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We generalize measurement-device-independent quantum key distribution [Lo, Curty, and Qi, Phys. Rev. Lett.
108, 130503 (2012)] to the scenario where the Bell-state measurement station contains also heralded quantum
memories. We find analytical formulas, in terms of device imperfections, for all quantities entering in the secret
key rates, i.e., the quantum bit error rate and the repeater rate. We assume either single-photon sources or weak
coherent pulse sources plus decoy states. We show that it is possible to significantly outperform the original
proposal, even in presence of decoherence of the quantum memory. Our protocol may represent the first natural
step for implementing a two-segment quantum repeater.
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I. INTRODUCTION

Quantum communication has been developed in the past
thirty years. One prominent communication protocol is quan-
tum key distribution (QKD), which aims at distributing a secret
key between two distant parties. Suitable quantum systems
for quantum communication are photons as they have very
low decoherence and can be easily generated, distributed, and
detected with standard technology. However, due to absorption
in optical fibers (or free space), QKD with reasonable rates is
only possible up to ca. 150 km [1]. To overcome this problem,
quantum repeaters have been developed [2]. The idea is to
divide the distance between Alice and Bob in segments, to
create entanglement in each segment, and then to enlarge
the distance using entanglement swapping. Nowadays, the
constituent parts of a quantum repeater have been realized
and small networks have been implemented in a laboratory
setup [3]. However, a complete quantum repeater (even with
two segments) that will outperform direct transmission has not
been realized yet [4].

Recently, measurement-device-independent QKD (MDI-
QKD-RELAY) has been proposed [5,6]. The protocol, de-
scribed in Ref. [5], is based on the principle of a quantum
relay [7] and uses weak coherent pulse (WCP) sources. Briefly
speaking, two parties, Alice and Bob, each equipped with a
WCP source, send photon pulses to a station which performs a
Bell-state measurement (BSM) and communicates the result to
Alice and Bob. Then Alice sends Bob information regarding
the used basis such that if necessary Bob can implement a
bit flip. This protocol is measurement device independent
because Alice and Bob do not need to measure anything
and therefore the protocol is immune to detector attacks
[8,9]. The MDI-QKD-RELAY has already been implemented
experimentally, both in a laboratory environment and in a
real-world environment [10–12]. Moreover, more efficient
protocols have already been proposed [13–15] and finite-size
corrections have been analyzed [15–18].

In this paper we extend the original MDI-QKD-RELAY
protocol [5], introducing quantum memories in the BSM
station. The first consequence is that heralding, provided by
quantum memories, permits improvement of the rate at a given
distance where MDI-QKD can be used. The advantage of
our protocol over other quantum repeater protocols is that
it does not need entanglement sources but only commercial

off-the-shelf weak coherent pulse sources. Quantum memories
have not reached the commercial market yet but they are
under active development. With our protocol we show that
it is possible to use quantum memories with low coherence
time.

The manuscript is organized as follows. In Sec. II we
present a generalization of measurement-device-independent
QKD with single-photon sources to the scenario with quantum
memories. We derive the formula for the secret key rate and
we study its dependency on the decoherence of the quantum
memories. Finally, we compare the secret key rate obtained
with our protocol with the one obtained with the quantum
relay proposed in Ref. [5]. In Sec. III we generalize the whole
analysis to WCP sources. In order to calculate the secret key
rate we consider QKD with decoy states [19,20]. In Sec. IV
we give our conclusions.

II. SCHEME WITH SINGLE-PHOTON STATES

In this section we extend the MDI-QKD-RELAY protocol
presented in Ref. [5], introducing quantum memories (QM)
and using single-photon sources (SPS), which would be the
ideal type of source for this protocol. Therefore, although
SPSs are still not practical they will permit us to establish
upper bounds on the achievable secret key rate; i.e., sources
emitting multiphoton pulses or with additional imperfections
will lead to worse secret key rates. We denote the protocol
considered in this section as MDI-QKD-REPEATER-SPS.

