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Optimal post-processing for a generic single-shot qubit readout

B. D’Anjou and W. A. Coish
Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
(Received 12 November 2013; published 15 January 2014)

We analyze three different post-processing methods applied to a single-shot qubit readout: the average-signal
(boxcar filter), peak-signal, and maximum-likelihood methods. In contrast to previous work, we account for a
stochastic turn-on time #; associated with the leading edge of a pulse signaling one of the qubit states. This
model is relevant to spin-qubit readouts based on spin-to-charge conversion and would be generically reached
in the limit of large signal-to-noise ratio r for several other physical systems, including fluorescence-based
readouts of ion-trap qubits and nitrogen-vacancy center spins. We derive analytical closed-form expressions
for the conditional probability distributions associated with the peak-signal and boxcar filters. For the boxcar
filter, we find an asymptotic scaling of the single-shot error rate &€ ~ Inr//r when #; is stochastic, in contrast
to the result ¢ ~ Inr/r for deterministic ;. Consequently, the peak-signal method outperforms the boxcar filter
significantly when ¢; is stochastic, but is only marginally better for deterministic #; (a result that is consistent with
the widespread use of the boxcar filter for fluorescence-based readouts and the peak signal for spin-to-charge
conversion). We generalize the theoretically optimal maximum-likelihood method to stochastic #; and show
numerically that a stochastic turn-on time #; will always result in a larger single-shot error rate. Based on this
observation, we propose a general strategy to improve the quality of single-shot readouts by forcing #; to be

deterministic.
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I. INTRODUCTION

A prerequisite for many quantum information processing
applications is the ability to perform a strong projective
single-shot measurement of a quantum bit (qubit) in the
computational basis, {|+),|—)} [1]. In general, the readout
procedure depends on the particular measurement apparatus
and physical system used to encode the qubit. However,
a wide variety of high-fidelity single-shot readouts rely on
the conditional amplification of one of the qubit states, say
|+), by means of a cycling process [see Fig. 1(a)]. For
example, the state of a nitrogen-vacancy center (NV center)
in diamond [2-4], of trapped ions [5], and of quantum-dot
spins [6—-8] can be mapped to a fluorescence signal when
the system is driven by a laser. Similarly, the spin state
of electrons in semiconductor quantum dots or phosphorus
donors in silicon can be mapped to a current through a nearby
quantum point contact (QPC) or single-electron transistor
(SET) via spin-to-charge conversion [9-14]. Hybrid opti-
cal/electrical approaches to single-spin readout have also been
demonstrated [15]. Readouts of semiconductor singlet-triplet
qubits [16-20] and superconducting qubits [21] also rely on
similar amplification mechanisms. These cycling processes
result in a time-dependent analog signal () related to the
number of cycles per unit time. If cycling is observed, it is
inferred that the qubit state must have been |+); otherwise,
it is inferred that the qubit state must have been |—). Such
readouts are quantum nondemolition (QND) since each cycle
preserves the information associated with the initial qubit
state. The fact that these readouts are QND is one reason
they can reach high fidelities. To convert analog information
associated with the noisy cycling signal ¥/ (), a post-processing
procedure must be chosen to minimize the frequency of errors
in the assignment of the binary state. Although higher level
and hardware-independent protocols can be used to minimize
the uncertainty in quantum process tomography [22,23], an
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understanding of the dependence of the error rate on the
underlying physical parameters is useful in further improving
state reconstruction.

Interestingly, different communities have used different
post-processing protocols to optimize the fidelity of their
readouts, even though the various physical readouts are based
on very similar cycling processes. In particular, fluorescence-
based experiments have typically relied on integrating the
signal v (¢) over time to detect cycling (the so-called boxcar
filter) [2-5], although more sophisticated Bayesian infer-
ence procedures have also been used [5,24]. Spin-to-charge
conversion experiments for semiconductor spin qubits, on
the other hand, have typically been analyzed through a
measurement of the peak of the signal v (¢) (the peak-signal fil-
ter) [10,11,13,14]. In light of the striking similarities between
these readouts, it is natural to ask whether the disparity in
post-processing originates from a fundamental difference be-
tween the experiments. In fact, the only qualitative difference
between the two cases is the mechanism triggering the cycling
process. For spin-to-charge conversion, there is a random
turn-on time #; after the beginning of the readout phase, where
t; follows a Poisson process. In contrast, for fluorescence-based
readouts cycling typically starts on a very short time scale
t; ~ 0 as driving is turned on. Here we demonstrate that the
uncertainty resulting from this stochastic turn-on time indeed
accounts for the disparity in post-processing procedures, and
we propose an avenue for increasing the fidelity of such
readouts by making the turn-on time deterministic.

Quantum measurements based on cycling processes have
been the subject of various theoretical studies. In particular,
considerable attention has been given to the readout of a qubit
using a non-QND cycling process (with back-action on the
qubit) for several distinct physical systems [25-32]. Protocols
for the optimal readout of a qubit using a QND cycling process
have been studied in great detail in Ref. [33] for the case
t; = 0, although the statistics for the peak signal were not
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FIG. 1. (Color online) (a) Schematic representation of a generic
cycling process. This diagram represents, e.g., the fluorescence cycle
of an NV center or trapped ion, or the flow of electrons through an SET
or QPC during spin-to-charge conversion. If the system is initially in
the excited state |+) (dashed blue line) at ¢ = 0, it can trigger cycling
between two cycling states (solid green line) at time #;. The cycling
ends at time ¢, when the system falls into the ground state |—) (dotted
red line). If the system is initially in the state |—), cycling cannot occur
because of either selection rules or energy conservation requirements,
as indicated by the crosses. (b) Noisy time-dependent signal v(¢)
resulting from the cycling process of (a) when the initial state is |+).
The readout phase starts at + = 0 and acquisition starts after an arming
time ?,,. Initially, cycling does not occur and the signal takes the
average value () = —1. At a random time ¢;, cycling is triggered
and the signal rises to () = 1. At a subsequent random time fy,
cycling stops and the signal again drops to () = —1. Acquisition
stops after a measurement time t,,. Throughout, we assume that
tym — 0, that #; and © = t; — t; follow Poisson processes, and that
the noise is white and Gaussian.

derived in that work. In this paper we analytically obtain
the statistics of the peak signal in the case of a stochastic
turn-on time ¢; and Gaussian white noise. We demonstrate the
validity of our approach by fitting our analytical probability
distribution for the peak signal to that measured in the readout
of single spin qubits in silicon in Ref. [11]. Most importantly,
we show that a significant improvement in fidelity is obtained
by using the peak-signal filter over the boxcar filter if the
turn-on time #; is stochastic. More precisely, we prove that
for large signal-to-noise ratio r, the boxcar-filter error rate
¢ scales like € ~ Inr/r when #; is fixed while the error rate
scales like &€ ~ Inr//r when t; follows a Poisson process.
The key observation is that the loss of information associated
with a stochastic #; can be largely compensated by using a
simple peak-signal filter instead of a boxcar filter. This result
explains the disparity between post-processing methods used
in different experiments and indicates which method should
be used in future experiments. Furthermore, we generalize
the optimal maximum-likelihood filter developed in Ref. [33]
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and show numerically that the stochasticity of #; reduces
the fidelity significantly even when this theoretically optimal
procedure is followed. This result leads to the conclusion
that physical readouts with stochastic turn-on time #; can be
generically improved by engineering them such that #; ~ 0
becomes deterministic.

