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Improved bounds for eigenpath traversal
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We present a bound on the length of the path defined by the ground states of a continuous family of Hamiltonians
in terms of the spectral gap �. We use this bound to obtain a significant improvement over the cost of recently
proposed methods for quantum adiabatic state transformations and eigenpath traversal. In particular, we prove
that a method based on evolution randomization, which is a simple extension of adiabatic quantum computation,
has an average cost of order 1/�2, and a method based on fixed-point search has a maximum cost of order 1/�3/2.
Additionally, if the Hamiltonians satisfy a frustration-free property, such costs can be further improved to order
1/�3/2 and 1/�, respectively. Our methods offer an important advantage over adiabatic quantum computation
when the gap is small, where the cost is of order 1/�3.
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I. INTRODUCTION

Numerous problems in quantum information, physics, and
optimization can be solved by preparing the low energy or
other eigenstate of a Hamiltonian (cf. Refs. [1–10]). On a
quantum system (e.g., an analog quantum computer), such
an eigenstate can be prepared by smoothly changing the
interaction parameters of the controlled Hamiltonians under
which the system evolves. That is the idea of adiabatic
quantum computation (AQC), which relies on the adiabatic
theorem [11,12] to assert that, at any time, the evolved state
is sufficiently close to an eigenstate of the system that is
continuously related to the final one.

The importance of AQC for quantum speedups was demon-
strated in several examples (cf. Refs. [7,13–15]). In particular,
AQC is equivalent to the standard circuit model of quantum
computing, implying that some quantum speedups obtained
in one model may be carried to the other using methods that
map quantum circuits to Hamiltonians and vice versa [16–24].
In AQC, we assume access to Hamiltonians H (s), 0 � s � 1,
that have nondegenerate and continuously related eigenstates
|ψ(s)〉. The goal is to prepare |ψ(1)〉 from |ψ(0)〉, up to some
small approximation error ε, by increasing s from 0 to 1 with
a suitable time schedule. The cost of the algorithm in AQC is
determined by the total evolution time, T . This time depends
on properties of the Hamiltonians used in the evolution, such as
their rate of change or spectral gaps. In particular, a commonly
used and rigorous quantum adiabatic approximation provides
an upper bound to the cost given by (cf. Refs. [25,26])

TAQC = κ max
s

[‖Ḧ‖
ε�2

,
‖Ḣ‖2

ε�3

]
. (1)
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That is, increasing s according to, for example, s(t) = t/TAQC

suffices to prepare the final eigenstate from the initial one
within error ε. (The cost will be T = TAQC for such a schedule.)
κ is a constant and � is the spectral gap of H , that is,
the smallest (absolute) difference between the eigenvalue of
|ψ(s)〉 and any other eigenvalue. Unless stated otherwise, all
quantities, states, and operators depend on s, and all derivatives
are with respect to s, e.g., Ẋ = ∂X/∂s and Ẍ = ∂2X/∂s2. For
an operator or matrix X and state |φ〉 on a d-dimensional
complex Hilbert space, ‖X‖ denotes the spectral norm and
‖|φ〉‖ denotes the Euclidean norm. We remark that the bound
in Eq. (1) is actually tight in the sense that there exist examples
(e.g., Rabi oscillations; cf. Refs. [27,28]) for which the total
cost of the adiabatic evolution is also lower bounded by a
quantity of order ‖Ḣ‖2/�3, and ‖Ḣ‖2/�3 > ‖Ḧ‖/�2 in such
examples.

A drawback with rigorous quantum adiabatic approxima-
tions is that the dependence of TAQC on the gap is rather poor,
especially when � � 1. Also, the bound given by Eq. (1)
could imply a large overestimate of the actual cost needed to
prepare the final eigenstate in some cases. For these reasons,
other methods for traversing the eigenstate path, which differ
from AQC but may have a better cost dependence on the gap,
were recently proposed [29–31]. One such method [30] is
based on evolution randomization to implement a version of
the quantum Zeno effect and simulate projective measurements
of |ψ(s)〉. The main and only difference between this “random-
ization method” (RM) and AQC is that, rather than choosing
the schedule s(t) = t/TAQC for the evolution, s(t) is randomly
chosen according to a probability distribution that depends on
the gap and the approximation error. Another method [31] also
traverses the eigenstate path by making projective measure-
ments of |ψ(s)〉, but each measurement is implemented using
the so-called phase estimation algorithm [32] and Grover’s
fixed-point search technique [33]. The method in Ref. [31]
requires knowing the eigenvalue of |ψ(s)〉, but this can be
learned as the path is traversed.
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The (average) cost T , or total time of evolution under the
H (s), of the previous methods for eigenpath traversal depends
not only on the spectral gap but also on the eigenstate path
length L. This is simply the length defined in complex Hilbert
space, L = ∫ 1

0 ds‖|ψ̇〉‖. For error ε < 1, the cost is upper
bounded by

TEPT = κ ′ L
c ln(L/ε)

ε mins �
, (2)

with c = 1,2 depending on the method and κ ′ a constant.
Having an explicit dependence in the path length is important
for those cases in which L can be bounded independently of the
gap. This observation was used in Ref. [7] to prove a quantum
speedup of the well-known simulated annealing method used
for optimization [34] (Sec. IV B). For many hard optimization
problems, � decreases exponentially in the problem size while
L increases only polynomially. Then, TAQC � TEPT for these
cases, and the methods in Refs. [29–31] can be used to prepare
the final eigenstate with lower cost than the adiabatic method.

