced states, invariant under the SL group,
towards the entanglement of unbalanced states characterized by U invariants of bidegree (n,n). As a byproduct,
we obtain generalizations to the W state, i.e., states that are entangled, but contain only globally distributed
entanglement of parts of the system.
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I. INTRODUCTION

One element of quantum mechanics that appears coun-
terintuitive is certainly entanglement. Though it is present
everywhere where there is an interaction, its effects are most
easily observed at low temperature and in carefully controlled
environments. But even at ambient conditions, the extent
to which entanglement plays a role in what we observe in
nature is discussed (see, e.g., [1–5]). Local SU invariance
is a feature of any entanglement property and thus enters
as a minimal requirement for every entanglement measure
[6]. Therefore, it has been used for the classification of
states [7–10] and the definition of entanglement monotones
as measures [11–16]. The group of local operations which
leaves entanglement properties invariant was recognized rather
early to be the special linear (SL) group [17–21], which is the
group underlying the stochastic local operations and classical
communication (SLOCC). However, the classification of
multipartite entanglement is difficult and, due to the fact
that almost all polynomial entanglement measures have a
polynomial degree of at least four [61], their mixed state
extension via the convex roof is also problematic, although
solvable for certain cases [22–27].

The classification based on polynomial SL and unitary
invariants is complete in the sense that it fully distinguishes
inequivalently entangled states from each other. However, one
can also consider other classification schemes that are less
distinguishing, i.e., more coarse grained, but which focus on
qualitative properties of the states. Such classification schemes
can group sets of SLOCC classes or, alternatively, local SU(2)
classes into families based on some common property [28–31].

The qualitative property we will consider here is balanced-
ness. The concept of balancedness as defined in [32] is a
property related to genuine entanglement, which is taken

here to mean entanglement for which there are measures
constructed from polynomial SLOCC invariants [32,33]. This
relation between balancedness and polynomial invariants is
described by the notion of semistability in geometric invariant
theory [34,35]. Recently, it has also been shown in [36] that
balancedness is a useful concept for describing the appearance
of topological phases [36–43]. The analysis of the SU(2)⊗q

topological phases of pure q-qubit states [36] has generalized
the balancedness condition [32] relevant for local SL(2) invari-
ance [20,44–50] to an affine balancedness, or a-balancedness,
relevant for local SU(2) invariance. In this analysis, a splitting
of the three-qubit W SLOCC class was found, since the
a-balanced state |W ′〉 := 1

2 (|000〉 + |100〉 + |010〉 + |001〉) is
distinguished by a topological phase π from the unbalanced
W state, |W 〉 := 1√

3
(|100〉 + |010〉 + |001〉), which has none.

This raises the question of whether this qualitative difference
between these two SLOCC equivalent states is captured by a
local SU(2) invariant that distinguishes the states [36].

In this paper, we show that there indeed is a local
SU(2) invariant that captures this difference between states
in the SLOCC W class with different topological phases.
Furthermore, we show that for an arbitrary number of qubits,
different types of a-balanced states correspond to different
local SU(2) invariant polynomials and these capture the
qualitative properties related to topological phases. This is
analogous to how the original balancedness condition is related
to local SL(2) invariant polynomials and topological phases.
In this light, we also discuss how multipartite entangled states
can be classified based on their balancedness properties.

The paper is organized as follows. In the next section, we
briefly discuss balancedness and its relation to topological
phases. Section III is devoted to the three-qubit case and,
in particular, the W ′ state, where we write down the SU(2)
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invariant of bidegree (3,1) that detects it (i.e., assigns a
nonzero value to it). It is then followed by Sec. IV, which
is an investigation of the general case of SU(2) invariants of
bidegrees (2n − p,p) with p � n. In Sec. V, we discuss how
a-balancedness can be used for a classification of multipartite
entanglement. In the last section, we draw our conclusions and
give an outlook.

II. BALANCED STATES

The first observation of the relation between three-partite
entanglement and the property later termed balancedness in
[32] was reported by Coffman et al. in [33]. This concept
has been found to be far more general and has been extended
and applied to genuinely multipartite entangled states in [32].
We briefly give the main definition of a balanced state here.
Suppose we have a q-qubit state with a decomposition using L

basis state vectors of a computational basis, called its length.
Then, we construct a q × L matrix Akl such that each column
of Akl corresponds to one of these basis state vectors in such
a way that the kth element of the lth column is the kth entry
of the lth basis state vector, but with every 0 replaced by −1.
A state is balanced if and only if positive numbers in IN exist
such that

nlAkl = 0; nl ∈ IN ∀ k = 1, . . . ,q. (1)

A state is called partly balanced if some of the numbers
must be chosen to be zero. Furthermore, a balanced state is
called irreducible if no part of the matrix is balanced by itself
[32]. As an example, the q-qubit Greenberger-Horne-Zeilinger
(GHZ) state α|0 . . . 0〉 + β|1 . . . 1〉 would be given by

Akl =

⎛
⎜⎝

−1 1
...

...
−1 1

⎞
⎟⎠ . (2)

A state that has a balanced part in every computational product
basis is genuinely entangled. The irreducible balanced states
are particular in that they indicate a basis of entangled states
detected by measures derived from SL invariants and are not
separable over any bipartition. Therefore, they are genuinely
multipartite entangled [62]. Furthermore, balancedness in
every computational basis implies that the possible total phase
factors that can be accumulated in a cyclic evolution generated
by local SU(2) or SL(2) evolutions is a discrete set [36]. This
discretization of the possible accumulated phases is related to
the nontrivial topology of the local SU(2) or SL(2) orbits, and
the phases are therefore called topological.

The study of topological phases generated by local SU(2)
operations prompted the extension of the concept of balanced-
ness. In this extension, the requirement that the numbers
nl in the definition of balancedness belong to the natural
numbers IN is replaced by the requirement that they are nonzero
integers, i.e., they belong to ZZ\0. The states balanced in IN
have been termed convexly balanced or c-balanced, while the
states balanced in ZZ\0 have been termed affinely balanced or
a-balanced in [36].