A. The protocol

In the following we give the steps of the protocol, which is
a generalization of the one proposed in Ref. [5] (see Fig. 1):

(1) Alice and Bob prepare randomly and independently
one of the four qubit states |ψ〉 ∈ {|0〉,|1〉,|+〉,|−〉}, where
|±〉 := (|0〉 ± |1〉)/√2. We refer to the set {|0〉,|1〉} as the Z

basis (or rectilinear basis) and the set {|+〉,|−〉} as the X basis
(or diagonal basis). The states are sent through the quantum
channel to the repeater station. The information related to the
created states is stored by Alice and Bob locally. This process
is repeated continuously by Alice and Bob with frequency νs,

which is the repetition frequency of the source.
(2) When both quantum memories are filled up, the

quantum memories are read and a Bell-state measurement
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FIG. 1. (Color online) Scheme of a measurement-device-
independent quantum repeater. The difference with regard to
MDI-QKD-RELAY is that quantum memories are used. QM,
quantum memories; BSM, Bell-state measurement. The two sources
produce single-photon states or weak coherent pulses.

(BSM) is performed. The result of the BSM, the fact that the
measurement was successful, and the time bin of the measured
quantum states are sent to both Alice and Bob.

(3) Sources and stations are time synchronized; i.e., Alice,
Bob, and the station have information about the time bin of
a photon and a measurement. Using the received information,
Alice and Bob discard classical information related to photons
absorbed by the channel. Moreover, if the measurement was
successful Alice and Bob will keep their stored information
about the arrived photons and if needed one of the two parties
will perform a bit flip. If the measurement was not successful
then Alice and Bob will remove the classical information about
the measured photons from their stored pool of data.

(4) After creating sufficiently many bits Alice and Bob
do the usual QKD postprocessing, which consists of sifting,
parameter estimation, error correction, and privacy amplific-
ation [1].

The second step is different from the original MDI-QKD-
RELAY protocol. Here quantum memories are used for
increasing the entanglement swapping success probability. As
a result the total secret key rate will be higher than for the case
without quantum memories. The second difference is about
the exchanged classical information, which now also includes
the value of the arrival times of the photons.

B. The secret key rate

Concerning the security, the protocol is equivalent to
the entanglement-based repeater protocol1 [5,21,22]. In this

1The equivalence is seen by the following arguments: Consider
an entanglement-based repeater protocol where Alice and Bob
each produce the state |φ+〉AC = |φ+〉DB := 1√

2
(|00〉 + |11〉). The

subsystems C and D are sent to the channel and subjected to a
BSM. On the other hand, subsystems A and B remain in Alice’s and
Bob’s laboratory and are measured in basis X or Z. For the case
where both Alice and Bob have chosen basis Z, the measurement
is described by two projectors {�(0) := |0〉〈0|,�(1) := |1〉〈1|}. The
resulting state is given by ((�i

A ⊗ �
j

B ) ⊗ ECD)(|φ+〉AC ⊗ |φ+〉DB)
with i,j = 0,1. The QKD measurement and BSM act on different
Hilbert spaces and therefore they can be interchanged leading to
(ECD ⊗ (�i

A ⊗ P i
j

B ))(|φ+〉AC ⊗ |φ+〉DB) = ECD(|i〉C ⊗ |j〉D), where
the state |i〉C ⊗ |j〉D represents two single photons prepared in the Z

basis with polarization i and j . The case of the X basis is analogous.

paper we consider the asymptotic secret key rate, which
gives an upper bound on the achievable secret key rate.
Finite-size corrections can be included using the analysis done
in Refs. [16,17]. Moreover, we assume that sources produce
perfectly the states {|0〉 , |1〉 , |+〉 , |−〉}. If this is not the case
our analysis can be easily modified by considering the overlap
between the basis X and Y as done in Ref. [23]. The formula
for the asymptotic secret key rate considered in this manuscript
is given in Refs. [1,5]

rREP
∞ := 1

〈T 〉 [1 − h(eZ) − h(eX)], (1)

where h(p) := −p log2 p − (1 − p) log2(1 − p) is the binary
Shannon entropy, eX(eZ) is the quantum bit error rate (QBER)
in the X basis (Z basis) and 1

〈T 〉 is the raw key rate.2 The QBER
represents the fraction of discordant bits in the raw key, which
is the collection of bits stored by Alice and Bob before the
postprocessing.