We remark that the upper bound of Eq. (2) can be achieved
only for a uniform parametrization, under which the eigenstate
satisfies ‖|ψ̇〉‖ = L, independently of s. This is a strong
requirement that will not be satisfied in general. We then
considered an upper bound L∗ � L, which can be easily
computed from known properties of the Hamiltonians, and
used such a bound to obtain the corresponding TEPT in
Refs. [30,31] (i.e., by replacing L → L∗). When ‖Ḣ‖ and
� are known, a commonly used path length bound is

L∗ = max
s

‖Ḣ‖
�

. (3)

Such a bound follows easily from the eigenvalue equation,
which can be used to obtain ‖|ψ̇〉‖ � ‖Ḣ‖/� [35]. Equa-
tions (2) and (3) give an upper bound for the cost of the
eigenpath traversal method as

TEPT = κ ′ max
s

‖Ḣ‖c

ε�c+1
ln[‖Ḣ‖/(ε�)]. (4)

c = 2 for the RM and TEPT can be larger than TAQC when the
parametrization is different from the uniform one. Thus, the
advantage of the RM over the adiabatic method is unclear in
this case from the above upper bounds: both TAQC and TEPT

depend on 1/�3.
A main goal of this paper is to obtain better bounds for

the cost of the methods of Refs. [29–31] in terms of the
spectral gap, the error, ‖Ḣ‖ and ‖Ḧ‖, giving special emphasis
to the RM described in Ref. [30]. Such quantities, or their
bounds, are assumed to be known. The reason why we focus
more on the RM than other methods for eigenpath traversal is
due to its simple connection with AQC. The other methods
not only require evolving with the Hamiltonian, but also
require implementing other operations such as those for the
quantum Fourier transform in the phase estimation algorithm.
Nevertheless, some of our results can also be used to improve
the cost of those other methods as well.

Our paper is organized as follows. In Sec. II we present
an improved bound on the path length where, ignoring other
quantities, L∗ is of order 1/

√
� if |ψ〉 is the ground state of

H . We study this bound for general Hamiltonian paths and
focus also on those Hamiltonians that are frustration free,

due to their importance in condensed matter theory [8,36],
optimization [37], and quantum information [38–40]. Then,
in Sec. III, we use the improved bound to obtain an average
cost for the RM of order 1/�2, which is much smaller than
TAQC when � � 1. In Sec. III B we improve the analysis
of Ref. [30] about the cost scaling with the error and show
that the logarithmic factor present in Eqs. (2) and (4) for the
RM is unnecessary. In Sec. IV we apply our results to
two important problems in quantum computation, namely,
the preparation of projected entangled pair states [41] (i.e.,
generalized matrix product states or PEPS) and the quantum
simulation of classical annealing processes [7,34]. We use
the results for frustration-free Hamiltonians and show that the
RM has an average cost of order 1/�3/2 for the preparation of
PEPS, while the method based on fixed-point search has cost
of order 1/� (up to a logarithmic correction). We conclude in
Sec. V

II. THE PATH LENGTH

The path length of a continuous and differentiable family
of unit states {|ψ(s)〉}, 0 � s � 1, is

L =
∫ 1

0
ds‖|ψ̇〉‖.

The global phase of |ψ〉 is set so that 〈ψ |ψ̇〉 = 0. |ψ〉 is a
nondegenerate eigenstate of H , and, without loss of generality,
we assume that the eigenvalue is 0. Then, |ψ̇〉 = −H−1Ḣ |ψ〉,
where H−1 has only support in the subspace orthogonal to
|ψ〉. An upper bound of maxs(‖Ḣ‖/�) on L simply follows.
Such a bound is commonly used when deriving adiabatic
approximations.

Remarkably, if the state path is two times differentiable and
|ψ〉 is the ground state of H (i.e., the eigenstate with lowest
eigenvalue), a tighter bound on L in terms of the gap can be
obtained. According to the Cauchy-Schwarz inequality,

L2 �
∫ 1

0
ds ‖|ψ̇〉‖2. (5)

By differentiation of H |ψ〉 = 0, in Appendix A we obtain

‖|ψ̇〉‖2 � 1

2�
〈ψ |Ḧ |ψ〉; (6)

see Eq. (A2). Equations (5) and (6) yield

L2 �
∫ 1

0
ds

1

2�
〈ψ |Ḧ |ψ〉.