Let us next focus on the a-balanced states. Those of the
a-balanced states that are not also c-balanced do not have
genuine entanglement, hence all local SL-invariant measures

vanish, but if they are a-balanced in every basis, then they have
globally distributed entanglement. Therefore, consider a state
which is irreducibly a-balanced in one (local) basis,

zlAkl = 0; zl ∈ ZZ \ {0} ∀ k = 1, . . . ,q, (3)

where q is the number of qubits and l = 1, . . . ,L, where L is
the length of the state. What changes in the definition, when
compared to c-balancedness, is that negative numbers are also
admitted, such that we are in ZZ and none of the zl are zero.
Therefore, some of the proofs of [32] on c-balanced states
are also valid for a-balanced states. We therefore have the
following:

Theorem II.1. Product states are never irreducibly a-
balanced.

Theorem II.2. Every a-balanced q-qubit state with length
larger than q + 1 is reducible.

Every c-balanced state is mapped into an a-balanced state
if some of its components in the computational basis decom-
position are being spin flipped (σ⊗q

y C), without producing a
product state. As we will show, each such spin flip corresponds
to a map from an invariant detecting the c-balanced state
to an invariant detecting the a-balanced state. This map
takes invariants into invariants of a different bidegree. As an
example, the three-tangle of bidegree (4,0) can be mapped
to an SU invariant of bidegree (3,1), and then further to a U
invariant of bidegree (2,2). We have to consider, at most, half
of the components being spin flipped (any multiplicity of a
component in the balancedness relation is counted), since a
state with n � L/2 could be obtained from the spin-flipped
version of the c-balanced state with only k = L − n � L/2
components flipped.

A consequence of irreducible balancedness of a state, which
we will make use of, is that the multiset of integers zl is
uniquely defined up to a common factor. Thus, there is a unique
multiset {z0,z1, . . . ,zL−1}, up to a factor of −1, of integers
without a common prime factor associated to an irreducible
state. Furthermore, we will sometimes consider sets of states
that are balanced in the same way, in the sense that there is a
particular matrix Akl such that each state in the set is local uni-
tary equivalent to a form where its balancedness is described
by Akl . Such a set will be referred to as an A class of states.

III. THREE QUBITS

Before dealing with an arbitrary number of qubits, we
consider the irreducible states, topological phases, and in-
variants of three qubits since this is a well-understood case
[17,51–53]. Here the primary entangled states are the globally
entangled W state, |W 〉 = (|100〉 + |010〉 + |001〉)/√3, and
the genuinely three-party entangled GHZ state, |GHZ〉 =
(|111〉 + |000〉)/√2 [17]. The latter has an equivalent

representation |GHZ〉
SU(2)∼= |X〉 := (|111〉 + |100〉 + |010〉 +

|001〉)/2, which would be the generalization of the X state

in [49]. Moreover, |˜GHZ〉 := (α|111〉 + β|000〉)/√2
SL(2)∼=

|X̃〉 := (a|111〉 + b|100〉 + c|010〉 + d|001〉)/2 for general
nonvanishing parameters, following [32]. However, it is easy

to check that |˜GHZ〉
SU(2)
	∼= |X̃〉. The states |˜GHZ〉 and |X̃〉 are

distinguished by topological phases since |X̃〉 has topological
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phases that are multiples of π
2 , while |˜GHZ〉 only has the phase

π unless |α| = |β| = 1√
2
.

For the W state, the situation is analogous. Here, |W 〉
SL(2)∼=

|W ′〉 := (|000〉 + |100〉 + |010〉 + |001〉)/2 [17], whereas

|W 〉
SU(2)
	∼= |W ′〉. The latter is an a-balanced state [36] and has

a topological phase of π , whereas the W state is completely
unbalanced and has none. Now, if there was a nonvanishing
SU(2) invariant of bidegree (d1,d2), where d1 	= d2, it has been
noted in [36] that a topological phase χ = 2mπ

d1−d2
for some

integer m would appear. It would therefore be promising if an
SU(2) invariant of a bidegree that corresponds to a π phase
exists that is nonzero for |W ′〉.

It has been described in [54] how to construct local SU(2)
invariants. For three qubits, the algebra of local SU invariants
has seven primary generators and three secondary generators
[55]. The primary generators contain one invariant of bidegree
(4,0) as well as its complex conjugate of bidegree (0,4), one of
bidegree (3,1) and its complex conjugate of bidegree (1,3), one
of bidegree (1,1) (the squared modulus of the state), and two
of bidegree (2,2) (these correspond to the two independent
reduced density matrices). For our purposes, we identify
invariants with their complex conjugates. The (4,0) invariant
is the three-tangle τ(4,0) = τ3 [33]. The invariant of bidegree
(3,1) has been calculated from [54] to be

τ3,1 =
1∑

i1,i2=0

(∣∣ψ0i1i2

∣∣2 − ∣∣ψ1i1i2

∣∣2)
(ψ000ψ111 + ψ100ψ011

−ψ010ψ101 + ψ001ψ110) + 2
[
ψ0i1i2 (ψ100ψ111

−ψ110ψ101)ψ∗
1i1i2

− ψ1i1i2 (ψ000ψ011 − ψ010ψ001)ψ∗
0i1i2

]
,

(4)

where ψi1i2i3 are the coefficients of the state vector in the
computational basis. It, indeed, detects |W ′〉 and not |W 〉, and
is manifestly SU(2) invariant. This explains the fact that the W ′
state has a topological phase of χ = 2mπ

d1−d2
= mπ for m ∈ IN,

whereas the W state has none. The invariant also detects |˜GHZ〉
but not |X̃〉, which is only detected by the three-tangle, and
this explains the different topological phases of these states.