We give now an analytical expression for the raw key rate.
We denote by P0 the probability that the quantum state sent by
Alice (Bob) is stored in the quantum memory.3 This probability
includes the loss probability of the quantum channel and the
writing efficiency of the quantum memory. One knows that
photons have been stored because quantum memories are
supposed to be heralded. In the following we measure the
time in units of �t := ν−1

s , which represents the time that
the quantum memory has to wait between two attempts. We
introduce the probability P (kA,kB) that the photons of Alice
AND Bob are stored at time bin kA and kB and they were not
stored before, i.e.,

P (kA,kB) := P 2
0 (1 − P0)kA−1(1 − P0)kB−1. (2)

The average number of attempts by the source necessary for
generating one bit of the raw key is given by

〈K〉 :=
∞∑

s = 0
k = 1

ks

⎧⎨
⎩[PBSM(k|k,k)(1 − PBSM(k|k,k)]sP (k,k)

+
k−1∑
i=1

PBSM(k|k,i)[1 − PBSM(k|k,i)]sP (k,i)

+
k−1∑
i=1

PBSM(k|i,k)[1 − PBSM(k|i,k)]sP (i,k))

⎫⎬
⎭, (3)

where PBSM(k|kA,kB) is the probability that the BSM was
successful at time k = max(kA,kB) when the two involved
photons were stored at times kA and kB . Note that if we
consider only the first line containing P (k,k) then we recover
the expression for the rate of the relay. The second (third) line

2The sifting rate does not appear because we employ an asymmetric
protocol where Alice and Bob produce with probability almost one a
state in base X and the remaining times a state in base Z [24].

3Here, we consider a completely symmetric setup which implies
that the success probability is the same on Alice’s and Bob’s side.
However, in case that Alice and Bob have different probabilities, it is
easy to repeat the analysis keeping these two probabilities different.
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FIG. 2. (Color online) (Adapted from Ref. [26]) Scheme for
entanglement swapping with linear optics [3,25]. The square with
a diagonal line is a polarizing beam splitter in the rectilinear basis
and the squares with circles inside are polarizing beam splitters in
the diagonal basis. Entanglement swapping is successful if d1 and d3

click (or d1 and d4 or d2 and d3 or d2 and d4). The state ρA(ρB ) is
produced by Alice (Bob).

accounts for the case that a photon sent by Bob (Alice) has
been stored at a certain time i < k and the photon sent by Alice
(Bob) has been stored at time k. The average time becomes
〈T 〉 := �t〈K〉.

In order to obtain a closed formula we consider a specific
implementation of the BSM [3,25] where the photons are first
retrieved from the quantum memories and then measured with
linear optics (see Fig. 2). This method is probabilistic and when
implemented with perfect quantum memories and detectors
leads to a maximal success probability of 1

2 [27]. The BSM is
successful when a particular two-fold detection happens. We
consider practical threshold detectors with detection efficiency
ηD and dark count probability pD . We denote by ηM the
retrieval probability of a photon from the quantum memory.
The BSM success probability for the scheme given in Fig. 2
as a function of ηMD := ηMηD is then given by [28]

PBSM(ηMD) := 1
2 (1 − pD)2

[
η2

MD + 2(4 − 3ηMD)ηMDpD

+ 8(1 − ηMD)2p2
D

]
. (4)

For pD = 0 as we expect PBSM = η2
MD
2 . Assuming that ηM does

not depend on the time, a simple expression for the average
number of attempts in Eq. (3) was derived in Refs. [29,30],

〈K〉 := 1

PBSM(ηMD)

3 − 2P0

(2 − P0)P0
. (5)

In the case of absence of quantum memories we get
〈K〉relay := [PBSM(P0ηD)]−1. For small P0 the rate of the
repeater scales as P −1

0 while the rate for the relay scales as
P −2

0 . Moreover for the repeater, dark counts do not play a role
as typically pD � ηMD. The equivalent condition for the relay
would be pD � ηDP0, which is much more difficult to ensure.
For the quantum repeater ηM plays the role of P0 for the relay.