The remainder of the text is organized as follows. In
Sec. II, we express the readout error rate in terms of the
probability distributions of measured observables. In Sec. III,
we introduce a model for the noisy cycling signal and formally
define the peak-signal and boxcar filters. In Sec. IV, we
analytically derive the conditional probability distributions for
the observables derived from the peak-signal and boxcar filters.
We then fit the peak-signal distributions to experimental data
presented in Ref. [11]. In Sec. V, we numerically obtain the
error rate for the peak-signal and boxcar filters and analytically
derive the scaling of the boxcar-filter error rate for large
signal-to-noise ratio. Finally, in Sec. VI we generalize the
maximum-likelihood filter of Ref. [33] to the case of stochastic
t;. We conclude in Sec. VII.

II. ERROR RATE

For the most general readout, the goal is to infer the initial
qubit state from some observable O. For example, O could be
the peak v, (obtained from the peak-signal filter) or the time
average ¥ (obtained from the boxcar filter) of some analog
signal ¥ (¢). These quantities are defined in Eqgs. (12) and (13),
below. In Sec. VI, we will take O to be the full measurement
record ¥ (¢) (appropriate for the maximum-likelihood filter).
To infer the state, we define the likelihood ratio [34]:

_ P(O|+) _ P(-) “ P(+|0)
P(O|-)  P(H)~ P(—|0)

where P(O|%) is the probability density of measuring the
observable O given the state |£) and where the last equality
is obtained using Bayes’ theorem. If A is greater than the
threshold A = P(—)/P(+), the state is most likely |+);
otherwise, the state is most likely |—). For simplicity, we
assume that the prior probabilities for the initial state are
balanced, P(£) = 1/2, in which case the threshold is A = 1.
The average error rate is then given by

e =14 +eo), (2)

where e, = P(A < l|+)and e_ = P(A > 1|—) are the error
rates conditional on the initial qubit state. These expressions
are valid for an arbitrary observable O.

In the common case where the observable O is a real
scalar, as is the case for the peak-signal and boxcar filters, the
threshold A = 1 is equivalent to a threshold v for O, satisfying
P(v|4) = P(v|—). The conditional error rates are then given
by [19,33,34]

(D

v oo
e+=/ dO P(O|+), 8,=/ dO P(O|-), (3
—00 v

and the fidelity is simply F =1 —¢. For the maximum-
likelihood filter, such simple thresholding is not possible since
O is a multidimensional object, namely the signal (¢) given
at all times ¢. In this case, the error rate (2) must be obtained
from Monte Carlo simulations (see Sec. VI) [33].
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III. MODEL OF THE SIGNAL AND NOISE
A. Noisy cycling signal

We now model the time-dependent signal ¥ (¢) resulting
from the cycling process of Fig. 1(a). This could be, for
example, a cycling fluorescence transition in NV centers and
ion traps, or the current flowing through an SET or QPC in
the case of spin-to-charge conversion in semiconductor spin
qubits. If the qubit is initially in the ground state |—), cycling
does not occur. Thus, the average of 1(¢) over realizations of
the noise is the same at all times 7. We choose the convention
that (ensemble averages are indicated by angular brackets
throughout)

(v(n) =-L “4)

If the qubit is initially in the excited state |+), cycling begins
at a random turn-on time # and ends at a random turn-off
time 7¢. The stochasticity of #; and ¢, typically results from
coupling the qubit states |£) to a broadband continuum (the
radiation field in the case of a fluorescence readout [2,3,5,6],
or a Fermi sea of electronic states in the case of spin-to-
charge conversion [10,11,13]), leading to a Markovian process,
hence a Poissonian (exponential) distribution of #; and #;. As
illustrated in Fig. 1(b), the result is a noisy time-dependent
signal 1 (¢) such that

(W) =210t —1;) — 6t —17)] — 1. 5)

Here, the turn-on time #; and pulse width T = 7y — t; each fol-
low an independent Poisson process. Therefore, the probability
distribution for #; and 7, has the exponential form

P(t;,tg) = De Mg trmi0), (6)

Here and throughout, time is measured in units of the average
pulse width () and T" is the ratio of () to the average turn-on
time (t;). We recover the case of a deterministic turn-on
time t; - 0 when I' — oco. This is typically the relevant
case for fluorescence-based readouts [2,3,5,6]. As indicated in
Fig. 1(b), the stochastic turn-on time #; must be distinguished
from a deterministic arming time #,r, [10,33] during which the
qubit may relax. Indeed, the uncertainty in #; will affect the
readout error rate even if the qubit relaxation time is infinite
or fym = 0. In the following analysis we will neglect qubit
relaxation and take the arming time to be negligible, #,;, =~ 0.

For simplicity, we also assume that i (¢) is subject to
Gaussian white noise, i.e., that the signal autocorrelation
function is

By )8y () =r='8( — 1), (7

where 81 (t) = ¥ (t) — (¥ (¢)). Here, r is the (power) signal-
to-noise ratio integrated over an interval (t) = 1:

1 1
- / dt f dt' (S (N3P (1')). 8)
0 0

The assumption of Gaussian noise is only valid when the
number of cycling events is much larger than 1, so that we
can treat ¥ (¢) as a continuous variable. Furthermore, for
simplicity we assume that shot noise is negligible compared to
other sources of stationary Gaussian white noise (e.g., due to
amplifier electronics). In the opposite limit where the readout
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FIG. 2. (Color online) Regions of the #;-t; plane. The turn-on
time f# (turn-off time f;) falls in the mth (nth) discrete bin of
length 7, = t)y/N, where N is the number of bins contained in
the measurement time 7). Here, the mth (nth) bin of the # (¢y)
axis starts at time mt, (nt,). The shaded region is forbidden since
we must necessarily have ¢, > t;. The finite measurement time
7y divides the plane in three regions R;, Eq. (22). Each region
gives a distinct, mutually exclusive contribution to the peak-signal
distribution P (v, |+).

is limited by the shot-noise power, the error rate is simply
given by the probability that no cycling event occurs [3].