From these observations, we can draw the full picture of
polynomial SU invariants of bidegree (d1,d2), where d1 	= d2,
and topological phases for three qubits. As shown by Acı́n
et al. [52] and Carteret et al. [53], each three-qubit state can be
transformed by local unitary operations to a canonical form.
In particular, we consider the canonical form where the set of
basis vectors is invariant under permutation of the qubits [53],

κ0e
iθ |000〉 + κ1|001〉 + κ2|010〉 + κ3|100〉 + κ4|111〉, (5)

where κj for j = 0,1,2,3,4, and θ are real numbers. For a
generic three-qubit state, all κj in the canonical form are
nonzero. Thus, a generic entangled three-qubit state can
be transformed by local unitaries to a balanced but not
irreducibly balanced form. The states that can be transformed
to an irreducible form are subsets characterized by fewer
parameters. There are three different A classes of irreducible
states. The first we will call the X class, with reference to [49],
which is given by κ0 = 0 and the other coefficients are nonzero;

the second is the ˜GHZ class given by κ1 = κ2 = κ3 = 0 while
κ4 and κ0 are nonzero; and the W ′ class is given by κ4 = 0.
Thus, the set of local SU(2) orbits belonging to the X class
and the set belonging to the W ′ class are both four-parameter
subsets, while the SU(2) orbits of the ˜GHZ class are a
two-parameter set. The ˜GHZ class intersects with the X class
in the SU(2) orbit of the GHZ state.

The X class is detected by the three-tangle τ3, but not by
τ3,1. The W ′ class, on the other hand, is detected by τ3,1, but
not by τ3. While the modulus of τ3 has its unique maximum
on the local unitary orbit of the X state, the modulus of τ3,1

has its unique maximum on the local unitary orbit of W ′. All
genuinely entangled states except the X class are detected by
both τ3 and τ3,1. For three qubits, there is thus a clear relation
between the irreducible balanced states, the polynomial SU
invariants of bidegree (d1,d2), where d1 	= d2, and topological
phases. An experimental proposal to observe the topological
phases in three-qubit systems was recently given in [43].

IV. THE GENERAL CASE: MORE THAN THREE QUBITS

In this section, we show that for every type of irreducible
a-balancedness, there is at least one local SU-invariant poly-
nomial that detects it—i.e., it gives a nonzero value to it—
while not detecting other types of irreducible a-balancedness.
Furthermore, if such an SU(2)⊗q-invariant polynomial of
bidegree (d1,d2), where d1 	= d2, detects a q-qubit state, then
this state exhibits topological phases [36]. For three qubits, we
have seen that the irreducible a-balanced state |W ′〉 is detected
by an SU(2)-invariant polynomial of this kind. Now we show
that every irreducible a-balanced state for which the sum of
the corresponding integers {z0,z1, . . . ,zL−1} is nonzero has
topological phases, and that there always are SU(2) invariants
of this type that detect them.

In Secs. IV A to IV D, we will go through the steps
leading to this conclusion. First, in Sec. IV A, we introduce a
mapping between irreducible c-balanced states and irreducible
a-balanced states that are not c-balanced. We then show in
Sec. IV B that this mapping between states induces a mapping
between SL invariants that detect irreducible c-balanced states
and SU invariants that detect the a-balanced but not c-balanced
states. Although this induced mapping does not give the
explicit form of the SU invariants, it allows us to deduce some
of their properties in Sec. IV D.

A. The partial spin flip

We introduce a mapping between states. The mapping
makes use of the universal spin-flip transformation σ

⊗q
y C,

where C is the complex conjugation that acts only on the state
vector. This is the unique antiunitary transformation that flips
arbitrary spins [56] since it is invariant under local SU and local
SL transformations [48]. The spin-flip transformation can be
applied to an arbitrary number of qubits and has been used,
for example, to construct entanglement measures such as the
concurrence [57]. Given a q-qubit state |ψ〉, we can express it
as a sum of two components, |ψ〉 ≡ |φ〉 + |θ〉. We then apply
a spin-flip transformation only to |θ〉, which gives

|ψ〉 → |ψ̃〉 ≡ |φ〉 + σ⊗q
y C|θ〉 ≡ |φ〉 + |θ̃〉. (6)
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The spin-flip transformation σ
⊗q
y C is almost a conjugation,

σ
⊗q
y Cσ

⊗q
y C = (−1)q1l, and therefore σ

⊗q
y C|θ̃〉 ≡ (−1)q |θ〉.

The kind of mapping in Eq. (6) will be referred to as a
“partial spin-flip” map and it is only defined relative to a given
decomposition of the state vector into two terms. In particular,
for a computational basis {|ijk . . . 〉} where 0 is replaced by
−1, we have

|θ〉 =
∑

θijk...|ijk . . . 〉 and |θ̃〉 =
∑

θ̃ijk...|ijk . . . 〉, (7)

with

θ̃ijk... = (−i)(i+j+k+··· )θ∗
−i−j−k··· . (8)

Assume that |ψ〉 is an irreducible c-balanced state of length
L, where the terms are indexed by {0,1, . . . ,L − 1}. Choose a
decomposition of |ψ〉 such that |θ〉 corresponds to a subset s of
the terms of |ψ〉 and apply the corresponding partial spin-flip
map to produce a state |ψ̃〉. Then, |ψ〉 and |ψ̃〉 can be written
as

|ψ〉 =
L−1∑
j=0

ψj ⊗q

k=1 |Akj 〉,

|ψ̃〉 =
∑
j /∈s

ψj ⊗q

k=1 |Akj 〉
(9)

+
∑
j∈s

(−i)
∑

k Akj ψ∗
j ⊗q

k=1 |−Akj 〉

≡
∑

j

ψ̃j ⊗q

k=1 |Ãkj 〉,

where ψj and ψ̃j are the expansion coefficients of |ψ〉 and
|ψ̃〉, respectively.

We remark that the state |ψ̃〉 is not a c-balanced state.
Depending on the choice of s, it can be either an irreducible
a-balanced state, a state where one or more qubits are in a
tensor product with the remaining qubits, or, in some cases, an
entangled state without topological phases. This will be further
elaborated in Sec. IV E. Furthermore, every a-balanced state
that is not already a c-balanced state can be mapped into a
c-balanced state by some partial spin flip.

B. Induced mapping between invariants

Theorem IV.1. Consider a state |ψ〉 for which there is a
nonvanishing polynomial SL-invariant P . For every state |ψ̃〉
obtained from |ψ〉 through a partial spin flip, there exists an
invariant function P̃ on the SU(2) orbit of |ψ̃〉.