If the lowest eigenvalue is E �= 0, then

L � L∗ =
( ∫ 1

0
ds

1

2�
〈ψ |Ḧ − Ë|ψ〉

)1/2

. (7)

Equation (7) is our main result; its applications to eigenpath
traversal will be discussed below.
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A. General interpolations

In general, because 〈ψ |Ḧ − Ë|ψ〉 � 0, the right-hand side
of Eq. (7) can be bounded so that

L∗ � max
s

√
‖Ḧ‖ − [Ė(1) − Ė(0)]

2�

� max
s

√
‖Ḧ‖ + 2‖Ḣ‖

2�
.

For eigenpath traversal, quantities such as ‖Ḣ‖ and ‖Ḧ‖
are usually bounded by a polynomial on the problem size,
while the spectral gap � can be exponentially small for hard
instances.

B. Linear interpolations

A commonly used Hamiltonian path is given by the linear
interpolation of two Hamiltonians, that is, H = (1 − s)H0 +
sHf . Here H0 and Hf are the initial and final Hamiltonians,
respectively. In this case,

L∗ � max
s

√
Ė(1) − Ė(0)

2�
� max

s

√
‖Ḣ‖
�

.

C. Frustration-free Hamiltonians

A Hamiltonian H = ∑
k �k is said to be frustration-free

if any ground state |ψ〉 of H is also a ground state of every
�k . Typically, �k corresponds to local operators, and we can
assume that H |ψ〉 = �k|ψ〉 = 0 for all k, and �k � 0.

For frustration-free Hamiltonians, the local bound on the
rate of change of the state in Eq. (6) applies directly because
E = 0, and then

L∗ � max
s

√
‖Ḧ‖
2�

. (8)

III. IMPROVED BOUNDS FOR THE
RANDOMIZATION METHOD

The “randomization method” (RM) described in Ref. [30]
uses phase randomization to traverse the eigenpath. The basic
idea of the RM is simple: For a Hamiltonian path {H (s)},
we choose a discretization 0 < s1 < s2 < · · · < sq = 1 that
depends on the final-state preparation error. At the j th step of
the RM, we evolve with the constant Hamiltonian H (sj ) for
random time tj , which is drawn according to a specific distri-
bution that depends on �(sj ), the gap at that step, and the error.
A common example is to sample tj from a normal distribution
of zero mean and width (standard deviation) of order 1/�(sj ).
Evolution randomization will induce phase cancellation and a
reduction of the coherences between |ψ(sj )〉 and any other
state orthogonal to it (see Secs. III A and III B). In other
words, evolution randomization simulates a measurement of
|ψ(sj )〉. Then, due to a version of the quantum Zeno effect, a
sequence of measurements of |ψ(s1)〉,|ψ(s2)〉, . . . will allow
the preparation of |ψ(sq)〉, with arbitrarily high probability for

L 

|ψ(s0)

|ψ(sq)

|ψ(sj)
 

α1
α2

FIG. 1. (Color online) Basic steps of the RM and state repre-
sentation. At the j th step, the RM prepares the mixed state ρj

(represented by a red arrow) that has large probability of being
in |ψ(sj )〉 (represented by a black arrow) after measurement. The
preparation of ρj is done by evolving ρj−1 with the Hamiltonian
H (sj ) for random time. The number of steps q is obtained so that the
final error probability is bounded by some given ε > 0.

a proper choice of s1,s2 . . . ,sq . The basic steps of the RM are
depicted in Fig. 1; more details are in Secs. III A and III B.

The average cost of the RM is the number of steps q

times the average (absolute) evolution time per randomization
step; the latter is proportional to the inverse spectral gap [30].
For a uniform parametrization under which ‖|ψ̇〉‖ = L for
all s, and for error ε, we obtain q ∝ L2/ε, resulting in
an optimal average cost of order L2/(ε�). An additional
logarithmic factor, coming from Eq. (4), was needed for the
cost analysis of Ref. [30] if the random times are nonnegative
(or nonpositive).

Nevertheless, the given parametrization is not uniform in
general. In this case, the RM is guaranteed to succeed only
if q = (L∗)2, where L∗ is an upper bound on L that can be
determined from some known properties of H . As discussed,
a standard choice for L∗ is the one in Eq. (3), which results in an
overall cost of order 1/�3 if we disregard other quantities: the
number of points in the discretization is q ∝ maxs(1/�2). The
goal of this section is to show that the upper bound obtained
in Sec. II can be used to obtain a better discretization for the
RM than that of Ref. [30], resulting in an overall, improved
average cost of order maxs(1/�2). We also show how to avoid
the logarithmic correction in the cost by performing a more
detailed analysis of errors due to randomization, when the
random times are nonnegative (or nonpositive).

A. Parametrization errors

In this section we analyze the errors due to the discretiza-
tion, which assumes perfect measurements of the |ψ(s)〉 in
the RM. Errors from imperfect measurements due to evolution
randomization are analyzed in Sec. III B. We let 0 < s1 <

s2 < · · · < sq = 1 determine any discretization of the interval
[0,1], where q will be obtained below. Assuming perfect
measurements of the |ψ(sj )〉 and using the union bound, the
final error or quantum infidelity (1 − F ) in the preparation of
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|ψ(sq)〉 can be bounded from above as

1 − F = 1 −
q∏

j=1

cos2(αj ) �
q∑

j=1

sin2(αj ),

where the “angles” αj are determined from cos αj =
|〈ψ(sj−1)|ψ(sj )〉|; see Fig. 1. Without loss of generality, we
can assume sin αj � 0.