B. Peak-signal and boxcar filters

We take the signal v(¢) to be measured during a time t,
[see Fig. 1(b)]. In practice, each data point on such a trace is
necessarily acquired over a finite bin time 73, corresponding
to the inverse bandwidth of either a measurement apparatus or
of a low-pass filter applied for post-processing. For simplicity,
we assume that 7, is separated in N bins of length 1, = 7y, /N
(see Fig. 2). The Ith bin, starting at time /7, is then assigned
its time-averaged value:

B 1 [0+n

Y =— dt ¥ (1),

T Jiv,

[=0,1,2,....N—1. (9
With Gaussian white noise, Eq. (7), the probability distribution
(W) = P(W|=£;1;,15) for Y in bin is

1 e’
e 267, (10)

Po(¥) = No(¥ — @) =

mo?
where N, is the normal distribution of zero mean and of
variance o = (r7,)”!. Here, ¢ = (V) is the average of ¥
over realizations of the noise. It will also be useful to define
the cumulative distribution function g4(;) corresponding

to py:

T v 1 ¢ —
(V) = dyr pe(¥r) = Eerfc ﬁ . (11)
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We can now define the peak signal v/, on 7 as the maximum
of i, over all bins:

1//17 = I[llé}\),( EDL (12)

The time-averaged signal v/, corresponding to the boxcar filter,
is then recovered as a special case of the peak signal with
N =1:

_ 1 ™
U= —/0 dt ¥ (). (13)

™

Note that in the end, the error rate (2) must be optimized with
respect to both the bin time t, and the measurement time 7y,
in addition to the threshold v.

The form (5) of the signal suggests an alternative two-time
boxcar filter of the form (tun — Tar1) ™" f::lz dt Y (t), where
both 7)/; and 1y, must be optimized. However, we have
verified numerically that this two-time boxcar filter leads to a
negligible improvement on the error rate of the simple boxcar
filter, Eq. (13), for reasons that we detail in Sec. V. Thus, in
the following we only consider the simple boxcar filter defined
in Eq. (13).

IV. STATISTICS OF THE PEAK-SIGNAL
AND BOXCAR FILTERS

To obtain the error rate for the peak-signal and boxcar
filters, Egs. (2) and (3), we must first determine the probability
distributions P(y,|£) and P(¥|+) in the presence of a
stochastic turn-on time ¢;. In order to extract a maximum of
information associated with the qubit state, we need precise
knowledge of these distributions. Indeed, the tails of the ex-
perimental distributions obtained for similar readouts [4,5,11],
which determine the error rates (3), often strongly deviate
from simple Gaussian-like behavior. These distributions can
be found numerically from a Monte Carlo analysis of this
model [11]. However, an analytical description is helpful in
understanding the benefits of one post-processing scheme
over another. Moreover, an analytical understanding of the
statistics of the filters enables a fast extraction of the fidelity
from the data, eliminating the need for time-consuming
Monte Carlo simulations. Therefore, in the following we
derive exact analytical expressions for the peak-signal and
boxcar distributions. Since the boxcar filter is a special
case of the peak-signal filter, we first focus on obtaining

P(rp| ).

A. Probability distributions for a stochastic turn-on time
1. Peak-signal distribution

As illustrated in Fig. 2, the turn-on time #; and the turn-
off time 7y must each fall in a random bin of length 7, (see
Sec. Il B). In the following, we assume that #; (¢7) falls in the
mth (nth) bin. Therefore, using Bayes’ rule to account for all
possibilities, we write the peak-signal distributions as

oo 0

P(rpl£) =YY " P(,l+mm)Pm,n),  (14)

m=0n=m
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where P(m,n) is the probability that #; and ¢; fall in bins m
and n > m, respectively:

P(m,n):/.dti/dtf P(f,‘,ff). (15)

In the last expression, the integrals are taken over the square
labeled by (m,n) in the f;-t; plane (see Fig. 2). Note that we
allow for the possibility that #; and ¢ fall outside the measure-
ment window (m > N and n > N). Likewise, P(y,|£;m,n)
is the probability distribution for v, conditional on #; and 7
falling in a given square (m,n):

PO |:mon) = / d, / dt; POYy |1t )Pt mon):
m n

(16)

i.e., it is the average of the distribution P(yr,|%;¢;,t7) over
a square (m,n) of the #;-t; plane. Here, P(t;,t¢|m,n) is the
distribution (6) renormalized so that ¢; and ¢ lie in the cell
(m,n). We proceed to evaluate expressions (15) and (16), which
we then substitute into Eq. (14).

First, we obtain P(m,n), Eq. (15), by direct integration of
Eq. (6). Unsurprisingly, we find the discrete counterpart to the
exponential form (6):

D,-fe’rf”’” if m=n,
P(m,n) = (17
D,-Dfe_r’b’”e_f”(”_’”) if n>m,

where we define the normalization constants:
M(l—e®)—(1—e ™)

D = ,
if r—1
(1 = e T
p=U-e (18)
r—1
Df = 1 — e_f”.

Next, we derive the probability distributions P (yr, |%; m,n),
Eq. (16). Using the definition (12) of the peak signal and
a combinatorial argument, we show in Appendix A that the
peak-signal distributions for fixed #; and ¢/ are given by

W)
PrylEstinty) = | [ [ao ()™ ZN"’Z(%)

So Sy

where Sy = {l < N|(¥y) = ¢} is the subset of Ny bins
in the measurement window (0 < ¢ < 1) having identical
distributions py and gy, Eqs. (10) and (11), with average signal
¢ = (¥;). We note that Y5, No=N.

To illustrate Eq. (19), first assume that the qubit state is |—).
In this case, all N bins have the same average signal ¢ = —1.
Thus, Eq. (19) contains a single term:

, (19)

Pl —itit) =" x NEZ = NgV1p_. (20)

where p_(yr,) = Ng(l/fp + 1), Eq. (10). Since the peak signal
manifestly does not depend on #; and 7, when the state is |—),
the average (16) and the sum (14) are trivial and we obtain

P(Ypl=) = Ng-(p)V ' p_(yrp). 21)

In the case where the initial qubit state is |+), the
distribution (19) takes a different form in each of the regions
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‘R; of the t;-t; plane depicted in Fig. 2:

Ri: i <tym, ty <7ty
Ro: ti <1y, ty> 7Ty (22)
Rs: ti>1ty, ty> 1Ty

As an example, consider the case where #; and ¢ fall in region
Ri. If t; and t; fall in the same bin m = n, bin m has an
average signal ¢ = x = 2(ty — 1;)/7, — 1 and the remaining
N_ = N — 1 bins have ¢ = —1. Thus, in this particular case,
Eq. (19) takes the form