Proof. To see this, consider a c-balanced state |ψ〉 in an
arbitrary local product basis,

|ψ〉 =
∑

ψijk...|ijk . . . 〉, (10)

where ijk . . . is a string of 1s and −1s. Assume that there is
a SL(2)⊗q-invariant polynomial P that detects |ψ〉. Formally,
P can be expressed as

P =
∑

α

bα

∏
ψ

r(α)ijk...

ijk... (11)

for some sets of exponents {r(α)ijk...} and constants bα .

Consider then a decomposition of |ψ〉 as |ψ〉 = |φ〉 +
|θ〉. With use of the notation |φ〉 = ∑

φijk...|ijk . . . 〉, |θ〉 =∑
θijk...|ijk . . . 〉, the polynomial P can be expressed, using

(8), in the variables φijk... and θijk... as

P =
∑

α

bα

∏
(φijk... + θijk...)

r(α)ijk... . (12)

Consider then the partially spin-flipped state |ψ̃〉 = |φ〉 + |θ̃〉
associated to the above decomposition, as given by Eq. (6).
Using the notation |θ̃〉 = ∑

θ̃ijk...|ijk . . . 〉 where θijk... =
i(i+j+k+...)θ̃∗

−i−j−k..., we can express P in φijk... and θ̃−i−j−k...

as

P =
∑

α

bα

∏
(φijk... + i(i+j+k+···)θ̃∗

−i−j−k···)
r(α)ijk... . (13)

This second expression for P in Eq. (13) defines a function
P̃ on the SU(2)⊗q orbit of |ψ̃〉 such that P (|ψ〉) = P̃ (|ψ̃〉).
Furthermore, any SU(2)⊗q operation commutes with the spin-
flip operation σ

⊗q
y C. Therefore, P (U |ψ〉) = P̃ (U |ψ̃〉) for U ∈

SU(2)⊗q . Since P is, in particular, invariant on the SU(2)⊗q

orbit of |ψ〉, it follows that P̃ is invariant on the SU(2)⊗q orbit
of |ψ̃〉. �

Note that since only values of homogeneous invariants
are concerned, P̃ itself does not need to be a homogeneous
function. Note also that the above argument can be made in the
other direction as well. That is, the existence of a polynomial
SU invariant P̃ that detects states on the SU(2)⊗q orbit of
|ψ̃〉 implies the existence of an SU-invariant function P that
evaluates to a nonzero value on the SU(2)⊗q orbit of |ψ〉 related
to P̃ by the induced mapping.

C. Irreducible c-balanced states and SL-invariant polynomials

The irreducibility of a state places a constraint on the
homogeneous degrees of any polynomial SL invariant that
detects the state. Consider an irreducible q-qubit c-balanced
state |ψ〉 of length L,

|ψ〉 =
L−1∑
j=0

ψj ⊗q

k=1 |Akj 〉, (14)

where Akj = 1,−1. We assume that the terms are indexed
such that the multiset of integers {z0,z1, . . . ,zL−1} associated
with the state, where each zj is associated to the term with
coefficient ψj and satisfies |z0| � |z1| � |z2| � · · · � |zL−1|.
Furthermore, we assume that the zj have no common divisor.
Since the irreducible c-balanced states are genuinely multi-
partite entangled, there is a homogeneous SL(2)⊗q-invariant
polynomial P that evaluates to a nonzero value for this state.

In the particular basis that we have chosen for the state, the
monomials of P that detect |ψ〉 are of the form

∑
α

∏
j ψ

rαj

j ,
up to constant factors, for some sets of exponents {rαj }. We
call the polynomial in the ψj ’s made up of these monomial
terms PA. P and PA evaluate to the same value for every state
related to |ψ〉 by local filtering operations.

Consider a particular local filtering operation F on the kth
qubit,

F =
(

t−1 0
0 t

)
. (15)
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This operation multiplies the αth monomial of PA by t
∑

j Akj rαj .
Since the polynomial P is SL(2)⊗q invariant, the sum of all
the monomials of PA after the filtering must equal the sum
before the filtering. Moreover, this must be true for any t . This
is possible only if t

∑
j Akj rαj = 1 for each α. Since this must be

true for local filterings on any qubit, this gives us a system of
q linear equations. Using the convention that the term of |ψ〉
with coefficient ψ0 is |11 . . . 1〉, this system of equations can
be formulated as a matrix equation:⎛

⎜⎜⎝
A21 A31 · · · A(L−1)1

A22 A32 · · · A(L−1)2
...

...
. . .

...
A2q A3q · · · A(L−1)q

⎞
⎟⎟⎠

⎛
⎜⎜⎝

rα1

rα2
...

rαL−1

⎞
⎟⎟⎠ = −rα0

⎛
⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎠ ,

(16)

for each α. Since the state is irreducible, and thus the columns
of the matrix on the left-hand side are linearly independent, the
matrix on the left-hand side uniquely determines the solution
up to a common multiplicative factor h. Equation (16) is
the same equation that appeared in [36] to determine the set
{z0,z1, . . . ,zL−1}. The solutions are given by {z0,z1, . . . ,zL−1}
such that rαj = hαzj for some hα . Since the polynomial is
homogeneous, we have only one hα ≡ h. Thus, the polynomial
PA is a single monomial PA given, up to a constant, by

PA =
⎛
⎝L−1∏

j=0

ψ
zj

j

⎞
⎠

h

. (17)

We will briefly comment on the nature of h. As the {z0, . . . ,zL}
are assumed to have no common divisor, any solution to
Eq. (16) that occurs is h ∈ N, where an h � 2 means
that the length l = ∑

j zj of the state fits h times in the
polynomial degree of the corresponding invariant [32,50].
We can, therefore, conclude that the homogeneous degree of
any nonzero SL-invariant polynomial is h

∑L−1
j=0 zj for some

integer h and that the polynomial contains the monomial
(
∏L−1

j=0 ψ
zj

j )h.