In Appendix B, we show

sin2(αj ) � (sj − sj−1)
∫ sj

sj−1

ds ‖|ψ̇〉‖2, (9)

for a differentiable path. If we choose a discretization so
that sj = j δs, the choice δs � ε/

∫ 1
0 ds‖∂s |ψ(s)〉‖2 suffices

to guarantee a final infidelity bounded by ε; that is,

q∑
j=1

sin2(αj ) � ε. (10)

We can then use the main result of Sec. II and Eq. (9) to show

δs = ε

(L∗)2
.

This bound assumes that |ψ〉 is the ground state of H . The
number of points in the discretization is then

q = 1

δs
=

∫ 1
0 ds〈ψ |Ḧ − Ë|ψ〉/(2�)

ε
, (11)

which is of order maxs(1/�) if we ignore other quantities.
It follows that the overall, average cost of the RM is of
order maxs(1/�2), implying a better gap dependence than the
one obtained in Ref. [30]. In the following section we show
how the measurements can be simulated and approximated by
evolution randomization.

B. Imperfect measurements

A perfect, projective measurement of |ψ〉 is one that
transforms all coherences between |ψ〉 and its orthogonal com-
plement to 0. That is, if ρ denotes the density matrix after the
perfect measurement, then 〈ψ |ρ|ψ⊥〉 = 0 for all states |ψ⊥〉
satisfying 〈ψ |ψ⊥〉 = 0. In the RM of Ref. [30], we showed that
a perfect measurement can only be simulated if the random
evolution time t is drawn according to a distribution in which
t ∈ (−∞,∞). If t can be only nonnegative (or nonpositive),
the coherences are reduced only by a multiplicative factor
ε′ > 0; that is, the simulated measurement is imperfect or
weak. To achieve overall error of order ε in the preparation of
the final eigenstate due to imperfect measurements, in Ref. [30]
we chose ε′ = ε/q, which easily follows from an union-like
bound for a sequence of quantum operations. This introduces
an additional cost to the RM given by a multiplicative factor
of order ln(q/ε) [Eq. (2)], which can be large if q � 1.
Nevertheless, we now present an improved error analysis of
the RM than that of Ref. [30] and show that if the imperfect
measurements are such that ε′ is a constant independent of ε,
an overall error of order ε can still be achieved. This results
in an improved cost for the RM: the ln(q/ε) overhead is
unnecessary.

To demonstrate the improved scaling, it is convenient to
define ρj as the state, or density matrix, at the j th step of the
RM (j = 0,1, . . . ,q); that is, the state after the randomized
evolution with H (sj ). Without loss of generality, we write

ρj = Pr(j )|ψ(sj )〉〈ψ(sj )| + [1 − Pr(j )]ρ⊥
j

+ |ξj 〉〈ψ(sj )| + |ψ(sj )〉〈ξj |,
where Pr(j ) = 〈ψ(sj )|ρj |ψ(sj )〉 is the probability of |ψ(sj )〉
in ρj (i.e., the fidelity). ρ⊥

j is a density matrix with support
orthogonal to |ψ(sj )〉 so that ρ⊥

j |ψ(sj )〉 = 0. The (unnormal-
ized) state |ξj 〉 is also orthogonal to |ψ(sj )〉 and denotes the
coherences between |ψ(sj )〉 and its orthogonal complement.
The norm of |ξj 〉 denotes a coherence factor:

cj = ‖|ξj 〉‖.
The main goal of the RM is to simulate measurements
by keeping cj sufficiently small via phase or evolution
randomization.

At the j + 1-th step, we evolve with H (sj+1) for a random
time drawn from some distribution f (t). Then,

ρj+1 =
∫

dt e−iH (sj+1)t ρj e
iH (sj+1)t . (12)

Since evolving with H (sj+1) leaves the eigenstate |ψ(sj+1)〉
invariant (up to a global phase), we have

Pr(j + 1) = 〈ψ(sj+1)|ρj+1|ψ(sj+1)〉
= 〈ψ(sj+1)|ρj |ψ(sj+1)〉,

with |ψ(sj+1)〉 = cos αj+1|ψ(sj )〉 + sin αj+1|ψ⊥(sj )〉. Then,

Pr(j + 1) � cos2 αj+1Pr(j ) − 2 sin αj+1cj . (13)

Here we assumed the worst case scenario for which
〈ξj |ψ(sj+1)〉 = −cj sin αj+1 and used cos αj+1 � 1. In
Appendix C, Eq. (C3), we show that if Eq. (10) is satisfied,

cj � 1

1 − ε
(ε′ sin αj + ε′2 sin αj−1 + · · · + ε′j sin α1).