Px

X

P(pl+stity) =gV g, x [(N - I)Z; + } (23)
where py(¥,) = J\/'g(t//p — x), Eq. (10). Substituting Eq. (23)
into Eq. (16), we obtain

1= pP— | Di
PWHﬁmmﬂ=¢YWﬁXPN—1G—+Ef] (24)

where
pirto = [di [ty Py 29

is the average probability distribution in a bin containing both #;
and 7. Similarly, when #; and ¢ fall in different bins (m < n),
binmhas¢p =y =1-—-2(t; —m1)/1p andbinn has¢p =z =
2(ty —ntp)/tp — 1. Of the remaining bins, there are N_ =
N—mn—m)—1with ¢ =—1and Ny = (n —m) — 1 with
¢ = +1. Thus, we find
P(Wpl+im <n)
=q" ¢\ qiqr x [N—Z— + N+p_+ + g + g

] , (26)
q+ qi qf

where
ﬁi(f)(!ﬂp)=fdtif dty pyo(Yp) P tslm,n)  (27)
m n#m

is the average probability distribution in a bin containing only
t; (¢ f).

In Appendix B, we give similar expressions for
P(yrp|+;m,n) in regions R, and R3 [Egs. (B2) and (B3)] as
well as analytical expressions for the distributions p;r, p;, and
P and their respective cumulative distributions [Egs. (B5)-
(B7)]. We then perform the sum (14) analytically and find that
the probability distribution P(3,|+) has a contribution from
each region of Fig. 2:

PW,l+) = P, l+) + PV, [H) + Ps(Yp ). (28)

The contribution from region Rz arises from events in which
the entire pulse occurs outside the measurement window,
causing additional errors that could not occur if the turn-on
time were deterministic (t; — 0). Explicit expressions for
each term in Eq. (28) are given in Eqs. (B10) and (B11) of
Appendix B.

In Fig. 3, we fit the analytical expressions (21) and (28)
to the experimental data from the spin-to-charge conversion
readout of Ref. [11]. We find the fitted values of the SET
current / and of the prior probabilities P(£) to be in
good agreement with the measured values. The theoretical
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FIG. 3. (Color online) Fit of the analytical distributions
P(yp|—)P(—) (dashed red line) and P(y,|+)P(+) (solid blue
line), Egs. (21) and (28), to the experimentally determined
distribution P(y,,) extracted from data in Fig. 4(b) of Ref. [11] (open
circles). The dotted black line is the full peak-signal distribution
P(Yp) = P(W,|—)P(=)+ P(¥,|+)P(+). The peak SET current
I, for the spin-to-charge conversion is mapped to the reduced peak
signal ¥, via y, = (21, — I)/I, where I is the average SET current.
We set I' and 73 to their measured values I' =4 and 7, = 2.5
and we find fitted values of I ~ 2.0 nA, r =~ 110, 7, ~ 0.075, and
P(+) =1— P(—) = 0.47 for the current, signal-to-noise ratio, bin
time, and prior probabilities, respectively. The values of I and P(+)
are in good agreement with the experimentally measured values
of I*P ~ 1.9 nA and P(+)*P ~ 0.47. Furthermore, the bin time
is of the same order of magnitude as the inverse bandwidth of the
low-pass filter used in Ref. [11], corresponding to 7, © ~ 0.2. If the
data were to be post-processed using the square binning defined in
Eq. (9), our model could be used to obtain more accurate estimates
of the bin time and signal-to-noise ratio.

probability distributions provide a good fit to the data, allowing
for a fast extraction of the readout error rate. Moreover, the
importance of describing the probability distributions with
precision is apparent from the non-Gaussian features of the
distributions in Fig. 3. Indeed, both the protuberance in the
left tail of P(y,|4), which is masked by P(y,|—) in an
experiment, and the asymmetry in the distribution P(yr,|+)
must be accurately described to obtain a genuine estimate of
the error rates (3).

2. Boxcar-filter distribution

The boxcar-filter distributions P(y|4) are obtained from
Egs. (21), (_28), (B10), and (B11) by setting N = 1 (7, = 1)
and ¥, = :

P(y|-) = p-,

_ 29)
P |+) =Dispir +Die ™p;+e " ™Mp_.

Here, p;r and p; are given by Egs. (B5) and (B6) with 7, = 7.
The first term of P(y|+) is the contribution from the case
where both #; and #; fall within the measurement window
(region R of Fig. 2). The second term comes from the case
where only #; falls within the measurement window (region
R, of Fig. 2). The last term is the contribution coming from
the possibility of the pulse occurring outside the measurement
window (region R of Fig. 2).
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B. Limit of a deterministic turn-on time (I' — 00)
1. Peak-signal distribution

In this section we obtain analytical expressions for the
distributions P (v,|£) when the turn-on time is deterministic,
I' — oo. This is typically the relevant limit for fluorescence-
based readouts [2,3,5,6], where the cycling process starts
almost immediately at the beginning of the readout phase
# — 0).

If the state is |—), the distribution (21) is independent of "
and the peak-signal distribution remains unchanged:

P(Y,l—)=Ng"'p_. (30)

Next, we consider the case where the state is |[+). WhenI" > 1
and I't, > 1, the normalization constants (18) simplify to

Dif~Ds~1—e™, D ~Il. 31)
Moreover, when the condition I'r~! 3> max{1,c} is satisfied,
we asymptotically expand the error functions in Eq. (B8) and
obtain

F'L’b

h(y,1-T)~

. 32
Tz, P+ (32)

Physically, the condition I'r~! > max{1l,0} corresponds to
the requirement that the signal fluctuations on the time interval
(t;) be larger than the signal itself, making it impossible
to resolve the jump occurring at #;. Note that when o =
(rtp)"Y? > 1, the condition I'r~! > max{l,0} is already
implied by I't;, > 1. From these considerations we see that,
for any finite I, the effects due to the stochasticity of ¢
become relevant at sufficiently large signal-to-noise ratio r.
Substituting Eqgs. (31) and (32) into Egs. (B5)-(B7) and using
I' > 1and I't, > 1 once again, we obtain
T
pif N py = 2(1_—24,7)}1(‘#"’1)’ Pi X p+,
(33)

_ _ 1 _
Gir Gy~ ———H®p, 1), G ~qy,

l—e™®
where h(),,1) and H(y,,1) are given by Eq. (B8). With these
simplifications, the expressions (B11) for P(y,|+) become

m=n _ 1 p, ﬁ
Pl (Yl ) ~ (1 —e ™) gN g, [(N - D=+ _—f]
q- qr
P (Y,l4+) &~ (1 —e7™) file™™),
» (34)
Py, l+) ~ eV NgV ZE
q+

P3(Wp|+) ~ O,

where f; is given by Eq. (B12). We see that in this limit,
P(y,|+) has no contribution from region R3 since the pulse
cannot fall outside the measurement window. Expressions for
P(Yp|£) in the limit I' — oo [Egs. (30) and (34)] are plotted
in Fig. 4(d).