D. Irreducible a-balanced states and SU invariants

We have established that a partial spin-flip operation
mapping a c-balanced state |ψ〉 to an a-balanced state |ψ̃〉
induces a mapping between a homogeneous polynomial SL
invariant that detects the c-balanced state and an invariant
function that detects the a-balanced state. Furthermore, we
have reviewed the multiplicative scaling behavior of SL
invariants on irreducible c-balanced states.

Now we address the question of the multiplicative scaling
behavior of the invariant P̃ for the case where the map P → P̃

is induced by a partial spin flip of some terms of an irreducible
state. In other words, we assume that |ψ̃〉 is irreducible and
investigate how P̃ scales when |ψ̃〉 is multiplied by a factor λ ∈
C\{0}. Let us assume that we have constructed the irreducible
a-balanced state |ψ̃〉 from an irreducible c-balanced state by
applying the partial spin-flip operation to a subset s of the L

terms that it has [see Eq. (9)].
Theorem IV.1. If |ψ〉 is an irreducible c-balanced state

detected by a polynomial SL invariant P of homogeneous

bidegree (h
∑

zj ,0), and |ψ̃〉 is the irreducible a-balanced state
constructed from |ψ〉 by spin flipping a subset s of the terms,
then the SU invariant P̃ , constructed from P by the induced
mapping, has homogeneous bidegree (h

∑
j /∈s zj ,h

∑
j∈s zj ).

Proof. Consider an irreducible a-balanced state |ψ̃〉 =
|φ〉 + |θ̃〉 and multiply it with a constant λ: |ψ̃〉λ =
λ|φ〉 + λ|θ̃〉. A spin flip on the part s (the θ̃ part)
of the rescaled state gives |ψ̃〉λ → |ψ〉λ = λ|φ〉 + λ∗|θ〉.
We immediately extract from (17) that the SU in-
variant P̃ satisfies P̃ (λ|ψ̃〉) = λh

∑
j 	∈s zj λ∗h

∑
j∈s zj P (|ψ〉) =

λh
∑

j 	∈s zj λ∗h
∑

j∈s zj P̃ (|ψ̃〉). We therefore have that P̃ is an SU

invariant of bidegree (h
∑

j /∈s zj ,h
∑

j∈s zj ). �
Corollary IV.1. Let |ψ〉 be an irreducible a-balanced

state with associated integers {z0,z1, . . . ,zL−1} that satisfy∑L−1
j=0 zj 	= 0. Then, |ψ〉 is detected by an SU(2) invariant

of bidegree (d1,d2), where d1 	= d2, and this implies that |ψ〉
is a-balanced in every basis.

Consider again the irreducible c-balanced state |ψ〉 and
the irreducible a-balanced state |ψ̃〉 produced by a spin-flip
operation on a subset s of the terms as given by Eq. (9). From
Eq. (17), we can easily find that the form of the part of P̃ that
evaluates to a nonzero value, P̃A, is

P̃A = i(
∑

j∈s

∑q

k=1 Akj )
∏
j /∈s

ψ̃
hzj

j

∏
j∈s

ψ̃
∗hzj

j . (18)

Every local SU invariant that detects states in the A class of
|ψ̃〉 contains a monomial of this form.

In [32], it was shown that every irreducible c-balanced
state is detected by a local SL(2)-invariant polynomial. In a
similar way, every irreducible a-balanced state is detected by
a local SU(2)-invariant polynomial. Furthermore, in [36], it
was pointed out that if a state is detected by polynomial local
SU(2) invariants of bidegree (d1,d2) such that d1 	= d2, then it
exhibits topological phases. As found here, every state that is
irreducibly a-balanced and satisfies

∑
j zj 	= 0 is of this kind.

The states which are irreducibly a-balanced but not c-
balanced belong to SLOCC-zero classes, that is, they are not
detected by any SL invariant. In other words, they constitute
the SL-null cone. Therefore, the above observation implies
that SLOCC-zero classes can be split into states that exhibit
topological phases and those that do not.

E. Derived irreducible states, invariants, and topological phases

We now elaborate on how the irreducible a-balanced
states can be constructed from a given irreducible c-balanced
state. Methods to construct irreducible c-balanced states were
discussed in [32,36]. Consider that we have an irreducible
c-balanced state with an associated multiset of integers
{z0,z1, . . . ,zL−1} that is detected by an invariant polynomial P
of bidegree (h

∑L−1
j=0 zj ,0). By spin flipping different submul-

tisets s such that the associated submultisets of the integers
{z0,z1, . . . ,zL−1} satisfy

∑
j∈s zj 	= ∑

j /∈s zj , we can produce
different irreducible a-balanced states that feature topological
phases. Two different partial spin flips corresponding to
different submultisets s1 and s2 may map the state to the same
A class, but if

∑
j∈s1

zj 	= ∑
j∈s2

zj (or if one identifies with
the complex conjugate classes:

∑
j∈s1

zj 	= ∑
j /∈s2

zj ), then the
A classes are certainly distinct.
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If we collect all states derived from |ψ〉, such that the
set of spin-flipped terms s satisfies

∑
j∈s zj <

∑
j /∈s zj , these

are representatives of each A class that can be constructed in
this way from |ψ〉. To each A class, there is a corresponding
invariant of bidegree (h

∑
j /∈s zj ,h

∑
j∈s zj ). Moreover, since

the topological phases for |ψ〉 are multiples of 2π∑
j zj

, we deduce

that the topological phases for a state |ψ̃〉 constructed by spin
flipping a set s are multiples of χ where

χ = 2π(∣∣ ∑
j /∈s zj

∣∣ − ∣∣∑
j∈s zj

∣∣) . (19)

Let us consider the case when the submultiset s satisfies∑
j∈s zj = ∑

j /∈s zj , that is, when it defines an equal partition
of {z0,z1, . . . ,zL−1}. In each row of the matrix Ajk , the 1s and
−1s also define an equal partition of {z0,z1, . . . ,zL−1}. If s

defines an equal partition that also corresponds to a row of
Ajk , the partial spin flip produces a row of only 1s or only
−1s. In this case, the qubit corresponding to this row is in a
tensor product with the remaining qubits. However, if there
are more equal partitions of the {z0,z1, . . . ,zL−1} than Ajk

has rows, it is possible to select an s such that a nonproduct
state results. In this case, one has produced an entangled state
that can only be detected by polynomials that are invariant
under the full U(2)⊗q group and that does not have topological
phases. These states are thus natural extensions of the W state.