(14)

The factor ε′ < 1 denotes the reduction in coherence due to
evolution randomization per step. That is, a random evolution
under H (sj+1) applied to ρj transforms and reduces the
coherences |ψ(sj+1)〉〈ψ(s⊥

j+1)| to∫
dt f (t)e−iH (sj+1)t |ψ(sj+1)〉〈ψ(s⊥

j+1)|eiH (sj+1)t ,

where |ψ(sj+1)⊥〉 is a normalized state orthogonal to
|ψ(sj+1)〉. Then, we can assume

ε′ =
∥∥∥∥

∫
dt f (t)ei�t

∥∥∥∥, (15)

where � � �(sj+1).
The RM starts with |ψ(s0)〉, so initially Pr(0) = 1 and

c0 = 0. By iteration of Eq. (13) we obtain

Pr(q) �
q∏

j=1

cos2(αj ) − 2
q∑

j=1

sin αjcj−1. (16)
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The first term on the right-hand side of Eq. (16) corresponds to
the case where all projective measurements are implemented
perfectly, i.e., when cj = 0 for all j . A lower bound to such
term is given by 1 − ∑q

j=1 sin2(αj ) � 1 − ε, as described in
Sec. III A. Using Eq. (14), the second term on the right-hand
side of Eq. (16) can be upper bounded by

2

1 − ε

q∑
j=1

sin αj (ε′ sin αj−1 + ε′2 sin αj−2 + · · · ), (17)

and using the Cauchy-Schwarz inequality,
q∑

j=1

sin αj sin αj−k �
q∑

j=1

sin2(αj ) � ε.

Then, the fidelity of the RM or probability of success in the
preparation of |ψ(sq)〉 is

Pr(q) � 1 − ε − 2εε′

(1 − ε)(1 − ε′)
, (18)

which follows from summing the geometric series in ε′ in
Eq. (17).

C. Total cost

For constant error or infidelity of order ε < 1, it suffices to
choose a constant ε′ in Eq. (18). For example, a common choice
for the time distribution is a normal distribution f (t) with
standard deviation of order 1/�. Since the Fourier transform
of f (t) is a normal distribution with standard deviation of
order �, Eq. (15) implies a constant upper bound for ε′. Then,
the average cost per step of the RM is also of order 1/�.
Multiplying this by q, the total number of steps in Eq. (11),
provides an upper bound to the total average cost of the RM
given by

(L∗)2

ε�
� κ ′ max

s

‖Ḧ‖ + 2‖Ḣ‖
ε2�2(s)

, (19)

for general interpolations (Sec. II A). κ ′ ≈ √
2/π is also

constant [30]. Such an upper bound can be further improved
for different Hamiltonians or interpolations as described in
Secs. II B and II C. Our result in Eq. (19) significantly improves
upon the result in Ref. [30], for which the average cost in terms
of the gap only was of order maxs[ln(1/�)/�3].

IV. APPLICATIONS

Improved bounds on the cost of methods for eigenpath
traversal may result in speedups for problems in physics,
optimization, and quantum information. In this section, we
apply our results to two important examples where polynomial
quantum speedups are obtained.

A. Preparation of Projected Entangled Pair States (PEPS)

PEPS, a generalization of matrix product states to space
dimensions higher than one [42,43], were conjectured to
approximate the ground states of physical systems with
local interactions [41]. PEPS also arise in combinatorial
optimization and quantum information problems, and their
preparation is paramount to solve such problems. For this

reason, methods for the preparation of PEPS on a quantum
computer were recently developed [10,40].

An important property of PEPS is that they can be realized
as the ground states of frustration-free Hamiltonians. Then,
we can analyze the cost of the RM for the preparation of
PEPS. That is, if H (s) = ∑L

k=1 �k(s) denotes a frustration-
free Hamiltonian path, using the results of Sec. II C we obtain
a cost for the RM upper bounded by

max
s

‖Ḧ‖
ε2�2

.

Such a cost can be further improved as follows. A remarkable
property of frustration-free Hamiltonians is that their spectral
gap can be amplified by constructing the related Hamiltonian

H ′ =
√

‖�‖
L∑

k=1

√
�k ⊗ [|k〉〈0| + |0〉〈k|],

where |k〉, k = 0,1, . . . ,L are a basis of states of an ancillary
system. H ′ has |ψ〉 ⊗ |0〉 as eigenstate of eigenvalue 0,
and the spectral gap of H ′ is �′ �

√
�‖�‖, where ‖�‖ =

maxk ‖�k‖. These properties and the full spectrum of H ′ was
analyzed in Ref. [40]. Then, if we have access to evolutions
under the

√
�k(s), the randomized evolution in the RM can be

implemented using H ′ instead, having an average cost of order
1/�′ ∝ 1/

√
�‖�‖ per step. This implies an overall, average

cost for the RM upper bounded by

κ ′ max
s

‖Ḧ‖
ε2‖�‖1/2

1

�3/2
. (20)

Similarly, the cost of other methods for eigenpath traversal [31]
for this problem will have an improved cost bounded by

κ ′ max
s

√
‖Ḧ‖/2 × ln[

√
‖Ḧ /(2�)/ε]

ε‖�‖1/2

1

�
. (21)

Equation (21) follows from Eq. (2) for c = 1, replacing � by
�′ and L by L∗ as in Eq. (8). The cost is almost linear in 1/�.