2. Boxcar filter distribution

The boxcar filter for deterministic turn-on time, I’ — o0,

is obtained as before by setting N = 1 (7, = 7)) and ¥, =
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in Eq. (34). We thus obtain the result derived in Ref. [33]:

P(y|-) = p-,

_ (35)
Pl ~ (L —e ™)pr+e ™py,

where p, Eq. (B7), is given by its limiting expression (33)
evaluated at 7, = 7. The first term of P(¥|+) comes from
the case where 7y falls within the measurement window,
ty < Tp, with probability 1 — e™™ (region R of Fig. 2). The
second term comes from the case where f; falls outside the
measurement window, 5 > Ty, with probability e™™ (region
R, of Fig. 2). Note again that there is no contribution from
region Rz of Fig. 2 since ¢; never falls outside the measurement
window.

The conditional probability distributions P (v |£) given by
Eq. (35) are shown in Fig. 4(d) alongside the corresponding
distributions for the peak-signal filter. There is relatively little
qualitative difference between the distributions for the boxcar
and peak-signal filters when I' — oo [Fig. 4(d)]. In contrast,
it is clear that these two post-processing strategies generate
very different conditional distributions when I' is finite [see
Fig. 4(b)].

V. ERROR RATE FOR THE PEAK-SIGNAL
AND BOXCAR FILTERS

We are now in a position to compute the average error rate &
for the peak-signal and boxcar filters. We first numerically inte-
grate the analytical probability distributions derived in Sec. [V
to obtain the conditional error rates (3). We then numerically
minimize ¢, Eq. (2), with respect to the measurement time 7y,
bin time 7, and threshold v.

The optimized error rate is plotted as a function of the
signal-to-noise ratio r in Fig. 4(a) for the case of a stochastic
turn-on time (I" = 4) [35] and in Fig. 4(c) for the case of a
deterministic turn-on time (I" — 00). The advantage gained
by measuring the peak signal instead of the time-averaged
signal (employing the boxcar filter) is significant when I = 4,
but only marginal when I' — oo. For example, when I = 4,
using the peak-signal instead of the boxcar filter increases
the fidelity from F =95.1% to F =98.4% for r = 250,
whereas when I' — oo, the fidelity only increases from
99.0% to 99.1% for the same signal-to-noise ratio. The
qualitative difference between the two cases is apparent from
the corresponding optimized probability distributions plotted
in Figs. 4(b) and 4(d) for a signal-to-noise ratio of r = 30.
In the case I = 4, the weight of the probability distribution
for |+) is shifted to higher values of , by using the peak
signal filter over the boxcar filter, whereas in the case I’ — oo,
the peak-signal and boxcar distributions are qualitatively very
similar.

We can better understand why this occurs by studying the
asymptotic behavior of the error rate for the boxcar filter at
large signal-to-noise ratio. Expression (29) for the boxcar filter
probability distributions can be integrated analytically to give
the unoptimized error rate:

¢ = 3[DirGir(v) + Die ™G (v) — (1 — e "™)g_(v) + 1].
(36)
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: 125

FIG. 4. (Color online) (a), (c) Optimized error rates, Eq. (2), as a function of the signal-to-noise ratio » for the boxcar filter (solid blue
line), peak-signal filter (dashed red line), and maximum-likelihood filter (dotted green line) for (a) I' = 4 (e.g., spin-to-charge conversion in
semiconductor qubits) and (c) I' — oo (e.g., fluorescence-based readouts in NV centers or trapped ions). The error rates have been optimized
with respect to the threshold v, measurement time t,,, and bin time 7, (When applicable). In the case I' = 4, the error rate is significantly
decreased for large r by using the peak-signal filter instead of the boxcar filter, whereas the advantage is much smaller in the case ' — oco. The
error rate for the maximum-likelihood filter (dotted green line), obtained from the Monte Carlo solution of Eqs. (C4) and (C6), is the lowest
theoretically achievable error rate. The fluctuations in the maximum-likelihood error rates are due to the finite sample size (5 x 10*) of the
Monte Carlo simulation. (b), (d) Optimized probability distributions P(3r,|—) (dashed red line), P(y/,|+) (solid blue line), P(¥|—) (dotted
red line), and P (¥ |+) (dot-dashed blue line) for » = 30 in the cases (b) I' = 4, Egs. (21), (28), and (29), and (d) I" — oo, Egs. (30), (34),
and (35). For I' = 4, the weight of the distribution for |+) is visibly shifted to the right by using the peak-signal filter compared to the boxcar
filter, decreasing the error rate significantly. When I' — oo, the probability distributions for the peak-signal and boxcar filters are qualitatively
the same in both cases and no advantage is gained. The dotted black vertical lines indicate the optimal threshold v for each case, satisfying
P(v|=) = PO|+).

The optimal threshold v is given by the condition P(v|+) = where
P(v|—). Thus, according to Eq. (29), v is the solution of 1 <

y =
™

1 —e¢ T 39
1—(1—F)e—FfM>' (39)

Next, we expand Eq. (36) in the same limit and use Eq. (38)
to obtain &:

Dipis (V) + Die ™ pi(v) = (1 —e"™)p_(v).  (37)

When the turn-on time ¢; is stochastic, there is a finite lower
bound on the optimal measurement time 7. Indeed, in
such a case there is a finite probability that #; falls outside
the measurement window. Therefore, we must necessarily
choose an optimal measurement time 7y 2 1 to minimize
the possibility of completely missing the pulse. This implies

1 _FTM+1
Ex —e —
2 4

2
x [lni (—ZV:M> +1In2 (4VTM):| . (40)

™ Z (1 =Ty T
.

that as the signal-to-noise ratio increases, r — 0o, the typical
width of the distribution on the right-hand side of Eq. (37) goes
as o = (rty)~'/? — 0 while the distribution on the left-hand
side remains delocalized [see Eqs. (B5) and (B6)]. Thus, the
solution of Eq. (37) must be such that the optimal threshold
approaches v — —1. Therefore, we expand the condition (37)
asymptotically in the limit v — —1 and r — oo and find