Returning to the case of three qubits, we can see that a
partial spin flip of a single term of an irreducible state in the X
class will produces a state in the W ′ class. A spin flip of two
terms produces a state where one qubit is in a tensor product
with a possibly entangled two-qubit state.

As a further example, consider the five-qubit irreducible
c-balanced state from [32],

|11111〉 + |11000〉 + |10110〉 + |01000〉
+ |00101〉 + |00011〉, (20)

which, by a spin flip on the basis state s = {1}, is transformed
into the irreducible a-balanced state

|00000〉 + |11000〉 + |10110〉 + |01000〉
+ |00101〉 + |00011〉, (21)

with nonzero invariant of bidegree (5,1), then by spin flip on
the basis state s = {2} into an irreducible a-balanced state,

|00000〉 + |00111〉 + |10110〉 + |01000〉
+ |00101〉 + |00011〉, (22)

with nonzero invariant of bidegree (4,2), and finally by a spin
flip on the basis state s = {5} into a state with a nonzero
invariant of bidegree (3,3),

|00000〉 + |00111〉 + |10110〉 + |01000〉
+ |11010〉 + |00011〉. (23)

This final state, which comes out of the initial irreducible
c-balanced state (20) by a spin flip on the part s = {1,2,5}, is
a state that is only detected by U(2)⊗5 invariants, similarly to
the |W 〉 states, which, however, are completely unbalanced.

We can, in fact, go even further than spin flipping submul-
tisets s, and instead split a basis product state vector into two

parts, followed by a spin flip on only one of the parts. However,
the resulting state is then a GHZ state plus an unbalanced state.
In order to give an example with the splitting of a basis product
state vector, we take the X state from [49],

√
2|1111〉 + W ↔ A =

⎛
⎜⎝

1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1

⎞
⎟⎠ . (24)

This state is mapped by a partial spin flip on s = {1,3,4} into

|1111〉 + |0000〉, (25)

|0111〉 + |1011〉 + |0010〉 + |0001〉. (26)

The splitting into a GHZ (c-balanced) state and the W-like
(unbalanced) state,

|W−like〉 = |0111〉 + |1011〉 + |0010〉 + |0001〉, (27)

is easily seen.
The number of different types of irreducible c-balancedness

for q qubits increases rapidly with q. The problem of finding
these different types can be rephrased as a combinatorial
problem which can be solved algorithmically. However, the
algorithmic search constructed in Ref. [36] already becomes
computationally expensive for q > 7. Constructing the invari-
ants corresponding to the irreducible a-balanced or c-balanced
states is also a demanding task and, in general, the invariants
of qubit systems have only been studied for up to five
qubits [47,50].

V. INDUCED CLASSIFICATION

Any qualitative entanglement property can be used to clas-
sify entangled states. Local SU(2) interconvertibility already
groups the states into classes, since belonging to the same
orbit of some group is an equivalence relation. A complete
generating set of invariants distinguishes all the orbits of the
underlying group. In this way, a finite number of invariants
produces an infinite number of classes. However, for some
purposes, it may be useful to classify states based on some
property of interest that yields a finite number of classes. Here,
we reflect upon how balancedness can be used to construct such
a classification.

One approach is to classify states based on the balancedness
of their minimal form. However, states may have several
minimal forms with different balancedness, thus making the
assignment nonunique. Moreover, the minimal forms do not
always give us the full picture. One such example is the
intersection of the GHZ class and the X class in Sec. III. While
the states in the local SU orbit of the GHZ state have the GHZ
state itself as a minimal form, they can also be put on the form
of the X state.

Any SL- or SU-invariant polynomial that is not invariant
under U(1) transformations detects only balanced parts of
states. However, the choice of homogeneous generators for
the polynomial algebra of invariants is typically not unique.
Given a generator, products of other generators can often be
added without changing the bidegree of the generator. As we
saw in Sec. IV, for every irreducible state, there is at least
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one invariant polynomial containing a monomial term that
precisely captures the balancedness of the state. This allows
us to choose generators of the polynomial algebra such that
a generator detects only a given type of irreducibly balanced
states while not detecting any other types. This connection
between the different kinds of c- or a-balancedness and
invariant polynomials is a direct result of SL or SU invariance,
respectively. We therefore use the invariants chosen in this way
as a starting point for a classification.

Because our interest is in a qualitative classification, we
consider only which invariants out of a generating set take
nonzero values, rather than what their precise values are.
Assume that a complete generating set for the invariants is
known. Then we put two states in the same class, if they are
detected by the same set of invariants. This is an equivalence
relation (self-similarity and transitivity) and groups the states
in finitely many classes for finitely many qubits. Given that
we have chosen the generators, as outlined above, this also
captures the balancedness of the states.

Here, it is worth mentioning that some carefully chosen
elements of the zero class of the underlying symmetry group
can be added without changing the class. That is, if a state
vector from the zero class can be added to a given vector
without creating new balancedness in the resulting state,
this careful adding does not change the class. This can be
elements out of the (n,n) class plus the unbalanced class for
classifications with respect to SU(2), or the (2n − p,p) class,
p 	∈ {0,2n}, classifying with respect to the group SL(2).

Beyond the connection to topological phases, it is unclear
to us what physical sense a classification of the kind given
here may carry, but it is a very natural one that relies on the
SU invariance (or SL invariance) of entanglement properties,
and we consider further analysis worthwhile.