With the same formalism we calculate the QBER, which
enters in the formula of the secret key rate. Let ej (k|kA,kB)
be the QBER in the basis j ∈ {X,Z} when the BSM has been
performed at time k and the two photons were stored at times

kA and kB , respectively. Then the average QBER in the basis
j is given by

ej =
∞∑

k=1

⎡
⎣ej (k|k,k)P (k,k) +

k−1∑
i=1

ej (k|k,i)P (k,i)

+
k−1∑
i=1

ej (k|i,k)P (i,k)

⎤
⎦, (6)

where the first line gives the QBER for the case of a quantum
relay, i.e., when both photons arrive at the same time. The
second and third lines include the contribution to the QBER
given by the measurements where one photon arrived at i < k

and the second arrives at time k.
Here, we consider a simple model of decoherence where the

quantum memory stores perfectly a quantum state for a certain
time τ and then it transforms the quantum state to the identity
for t > τ [29]. We call τ the coherence time and measure it in
units of �t . This model is valid in quantum memories where
the fidelity remains approximately constant for a certain time
and then it drops very fast. Formally, we have

ej (k|kA,kB) := ej (∞)
[τ − (k − kA)]
[τ − (k − kB)]

+ 1
2 {1 − 
[τ − (k − kA)]
[τ − (k − kB)]},

(7)

where 
[t] is the Heaviside step function [31] such that 
[t] =
1 for t � 0 and 
[t] = 0 for t < 0 and ej (∞) is the QBER that
would be obtained if the memory does not decohere (τ → ∞)
and it is given by [32]

eX(∞) = eZ(∞)

= 2pD(2(ηMD − 1)2pD − (ηMD − 2)ηMD)

η2
MD + 8(ηMD − 1)2p2

D + 2(4 − 3ηMD)ηMDpD

.

(8)

By inserting Eqs. (2), (7), and (8) into Eq. (6) we obtain a
closed formula for the average QBER:

ej = ej (∞) + 2

[
1
2 − ej (∞)

]
(1 − P0)1+τ

2 − P0
. (9)

It is easy to verify ej (∞) � ej � 1
2 and moreover

limτ→∞ ej = ej (∞) and limP0→0 ej = 1
2 . Note that due to our

specific setup eX = eZ .
If the QBER is too high it is not possible to extract a secret

key as the secret key rate in Eq. (1) becomes nonpositive.
When eX = eZ the maximal QBER for a nonzero secret key
rate is given by eMAX := 0.11. A critical parameter is therefore
τMIN

SPS , which represents the minimal τ permitting us to extract
a secret key and can be obtained from Eq. (9) by requiring that
eX = eMAX. The minimal allowed coherence time is given by

τMIN
SPS =

ln
( (P0−2)[eX(∞)−eMAX]

(P0−1)[2eX(∞)−1]

)
ln(1 − P0)

. (10)

In the following section we provide numbers for the
minimal coherence time and the secret key rate in a realistic
scenario.
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FIG. 3. (Color online) Minimal coherence time τMIN in units of
�t such that the secret key rate is non zero. Black solid line: SPS
protocol [see Eq. (10)]. Red (gray) solid line: WCP protocol [derived
by calculating the zero of Eq. (11)]. Parameters: ηD = 0.2, ηM = 0.6,
pD = 10−6, α = 0.17 dB/km.

C. Performance

We discuss now the performance of the protocol as a
function of the imperfections of the set up. Then we analyze
the relation with the original MDI-QKD-RELAY with single-
photon states. We consider an implementation where photons
are transmitted through optical fibers. Therefore P0 := ηT ,
where ηT := 10− αL

2·10 is the probability that a photon has not
been absorbed after traveling for a distance L

2 and α is
the absorption coefficient. Throughout the whole paper we
consider α = 0.17 dB/km, which is the lowest attenuation
in common optical fibers. In the following analysis we
consider detectors with detection efficiency ηD = 0.2 and dark
count probability pD = 10−6. Such detectors are considered
optimistic but not unrealistic [1]. Regarding quantum mem-
ories, we use ηM = 0.6, which is a value already achieved
experimentally [3].