We note that for many frustration-free Hamiltonians, the
terms �k are projectors and

√
�k = �k . Otherwise the �k

may be expressed as a linear combination of projectors, so
that the requirement of having access to evolutions with the√

�k is not strong.

B. Quantum simulated annealing

Simulated annealing is a powerful heuristics for solving
combinatorial optimization problems. When implemented
via Markov Chain Monte Carlo techniques, it generates a
stochastic sequence of configurations that converges to the
Gibbs distribution determined by the inverse temperature βq

and an objective function E. For sufficiently large βq , the final
sequences are sampled from a distribution mostly weighted
on those configurations σ that minimize E. The process is
specified by a particular annealing schedule, which consists
of a finite increasing sequence of inverse temperatures β0 =
0 < β1 < · · · < βq . The cost of the method is the number of
Markov steps required to sample from the desired distribution,
i.e., q. For constant error, such a number can be upper bounded
by ∝maxβ 1/�(β), where �(β) denotes the spectral gap of the
stochastic matrix at inverse temperature β.
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In Ref. [7] we gave a quantum algorithm that allows us
to sample from the same distribution as that approached by
the simulated annealing method. The quantum algorithm uses
the RM to traverse a path of states |ψ(β)〉. Here |ψ(β)〉
is a coherent version of the corresponding Gibbs state,
having amplitudes that coincide with the square root of the
probabilities. That is,

|ψ(β)〉 = 1√
Z

∑
σ

e−βE[σ ]/2|σ 〉, (22)

where the sum is over all configurations and Z =∑
σ exp(−βE[σ ]) is the partition function.
In more detail, the cost of the quantum method presented

in Ref. [7] is of order

max
β

q ln q/
√

�(β) (23)

with q = β2
qE

2
M/(4ε) and EM is the maximum of |E|. ε

denotes the overall error probability of finding the configu-
ration that minimizes E and q is the number of points in the
discretization or steps in the RM. As discussed, q is related to
the path length so that q � L2/ε, with L = ∫ βq

0 dβ‖|∂βψ(β)〉‖
in this case. In terms of the spectral gap �(β), the quantum
algorithm of Ref. [7] provides a square root improvement
over the classical method, which is important for those hard
instances where �(β) is small.

We can then use the results in Sec. III to search for a better
bound on the path length and, ultimately, a reduction on the
cost of the RM for this problem. That is, instead of using q as
above, we replace it by q∗, with L2 � q∗ and

q∗ = βq

ε

∫ βq

0
dβ‖|∂βψ(β)〉‖2 ;

see Eq. (11). For such ε, βq is of order ln(d/ε)/γ , where d is the
dimension of the configuration space and γ is the difference
between the two smallest values in the range of E (i.e., the
spectral gap of E).

In Appendix D, Eq. (D2), we show

‖|∂βψ(β)〉‖2 = −∂β〈E〉/4,

where 〈E〉 is the expected (thermodynamic) value of E. Then,
we obtain

q∗ = βq(〈E〉0 − 〈E〉βq
)

4ε
.

Without loss of generality, we assume 〈E〉0 = 0, as we can
always shift the lowest value of E to satisfy the assumption.
In fact, the assumption is readily satisfied for many problems
of interest, such as those where E describes a so-called Ising
model. If βq � 1, then 〈E〉βq

≈ −EM and

q∗ � βqEM

4ε
.

Our improved average cost of the RM for this problem is then

TQSA = κ ′ max
β

βqEM

4ε
√

�(β)
(24)

(κ ′ is a small constant). Equation (24) has to be contrasted with
the worse cost given by Eq. (23), which in this case is of order

max
β

β2
qE

2
M ln

(
β2

qE
2
M/ε

)
ε
√

�(β)

and much larger than TQSA in the large EM and βq limit.

V. CONCLUSIONS

We presented a significantly improved upper bound on L,
the length of the path traversed by the continuously related
ground states of a family of Hamiltonians. Such a bound is
approximately the square root of standard and previously used
bounds for L in the literature. It results in an improved average
cost of a method for adiabatic state transformations based
on evolution randomization, which is a simple extension of
AQC. Specifically, we prove an average cost of order 1/�2

for the randomization method, whereas AQC has a proven
cost of order 1/�3 (i.e., the cost of AQC is upper bounded
by 1/�3, disregarding other quantities). Here � is a bound on
the spectral gap of the Hamiltonians. When the Hamiltonians
satisfy a certain frustration-free property, the average cost of
the randomization method is further improved to order 1/�3/2.
The gap � is very small for hard instances, and thus the
randomization method is a promising alternative to AQC in
these cases, as it has a proven lower cost.

We also improved the cost of the randomization method
when the simulated measurements are imperfect. We showed
that if evolution randomization induces a weak measurement,
where the coherences are reduced by a constant, multiplicative
factor (e.g., by 1/3), then the eigenstate of the final Hamil-
tonian is still prepared at small, bounded error probability.
Previous analysis for the randomization method required a
reduction on the coherences that depended on the path length.