2 2
va |2t ( Ity y) 1, (38)
T

Since the first term decreases exponentially with 7, and the
second term increases polynomially with 7,,, the optimal
measurement time must diverge logarithmically whenr — oo,
Ty ~ Inr. Thus, we use e T'™ <« 1 and optimize Eq. (40) with
respect to 7, when r — oo. We find the following leading
logarithmic asymptotic form for the error rate:
1
e~—Inr (I < o0). 41
r
This result is to be compared to the case of a deterministic
turn-on time #;. In Ref. [33], it was shown that in this case, the
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average error rate for the boxcar filter scales instead as

g~ %lnr (' = 00). 42)
This qualitative difference in scaling arises from the fact that
when I' — oo, the optimal measurement time approaches
Ty ~ &~ Inr/r - 0 when r — oo. This ensures that the
turn-off time falls outside the measurement window, t; > 7y,
and thus that (¥) &~ +1 when the state is |+) [see Fig. 4(d)].
As we already argued, this is not possible in the presence
of a stochastic turn-on time since the optimal measurement
time must always be such that tj; 2 1 in order to avoid the
possibility of missing the pulse. Since the pulse can occur
anywhere in the measurement window, we have () < 1 when
the state is |+), increasing the error rate [see Fig. 4(b)].
We have numerically verified that the two-time boxcar filter
described in Sec. IIIB suffers from the same limitation.
The peak-signal filter partly overcomes this shortcoming by
gaining additional information on the location of the pulse
within the measurement window, moving the average of the
distribution back to (y,) 2 1 [see Fig. 4(b)].

To better illustrate this effect, we plot the numerically
optimized measurement time and number of bins N = 1y, /7
for the peak-signal filter as a function of signal-to-noise ratio

FIG. 5. (Color online) (a) Optimal measurement time 7, as a
function of the signal-to-noise ratio r for the peak-signal filter in the
cases I' =4 (purple solid line) and I' — oo (purple dashed line).
When I' = 4, the measurement time diverges logarithmically with
r [see the discussion following Eq. (40)], whereas when I' — oo,
Ty approaches 0 as r increases. (b) Optimal number number of bins
N = t/7, as a function of the signal-to-noise ratio r for the peak-
signal filter in the cases I' = 4 (purple solid line) and I' — oo (purple
dashed line). Although we have derived our model for N € N, we
treat N as a continuous variable for numerical optimization: fractional
values of N must be seen as an interpolation between integer values.
Because ), must remain finite when I' = 4, it becomes advantageous
to increase the number of bins in order to locate the pulse within the
measurement window. When I' — oo (#; = 0), Ty, can approach 0O as
r increases, eliminating the need for binning.
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in Fig. 5, for both ' =4 and ' — co. When I' =4, it
becomes advantageous to increase the number of bins as r
increases since the measurement time remains finite and the
location of the pulse is unknown. WhenI" — oo, the advantage
gained by binning is not significant since the measurement
time can become arbitrarily small. These results suggest an
explanation for why the peak-signal filter is typically used
for spin-to-charge conversion readouts using semiconductor
qubits (having a stochastic turn-on time) [10,11,13], whereas
fluorescence-based readouts (having a deterministic turn-on
time) typically rely on the simple boxcar filter [2,3,5,6]. More
importantly, we emphasize that there is a crossover from
I' - oo (T'r~' >» max{l,o})toT < oo (I'r~! « max{1,0})
as r increases (see Sec. IV B). Thus, for any readout with finite
I" it will become necessary to use the peak-signal filter instead
of the boxcar filter as the signal-to-noise ratio improves.

VI. MAXIMUM LIKELIHOOD FILTER

In the previous sections, we have shown that for readouts
relying on a cycling process (e.g., spin-to-charge conversion
in semiconductor qubits), the presence of a stochastic turn-on
time for the cycling can significantly decrease the fidelity
when simple filters are used. In this section, we generalize
the maximum-likelihood filter developed in Ref. [33] for a
deterministic turn-on time to the case of a stochastic turn-
on time. We show that even for this theoretically optimal
Bayesian inference procedure, the fidelity of the readout can be
significantly degraded by the uncertainty in the turn-on time.

The maximum-likelihood filter uses all the information
contained in a given measurement record () to infer the
state of the qubit. The likelihood ratio, Eq. (1), now takes the
form

A~ PO
P (®I-1

When the qubit state is |—), the average signal is (Y (¢)) = —1,
Eq. (4), so that the probability distribution for ¥ (¢) is

(43)

W+
d’f’

Py (n)|—]= Ae™ h" (44)

where A is a normalization constant. When the qubit state
is |[+), the average signal for fixed #; and ¢y, Eq. (5),
is (y() =200 —1;)—0@ —1t7)]—1=i(t), so that the
probability distribution for ¥ (¢) is, using Bayes’ rule,

Ply()|+] =

oo oo
A / dt; / diy P 1p)e b ar o3 @)
0 t ’

Using these expressions, the likelihood ratio (43) can be
rewritten as

o0 . ) |
A :/ dt[/ dtfP(ti,tf)efo YOl 6
0 .

The integral has a contribution from each domain illustrated
in Fig. 2:

A=A+ A+ As, “n
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where

™ ™ tf
A :/ dt,-f dt; e~ Tt g=ts ol di 200r
0 t;

™ ™ 48
Ay = e—rM/ d; l—we—(F—l)t;ef,i dt 21/f(t>r, (48)
0

A3 = eirTM .

In principle, we can evaluate these integrals numerically to
obtain A given a particular measurement record v (¢). If
A < 1, we declare the state to be |—) and if A > 1, we
declare the state to be |+). If A =1 we choose randomly
by throwing an unbiased coin. However, we can avoid the
triple integrals and the potentially large numerical values of A
in Eq. (48) by using an equivalent set of stochastic differential
equations [33,36] for the estimator P[+|y¥ ()] = A/(1 + A)
(see Appendix C). If P[+|¥(¢)] < 1/2, we infer that the state
is |—) and if P[+]|y(¢)] > 1/2, we infer that the state is |+).
Although expressions for the case of deterministic turn-
on time have already been given in Ref. [33], we reproduce
them here in our notation for completeness. Taking the limit
I' = oo in Eq. (48), we find that the likelihood ratio only has
contributions from regions R and R, in Fig. 2:

A=A+ Ay, (49)
where
Ay = / Mdzf et e’ dt 200r, (50)
o
Ay = e~ eh" di2por, (51)

A set of stochastic differential equations equivalent to these
integrals is also given in Appendix C.