A. Examples of how the classification works

As an example, we can first consider the connection be-
tween different types of c-balancedness and polynomial local
SL invariants in the case of four qubits, which was previously
investigated in [31,32]. The generating set of polynomial local
SL invariants contains four generators of polynomial degree
2, 4, 4, and 6, respectively [44]. In Ref. [49], irreducible
c-balanced states that represent up to seven different types
(invariant under qubit permutations) of genuine four-qubit
entanglement were identified [58]. One is the four-qubit GHZ
state,

|0000〉 + |1111〉, (28)

which is a representative of the only type of genuinely
multipartite entanglement that is detected by the generator
of degree 2. The second is the cluster state

|1111〉 + |1100〉 + |0010〉 + |0001〉, (29)

which is local unitary equivalent to |0000〉 + |0011〉 +
|1100〉 − |1111〉, and the states related to the state in Eq. (29)
by permutation of the qubits. These are only detected by the
two degree-4 generators after functional dependencies of the
generators have been removed. The last state is the four-qubit
X state,

|1111〉 + |1000〉 + |0100〉 + |0010〉 + |0001〉, (30)

which is only detected by the degree-6 generator. As found
in [36], these states are also distinguished by their respec-
tive topological phases. The four-qubit GHZ state has only
the topological phase π , while the four-qubit cluster state has
a topological phase π

2 and the four-qubit X state has a phase π
3 .

In [31], a classification scheme was suggested for four-
qubit entangled states where SLOCC-equivalence classes were
grouped into families in terms of “tangle patterns.” The
tangle patterns are defined in terms of a generating set of
polynomial invariants, and the highest degree of a generator
that detects a state determines which family it belongs to.
In this way, the states are sorted into a hierarchy of four
families. The four families are precisely the c-unbalanced
states, and three families corresponding to the four generators
of degree 2, 4, and 6, respectively. The entanglement types of
the three genuine entangled families have been named after
representative states of the respective family that is detected
only by its particular highest-degree generator. These are the
states identified in [49] and therefore the types are called X
type, cluster type, and GHZ type [31]. In addition to this, there
is the W-type family which is not detected by SL-invariant
polynomials.

We note that the families are distinguished by topological
phases under cyclic local SL evolution, just as are their
representative states. Only the X-type family contains states
with topological phase π

3 under cyclic local SL evolution.
Only the cluster-type family contains states with topological
phase π

2 . All states in the GHZ-type family have the phase π

and the states of the W type have no topological phases under
cyclic local SL evolution.

In contrast to this, our classification scheme gives
a slightly different answer and is more fine grained.
From the chosen invariants (A,BI ,BII ,C) [31] of poly-
nomial degrees (2,4,4,6), we can construct the invariants
(A,BI − A2,BII − A2,C + A3). These satisfy the property
that each invariant detect only one kind of irreducible bal-
ancedness.

Using these invariants, we give a 4-tuple (a,b1,b2,c)
in ZZ4

2. The class (1,0,0,0) corresponds to the GHZ-type
entanglement, while (0,1,0,0) and (0,0,1,0) correspond to
the two different kinds of irreducibly balanced states of
length 4, i.e., the two different kinds of cluster-type states
related by permutations of the second and third qubit. The
irreducibly balanced states of length 6, i.e., states with X-type
entanglement, belong to the class (0,0,0,1). The two different
kinds of biseparable states of the type |φ1〉 ⊗ |φ2〉, where each
|φi〉 is an entangled state of two qubits, are found in the
two classes (1,1,0,1) and (1,0,1,1). These two classes also
contain the reducibly balanced states of length 4 that are not
biseparable. Almost every state except a set of zero measure
belongs to the class (1,1,1,1) containing all the different kinds
of c-balancedness. (0,0,0,0) is the class of states that are
not c-balanced. They will be treated in what follows. This
classification gives us, at most, 15 classes of genuine four-party
entanglement.

When looking at a classification of states based on their
a-balancedness and their topological phases under local SU(2)
evolution, we make the more fine-grained division of local
SU(2) orbits into families based on which local SU(2)
invariants of bidegree (d1,d2), where d1 	= d2, detect them. We
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note that such a classification scheme captures the structure
on the set of entangled three-qubit states that was described
in Sec. III. Here, the GHZ SLOCC class is subdivided into
the X family detected only by the three-tangle and the rest of
the GHZ SLOCC class detected by both the three-tangle and
τ3,1. The W family is divided into the W ′ family detected by
τ3,1 with the W ′ state as a representative and the unbalanced
states with the W state as a representative. In particular, we see
that such a scheme divides the W SLOCC class of states, i.e.,
the states that are not c-balanced, into subfamilies based on
a-balancedness through the associated local SU(2)-invariant
polynomials.

As a further example of this, we can consider the four-qubit
states that are not c-balanced. For four qubits, the irreducible
a-balanced states derived from the X state are detected by
invariants of bidegree (5,1) or of bidegree (4,2) and display
topological phases π

2 or π , respectively. The irreducible a-
balanced states that can be derived from the cluster state in
Eq. (29) are detected by polynomials of bidegree (3,1) and
display the topological phase π . By considering the different
combinations of these invariants that can detect a state, and
treating states related by qubit permutations as equivalent, we
get, at most, seven subfamilies. In addition to this, we have
the family of a-unbalanced states that are only detected by
invariants of the full local unitary group.

As an example of the classification scheme involving c-
balanced states, we can consider the local SU orbits of the
four-qubit X-type family from [31]. These are all detected by
the generator of bidegree (6,0), but can be further subdivided
into subfamilies based on which of the invariants of bidegree
(4,0), (3,1), (5,1), (4,2), and (2,0) detects the states. This gives,
at most, a total of 32 subfamilies. Notably, only the subfamily
detected by none of the polynomials other than that of bidegree
(6,0) contains states with topological phase π

3 , while the other
subfamilies only contain states with phase π .

This classification scheme gives us a hierarchy of en-
tanglement families based on the concept of balancedness.
Furthermore, it is closely connected to the qualitative feature
of topological phases displayed by states in the respective
family. Further investigation of this concept would be highly
desirable.