The randomization method outperforms AQC in certain
instances (e.g., Rabi oscillations). Nevertheless, it remains
open to show how generic the advantages of the randomization
method over AQC are. To understand this problem better, for
example, one needs to devise other instances where AQC has
a cost dominated by 1/�3, so that the cost of AQC is strictly
higher than that of the randomization method. Perhaps our
most important contribution is a method for eigenpath traversal
that has a proven lower cost than that provided by quantum
adiabatic approximations [25,26,44,45], since rigorously im-
proving the latter cost in terms of the gap, even for simple
cases (e.g., linear interpolations), does not seem feasible.

Finally, the improved bound on L can also be used to
improve the cost of other methods for eigenpath traversal such
as that in Ref. [31]. For the most efficient and known method
for eigenpath traversal in the literature, our bound on L implies
a cost of order 1/�3/2 for general Hamiltonians and order 1/�

for Hamiltonians that satisfy the frustration-free property.
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APPENDIX A: A BOUND ON ‖|ψ̇〉‖
From H |ψ〉 = 0, where |ψ〉 is the ground state, we obtain

|ψ̇〉 = −H−1Ḣ |ψ〉.
H−1 denotes the operator that is inverse to H in the subspace
orthogonal to |ψ〉. We assume the existence of Ḣ with
‖Ḣ‖ < ∞. Then,

‖|ψ̇〉‖2 = 〈ψ |ḢH−2Ḣ |ψ〉

� 1

�
〈ψ |ḢH−1Ḣ |ψ〉

= −1

�
〈ψ |Ḣ |ψ̇〉, (A1)

where we used Cauchy-Schwarz and the assumption that
H � 0. In addition,

Ḣ |ψ̇〉 = − 1
2 [Ḧ |ψ〉 + H |ψ̈〉],

and using Eq. (A1) we obtain the desired bound as

‖|ψ̇〉‖2 � 1

2�
〈ψ |Ḧ |ψ〉. (A2)

This assumes the existence of Ḧ with ‖Ḧ‖ < ∞.

APPENDIX B: A BOUND ON sin α j

As pointed out, the angles αj in Sec. III (Fig. 1) can be
defined via cos αj = 〈ψ(sj−1)|ψ(sj )〉 ∈ R. It follows that

sin αj = ‖|ψ(sj−1)〉 − cos αj |ψ(sj )〉‖
� ‖|ψ(sj−1)〉 − eiφ|ψ(sj )〉‖. (B1)

The phase φ ∈ R can be arbitrary. Next, we split the in-
terval [sj−1,sj ] into r segments of size (sj − sj−1)/r and
define sn

j = sj−1 + (sj − sj−1)n/r , with n = 0,1, . . . ,r . The
corresponding eigenstates are now |ψ(sn

j )〉, and, with no loss

of generality, we assume cos βn = 〈ψ(sn−1
j )|ψ(sn

j )〉 ∈ R. In
particular, |ψ(s0

j )〉 = |ψ(sj−1)〉 and |ψ(sn
j )〉 = eiφ|ψ(sj )〉.

From Eq. (B1) we obtain

sin αj �
∥∥∥∥

r−1∑
n=0

[∣∣ψ(
sn
j

)〉 − ∣∣ψ(
sn+1
j

)〉]∥∥∥∥
�

r−1∑
n=0

∥∥∣∣ψ(
sn
j

)〉 − ∣∣ψ(
sn+1
j

)〉∥∥,

where we used the triangle inequality. Also,

sin αj � lim
r→∞

r−1∑
n=0

∥∥∣∣ψ(
sn
j

)〉 − ∣∣ψ(
sn+1
j

)〉∥∥
sn+1
j − sn

j

n

r
(sj − sj−1)

�
∫ sj

sj−1

ds ‖|ψ̇〉‖, (B2)

where the phase of |ψ〉 must be chosen so that 〈ψ̇ |ψ〉 ∈
R, and thus 〈ψ̇ |ψ〉 = 0 from the normalization condition.
The inequality in Eq. (B2) requires existence |ψ̇〉, i.e., a
differentiable path. Since∫ sj

sj−1

ds ‖|∂sψ(s)〉‖2 −
[ ∫ sj

sj−1

ds ‖|∂sψ(s)〉‖
]2

� 0

from Cauchy Schwarz, we obtain the desired bound as

sin αj �
( ∫ sj

sj−1

ds ‖|ψ̇〉‖2

)1/2

.