To obtain the error rate of the maximum-likelihood filter, we
generate 5 x 10* random records v (¢) by randomly choosing
the initial state |) with equal probability. For each record, we
solve the stochastic differential equations (C4) and (C6) using
a standard fourth-order Runge-Kutta method [37] to obtain
the estimator P[+|y(¢)]. Typical solutions for P[y(¢)|+] as a
function of t), are illustrated in Fig. 6. We see that the estimator
reaches a constant value as 7, increases. Thus, it is sufficient
to choose a sufficiently large measurement time, Ty > (tr),
to obtain the optimal error rate [33]. The average error rate &
is then given by the fraction of records that are misidentified
by the estimator. We plot ¢ as a function of the signal-to-noise
ratio r in Fig. 4(a) for I' = 4 and in Fig. 4(b) for I' — oo. The
readout error rate is substantially larger at large r when I = 4
compared to I' — oo. Quantitatively, we find that to achieve
anerrorrate e < 1.1% inthe case I' = 4, itis necessary to have
a signal-to-noise ratio of r > 250. To achieve the same error
rate when I' — oo, it is sufficient to have a signal-to-noise
ratio r > 135. Thus, we conclude that even for this optimal
post-processing procedure, the additional uncertainty in #; can
significantly degrade the single-shot fidelity of the readout.

An important consequence of this result is that it should
always be possible to increase the fidelity of spin-to-charge
conversion readouts by making the turn-on time deterministic
in the sense of Sec. IVB. For example, suppose (similar
to the experiment of Ref. [11]) that an electron spin qubit
in a localized orbital is coupled (with tunneling rate I'y) to
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P [+[(t)]
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™

FIG. 6. (Color online) Estimator P[+]|¥(¢)] as a function of the
measurement time t,, for r = 30, obtained for a randomly generated
record v(¢) in the cases I' = 4 (solid blue line) and I' — oo (dashed
purple line). When I' = 4, P[+]y(¢)] initially slowly decreases in
the interval [0,#;] and suddenly jumps to 1 when the pulse occurs.
When I' — oo, t; — 0 and P[+]|¢¥(¢)] immediately jumps to 1. In
both cases the estimator reaches a constant value at large 7,, when all
the available information on the pulse has been acquired.

each of g nearly degenerate orbital states in a neighboring
empty SET, initially in the Coulomb-blockade regime. The
electron then tunnels from the excited spin state onto the
SET at a rate I'; = gy, after which current can flow through
the SET in the sequential tunneling regime, and the SET
occupation psgr(?) fluctuates between 1 and O electrons. An
electron will tunnel back to the spin-qubit ground state at
a g-independent rate I'; ~ I'gpspr/2 = ['o/4 assuming the
average SET occupation is psgr = 1/2 [38] and that the
SET is occupied with spin-up and spin-down electrons with
equal probability. The ratio of time scales setting I" is then
(rty/(t;) =T =T,;/I'; = 4g. The choice I' = 4 corresponds,
in this case, to a single nondegenerate level of the unoccupied
SET (g = 1). Indeed, this happens to be the value found
experimentally for the readout of Ref. [11]. However, the
degeneracy g could be any value, in principle. The readout
fidelity could be improved by increasing g such that I'r~! =
4gr~! > max{1,0}, entering the regime where the asymptotic
form, I' — oo, of Fig. 4(c) applies. In the typical case where
the noise in an individual bin is small compared to the signal,
o < 1, we find the very simple condition on the degeneracy g
and signal-to-noise ratio r:
: 52
8> 7 (52)
Nanostructures with a large density of single-particle states
(e.g., a one-dimensional nanowire with a E~!/? singularity in
the density of states), could be used to realize the limit given
in Eq. (52), even in the limit of large signal-to-noise ratio r.

VII. CONCLUSIONS

In conclusion, we have shown that the fidelity of readouts
relying on a QND cycling process with a stochastic turn-on
time can be significantly increased by measuring the peak
of the cycling signal (peak-signal filter) instead of its time
average (boxcar filter). The origin of this discrepancy is that
the peak-signal filter, by increasing the number of bins in
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the measurement window, can acquire additional information
on the time at which the cycling signal occurs. Our results
may explain why spin-to-charge conversion experiments in
semiconductor qubits have typically used the peak-signal
filter, whereas fluorescence-based readouts have normally
relied on the simpler boxcar filter. Moreover, we predict
that for any system with a stochastic turn-on time, however
small, it will become advantageous to employ the peak-signal
filter rather than the boxcar filter when the signal-to-noise
ratio becomes larger than the dimensionless inverse average
turn-on time (r > I'). Furthermore, we have generalized the
maximum-likelihood filter developed in Ref. [33] to the case of
a stochastic turn-on time. We have shown that even when this
theoretically optimal procedure is followed, the presence of
a stochastic turn-on time can significantly reduce the fidelity
of the readout. Thus, we propose that the fidelity of such
cycling readouts may be increased by making the turn-on time
deterministic. In the case of a semiconductor qubit coupled to a
nearby SET, this could be achieved by engineering the density
of single-particle states for the SET to enhance tunneling from
the qubit to the SET. It should be possible, in principle, to
extend our approach to include shot-noise and non-Gaussian
types of noise relevant in experiments with a small number
of cycling events (e.g., in the presence of dark counts and
near-Poissonian noise in ion-trap experiments [5]).
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APPENDIX A: DERIVATION OF THE GENERAL FORM OF
THE PEAK-SIGNAL DISTRIBUTION P (¢, |%; t;,¢5)

In this Appendix, we derive the general form of the peak-
signal distribution P(3,|=%;1;,t5), Eq. (19). For fixed turn-on
time #; and turn-off time ¢, the probability of a given peak
signal v, is the probability that at least one of the N bins has
¥, < ¥ < ¥, + dyr, while the remainder have ¥; < v¥,:

P(pr:;tivtf)de

Ny
=[11D.Bcps.a9) | — [ [ Bops-as). (AD)
Se | k=0 Sy

where S ={/ < N|{{;) = ¢} runs over the subsets of Ny
bins in the measurement window having identical distributions
Do and g4, Eqgs. (10) and (11). The total number of bins is
N=> S Ny. In Eq. (A1), we introduced the binomial form:

N,
Bi(pg.qp) = ( ,j’)[p¢<wp>dwp]k[%(%)]NH, (A2)

which gives the probability that k bins in the subset S, are such
that ¥, < ¥y < ¥, +dy, and that Ny — k bins are such that
Y < v¥p,. Next, we perform the binomial sum in Eq. (A1) and
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find
P(Wp|i;ti’tf)dl//p
= [ [1rsWp)dv, + s — T T ao(w,)".

So Se

(A3)

In the continuum limit for ¥, we have pg(Vp)d ¥, <K qs(¥p).
Thus, we can expand the first term of Eq. (A3) to linear order
to obtain the desired result, Eq. (19):

P +:6,67) = No N M
WplEstity) = | [ Jaown)™ | D YO

Sy Sp
(A4)

APPENDIX B: ANALYTICAL EXPRESSIONS FOR P (y,|+)

In this Appendix, we derive an explicit analytical expres-
sion for the distribution P(y,|+), Eq. (28). Following the
reasoning of Sec. IVA 1, we assume that the turn-on time
t; and the turn-off time 77 fall in the mth and nth time bin,
respectively. We then write out Eq. (A4) for m and n falling in
each region of the #;-1 plane depicted in Fig. 2 and perform
the average (16) over ¢; in bin m and ¢, in bin n.