VI. CONCLUSIONS

Some examples of irreducible a-balanced states with
topological phases are known from [36], but in this work
we have demonstrated that topological phases are a feature
of all irreducibly a-balanced states for which the associated
set of integers has a nonzero sum. We have also shown
that every such state is detected by a local SU-invariant
polynomial of bidegree (d1,d2), where d1 	= d2. It distinguishes
these states from the unbalanced states that do not have any
topological phase and which are only detected by invariants of
bidegree (d1,d1).

We have shown this by introducing a partial spin flip, which
maps between states that are c-balanced and those which are
only a-balanced. The partial spin-flip map also induces a map
between invariants, such that from an initial SL(2) invariant
the existence of SU(2) invariants that detect irreducible a-
balanced states follows. For three qubits, an invariant τ3,1

of bidegree (3,1) detects the irreducible a-balanced state
|W̃ 〉 with topological phase π , but not the unbalanced W
state that has no topological phases. The invariant τ3,1 also
distinguishes between the genuinely three-partite entangled
states with topological phase π and those with topological
phases mπ

2 for integer m. The remaining states are detected
only by invariants of the group of local U(2), and thus are
in the zero class of both SL(2) and SU(2) invariants. The
set of these states contains bipartite product states besides
globally entangled states, which are W -like states. Which
class a state belongs to can be clearly foreseen from the
original (irreducible) c-balanced form of an SL(2)-invariant
state.

Furthermore, we have discussed how balancedness and, in
particular, a-balancedness can be used for the classification
of entangled states. The connection to polynomial invariants
as well as topological phases suggests that c-balancedness as
well as a-balancedness are useful concepts for the description
of multipartite entangled states.
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APPENDIX

Let us now illustrate what a-balancedness means by show-
ing that irreducible a-balanced states for which

∑
j zj 	= 0

always have an a-balanced part after local SU transformations
on a single qubit. To see this, let an SU transformation U act on
a single qubit of an a-balanced state |ψ〉 whose balancedness
is represented by a matrix A. We can express the resulting state
as a sum of two parts U1|ψ〉 and U2|ψ〉 corresponding to the
action of the diagonal part U1 = 1

2 [1ltr U + tr (Uσz)σz] and
the off-diagonal part U2 = 1

2 [tr (Uσx)σx + tr (Uσy)σy] of U ,
respectively. Both parts U1|ψ〉 and U2|ψ〉 are a-balanced with
the same set of integer numbers z1, . . . ,zL and their respective
matrices are A1 = A, and A2 related to A by multiplication of
a row by −1. If no pair of columns in A1 is also found in A2,
the matrix of the full state contains the columns of both A1

and A2 and is then clearly balanced. However, if A1 and A2

has one or more pairs of columns in common, it is possible to
choose the SU transformation such that one or possibly several
of the terms corresponding to these columns cancel out. In this
case, these columns do not appear in the matrix of the full state
and therefore a-balancedness may be lost.

However, if the original state is irreducibly a-balanced,
i.e., if no proper subset of columns in A are linearly
dependent, and if

∑
j zj 	= 0, it follows that at most one

pair of columns is common to A1 and A2. Even if a term
corresponding to such a column is canceled out, the full
state is still balanced. To see this, let zl and zl′ be the
integers that correspond to the columns belonging to the
canceled term. By choosing m1zl + m2zl′ = 0, with m1 and
m2 relatively prime, the integer corresponding to the canceled
term is zero. The corresponding integers for the remaining
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state are m1(z1, . . . ,zl−1,zl+1, . . . ,zL)A1 , m2(z1, . . . ,zl′−1,

zl′+1, . . . ,zL)A2 and thus the state is balanced also in the
absence of this column, corresponding to the irreducible
balancedness of A1 and A2, respectively.

As an example, consider the irreducible a-balanced three-
qubit state

|W ′〉 = |000〉 + |100〉 + |010〉 + |001〉, (A1)

with integer numbers (−1,1,1,1) describing its a-
balancedness, and apply the Hadamard transformation on
the first qubit. Here, the term |100〉 is canceled out by the
transformation and the resulting state is

H1 =
(

1 1
1 −1

)
, (A2)

H1|W ′〉 = |000〉 + |010〉 + |110〉 + |001〉 + |101〉. (A3)

Therefore, we find the integers corresponding to the
matrices A1 and A2 by choosing m1 = m2 = 1,

A1 =

−1 1 1 1⎛
⎝−1 1 −1 −1

−1 −1 1 −1
−1 −1 −1 1

⎞
⎠;

(A4)

A2 =

−1 1 1 1⎛
⎝ 1 −1 1 1

−1 −1 1 −1
−1 −1 −1 1

⎞
⎠ .

The matrix and integers of the full state are

AH1|ψ〉 =

0 1 1 1 1⎛
⎝−1 −1 1 −1 1

−1 1 1 −1 −1
−1 −1 −1 1 1

⎞
⎠ . (A5)

As in the example, one or several of the integer num-
bers attributed to product basis states can become zero,
but the remaining components are (a- or c-)balanced.
In particular, the resulting state cannot be a product
state.

A second example is the four-qubit state

|W ′〉 = |0000〉 + |1000〉 + |0100〉 + |0010〉 + |0001〉, (A6)

with corresponding integers (−2,1,1,1,1). Using the same
transformation on the first qubit, we get the matrices

A1 =

−2 1 1 1 1⎛
⎜⎝

−1 1 −1 −1 −1
−1 −1 1 −1 −1
−1 −1 −1 1 −1
−1 −1 −1 −1 1

⎞
⎟⎠;

(A7)

A2 =

−2 1 1 1 1⎛
⎜⎝

1 −1 1 1 1
−1 −1 1 −1 −1
−1 −1 −1 1 −1
−1 −1 −1 −1 1

⎞
⎟⎠ .

Here, |1000〉 is canceled (m1 = 2,m2 = 1) and we have

H1|W ′〉 = |0000〉 + |0100〉 + |0010〉 + |0001〉
+ |1100〉 + |1010〉 + |1001〉, (A8)

with corresponding integers (−3,2,2,2,1,1,1).
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and S. Pádua, Phys. Rev. A 87, 042113 (2013).

[43] M. Johansson, A. Z. Khoury, K. Singh, and E. Sjöqvist, Phys.
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