APPENDIX C: A BOUND ON THE COHERENCES

As explained in Sec. III B, we let ρj be the density matrix
for the state after the randomized evolution with H (sj ), i.e.,
the state output at the j th step of the randomization method:

ρj = Pr(j )|ψ(sj )〉〈ψ(sj )| + [1 − Pr(j )]ρ⊥
j

+ |ξj 〉〈ψ(sj )| + |ψ(sj )〉〈ξj |.
The coherence factor is defined as

cj = ‖|ξj 〉‖ = ‖P ⊥
j ρj |ψ(sj )〉‖,

where P ⊥
j = 1l − |ψ(sj )〉〈ψ(sj )| is the a projector onto the

subspace orthogonal to |ψ(sj )〉. The coherence factor at the
j + 1-th step is then

cj+1 = ‖|ξj+1〉‖
= ‖P ⊥

j+1ρj+1|ψ(sj+1)〉‖

=
∥∥∥∥P ⊥

j+1

∫
dt f (t)e−iH (sj+1)t ρj e

iH (sj+1)t |ψ(sj+1)〉
∥∥∥∥,

where f (t) is the distribution for the random time at that step.
Since eiH (sj+1)t leaves |ψ(sj+1)〉 invariant (up to a global phase)
and ∥∥∥∥

∫
dt f (t)e−iH (sj+1)t |ψ̄⊥(sj+1)〉

∥∥∥∥ � ε′

for any unit state |ψ̄⊥(sj+1)〉 orthogonal to |ψ(sj+1)〉, we arrive
at

cj+1 � ε′‖P ⊥
j+1ρj |ψ(sj+1)〉‖. (C1)

The factor ε′ < 1 was defined in Eq. (15) and is the Fourier
transform of f (t) at � � �(sj+1).

We now bound the rhs of Eq. (C1). Without loss
of generality, we write |ψ(sj+1)〉 = cos αj+1|ψ(sj )〉 +
sin αj+1|ψ⊥(sj )〉, and obtain

cj+1 � ε′{cos αj+1‖P ⊥
j+1[Pr(j )|ψ(sj )〉 + |ξj 〉]‖

+ sin αj+1‖P ⊥
j+1ρj |ψ⊥(sj )〉‖},

where we used the triangle inequality and ρj |ψ(sj )〉 =
Pr(j )|ψ(sj )〉 + |ξj 〉. By definition, sin αj+1 = ‖P ⊥

j+1|ψ(sj )〉‖.
Also,

ρj |ψ⊥(sj )〉
= [1 − Pr(j )]ρ⊥

j |ψ⊥(sj )〉 + |ψ(sj )〉〈ξj |ψ⊥(sj )〉.
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By using Cauchy-Schwarz and the triangle inequalities, we
obtain

cj+1 � ε′{cos αj+1Pr(j ) sin αj+1 + cos αj+1cj

+ sin αj+1[1 − Pr(j )] + sin2(αj+1)cj }
and thus

cj+1 � ε′{sin αj+1 + [1 + sin2(αj+1)]cj }. (C2)

Because the initial state (step 0) is exactly |ψ(s0)〉, we have
c0 = 0 and, by iteration of Eq. (C2),

cj+1 � ε′ sin αj+1 + (ε′)2[1 + sin2(αj+1)] sin αj + · · ·
+ (ε′)j+1[1 + sin2(αj+1)] · · · [1 + sin2(α2)] sin α1.

In order to relate ε′ with the error coming from the discretiza-
tion (perfect measurements), we recall the condition

q∑
j=1

sin2(αj ) � ε

of Eq. (10). Then,
q∏

j=i

[1 + sin2(αj )]

�
q∏

j=1

[1 + sin2(αj )]

� 1 +
q∑

j=1

sin2(αj ) +
⎡
⎣ q∑

j=1

sin2(αj )

⎤
⎦

2

+ · · ·

�
∑
j�0

εj = 1/(1 − ε),

where the last inequality is due to the geometric series. Then,

cj � 1

1 − ε
(ε′ sin αj + ε′2 sin αj−1 + · · · + ε′j sin α1),

(C3)

which is the desired bound.

APPENDIX D: EIGENSTATE CHANGE IN QSA

By definition, the eigenstate path in QSA is determined by

|ψ(β)〉 = 1√
Z

∑
σ

e−βE[σ ]/2|σ 〉,

where 0 � β � βq , E[σ ] ∈ R is the value of the objective
function for (classical) configuration σ , and Z = ∑

σ e−βE[σ ]

is the partition function. Then, it is simple to show

|∂βψ(β)〉 = 1

2

[
〈E〉|ψ(β)〉 − 1√

Z
∑

σ

E[σ ]e−βE[σ ]/2|σ 〉
]
,

(D1)

where

〈E〉 = 1

Z
∑

σ

E[σ ]e−βE[σ ]

is the expected (thermodynamic) value of E at inverse
temperature β. Because {|σ 〉} is an orthogonal basis, Eq. (D1)
gives

‖|∂βψ(β)〉‖2 = 1

4

∑
σ

(〈E〉 − E[σ ])2 e−βE[σ ]

Z

= 1

4
(〈E2〉 − 〈E〉2),

relating the rate of change of the state with the thermodynamic
fluctuations of E. In addition,

∂β〈E〉 = ∂β

1

Z
∑

σ

E[σ ]e−βE[σ ]

= −∂βZ
Z2

∑
σ

E[σ ]e−βE[σ ] − 1

Z
∑

σ

E2[σ ]e−βE[σ ]

= 〈E〉2 − 〈E2〉,
and then

‖|∂βψ(β)〉‖2 = −∂β〈E〉
4

. (D2)
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