For (m,n) in region R, we find Egs. (24) and (26):

P(yl+im.m) = ¢ gy [(N - 1);’; + %] ,
- if

k] kel= - p-
P(Ypl+;m <n)=qiv k lqi lquf|:(N—k— l)q_

F | Loy @], (B1)
q+ qi qr

where k = n — m. For (m,n) in region R, we find

P(pl+:im.n)

= qTqilflfmqi [mp— + (N —-1- m)p—Jr + gi| . (B2
q- q+ qi
Finally, for (m,n) in region R3, we find
P(Ypl+:m.n) = Ng" ' p_. (B3)

Here, p;; is the average probability distribution in a bin that
contains both #; and #y and p; (py) is the average probability
distribution in a bin that contains only #; (¢7):

Bir (W) = / dr, / di; pa(yy) Pt pmn),
i) = / dt / di; py )Pty lmn),  (Bd)
m n#m

ﬁf(l//p)=[dti/ diy p:(Yp)P(ti,tplm,n).
m n#m

Above, the integrals are taken over the square (m,n) in the
t;-t7 plane, Fig. 2. In Eq. (B4), px, py, and p, are the Gaussian
distributions (10) with average signal x = 2(t; —#;)/1p —
1, y = 1—=2(t; — mrb)/rb, and z = Z(Z‘f — l’l‘L'b)/'L’b -1,
respectively.
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Using Eqgs. (6) and (10) to perform the integrals (B4), we
find that, in a bin that contains both # and ¢, (m = n), the
average probability distribution and its cumulative function
are

D ™ =TIt
pif = E[h(l/fp,l) —e ""h(y,,1 = )],

(BS)

1 —I't,
Q=17 [wap,l) S H (Y r>} .

In a bin that contains only the turn-on time #;, we find the
average distributions:

r

Pi= g "V, 1~ T,
r (B6)

Gi = —————e TR H Y, 1 - T);

4= 1D, P ’

and in a bin that contains only the turn-off time ¢, they are

o -1
Pr=gp hWp . dr= 5 HGD. ()

Here, we introduce the functions

a’n, _am(y+D
_g 8r 2

y [erf (b) _ erf(uﬂ ,
202 202
HW,a)=q-—e “"q, —h({,a), (B8)

where p+(¥,) = Ny (¥, F 1) and 02 = (r7,)~!, Eq. (10).

Next, we substitute Eqgs. (17) and (B1)-(B3) into Eq. (14)
to obtain P(y,|+). We find that P(v,|+) has a contribution
from each region R;:

where the contribution from region R has distinct contribu-
tions fromm = n and m < n:

Pi(Ypl+) =

We perform the sum (14) directly and obtain an analytical form
for P(yr,|+):

P (0 |4)

h(y,a) =

Pi(Ypl+) + P(Ypl+) + Ps(Ypl+),  (BI)

I W) + PP+, (B10)

_ Di
=Dis gnle™ ™) gV gy [(N—l)—+ f]

- Qlf
PP (W |4)
D, D
= o LiteT™) = e TN fien (),
DDfe wN

P(Yrpl+) = frlemT=Dmy, (B11)

i
q-

Equation (B9), together with Eqgs. (B10) and (B11), is the
central result of this appendix. Here, we have introduced the

Py(ypl+) =e TN g¥ N
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functions
fita) = agigy [b_”— + 5.7 by ( + ”—f)} :
q q+ qi gy
(B12)
Sala) = g (C—p— + c+p—+ +¢ I_]l) ,
q- q+ qi
where the coefficients are given by
q
= (gra)" gy, (—)
q+a
O
bif =q" gy ( )
and
“1 (49-9
- = ‘].];.V lgN (_ )
+
cr =(g-a)" gy (—*a) : (B14)

The functions ¢ and g’ are geometric sums arising from
performing the sum (14):

N-1

gnu) = Zu _

Z_kuk _u(l —uMy = NuMN(1 —u)
k=0

(1 —u)?
APPENDIX C: STOCHASTIC DIFFERENTIAL
EQUATIONS FOR THE MAXIMUM-LIKELIHOOD FILTER

(B15)

gyu) =

In this Appendix, we derive stochastic differential equations
for the estimator P[+|y(¢)] plotted in Fig. 6. We first derive
equations for the likelihood ratio A and then reexpress them
in terms of P[+|y(¢)].

We directly differentiate each member of Eq. (48) with
respect to T, to obtain a set of linear differential equations for
A= A] + A2 + A32

dA

——L = A,

d‘L’M

dA,

—— =T A3+ 29 (ty)r — 11 Aa, (ChH
d'L'M

dAs

— = —-T'As.

d‘L’M

From Eq. (48), we see that these equations must be solved
subject to the initial conditions A;(0) =0, A,(0) =0, and
A3(0)=1.

Using Eq. (1), we may express the estimator in terms of the
likelihood ratio (47) as

A
- (C2)

P+|Y(1)] T A
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Defining ?, = A;/(1 + A), we write the estimator as
Pl+ly(®)] =P + P+ P;. (C3)

In terms of the ?,’s, the equations (C1) transform into a set of
nonlinear, first-order differential equations:

dp

— = TZ — ZW(TM)}’ fPIEPZa

d‘L'M

e 2

= LP+ 29 (ta)r — 112 —2¢ (ny)r B, (C4)
dps

— = —-TI'P -2y (ty)r BP;.

d‘L'M

These equations must be solved with the initial conditions
P1(0) =0, »(0) =0, and P;(0) = 1/2. Note that when r = 0,
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dP[+|¥()]/dty = 0 for all Ty, and no information can be
acquired on the qubit state.

When I' - oo, we follow a similar procedure and find
that the likelihood ratio A = A 4+ A, is the solution of the
following pair of equations [33]:

dA
—— =AMy,
d‘[M
(C5)
dA,
—— = 2¥(m)r — 11 Az,
d‘L’M

with the initial conditions A (0) = 0 and A,(0) = 1. Similarly,
the estimator P[+|y¥(t)] = P, + P is the solution of

e
— =B = 2Y(ty)r PP,
d‘L'M
(Co)
A, ,
— = [2¥(tp)r — 11 — 29 (zi)r B3,
d'L'M

with the initial conditions 2;(0) = 0 and 7 (0) = 1/2.
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