In Fig. 3 we show τMIN
SPS versus the distance between Alice

and Bob. For L = 400 km we get τMIN ≈ 4 × 104, which
can be transformed in seconds multiplying by �t . For an
hypothetical source at 100 MHz this would correspond to a
coherence time of the order of 400 ms. This value of coherence
time can be already reached nowadays with room-temperature
quantum memories [33]. Note that single-photon sources at
such a speed do not yet exist. We reconsider this number in the
next section when we consider WCP sources. By increasing the
repetition frequency it is possible to use quantum memories
with lower coherence times. This is different from standard
quantum repeater protocols, where the coherence time depends
also on the communication time. We see that the curve of τMIN

is tightly upper bounded by the average maximal time that
is necessary to wait before both quantum memories are filled
up. This can be understood by observing that for P0 � 1 and
eX ≈ 0 we have 〈K〉PBSM ≈ 3

2P0
and τMIN ≈ ln(2eMAX)

−P0
≈ 1.51

P0
.

In Fig. 4 we show the secret key rate as a function of τ/τMIN
SPS

for a fixed distance between Alice and Bob (L = 400 km). We
see that a flat region is reached for τ ≈ 5τMIN

SPS . The same
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FIG. 4. Secret key rate per pulse as function of τ/τMIN
SPS . The

secret key rate increases as the ratio τ/τMIN
SPS increases. However,

after τ/τMIN
SPS > 5 the secret key rate is almost constant and therefore

it is not advantageous to use better quantum memories. Parameters:
ηD = 0.2, ηM = 0.6, pD = 10−6, α = 0.17 dB/km, L = 400 km.

behavior is found also for other values of the distance between
Alice and Bob.

Finally, we discuss the secret key rate as a function of
the distance and compare it to a setup without quantum
memories. As shown in Fig. 5, the setup with quantum
memories permits us to increase significantly the secret key
rate with respect to a setup without quantum memories. For
ηD = 0.2, ηM = 0.6 and pD = 10−6 the crossover distance is
around 100 km. Moreover, we see that the difference between
τ = 2τMIN and τ = ∞ is very small. This result suggests
that the protocol is not very susceptible to decoherence of
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FIG. 5. (Color online) Secret key rate per pulse vs distance
between Alice and Bob. Parameters: ηD = 0.2, ηM = 0.6, pD =
10−6, α = 0.17 dB/km. In the region L < 50 km the quantum relay
performs better than the quantum repeater. This is due to the fact
that in this region the quantum memory efficiency plays a major role.
Moreover, in this region there are already efficient and practical QKD
protocols which do not require an additional measurement station [1].
For L > 500 km the secret key rate is already so low that it is not
convenient to use the proposed setup.
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quantum memories: Perfect quantum memories are not needed
as coherence times slightly bigger than τMIN permit us to
achieve the maximal secret key rate obtainable with perfect
quantum memories. Moreover, we have performed numerical
simulations for quantum memories where the decoherence
model is depolarization,4 and we found that this result does
not change qualitatively.

Concluding this section, we have proven that by using
single-photon sources and imperfect quantum memories it
is possible to essentially double the distance with respect
to MDI-QKD-RELAY when implemented with single-photon
sources.

III. SCHEME WITH WEAK COHERENT PULSE SOURCES

A critical assumption of the previous section was that
Alice and Bob have on-demand single-photon sources at their
disposal. In this section we consider sources of weak coherent
pulses which offer a very high repetition frequency with
current technology even in the order of gigahertz [34]. On the
other hand, this type of source requires a more complicated
security analysis due to the fact that multiphoton pulses are
susceptible to the photon-number-splitting (PNS) attacks [35].
In order to detect this attack it is possible to use decoy
states [19,20]. In the scheme with decoy states Alice and Bob
prepare phase randomized weak coherent pulses of the form
ρ = ∑∞

n=0 p(n) |n〉 〈n| with p(n) := e−μ μn

n! . The parameter μ

is the intensity (average photon number) of the pulse.
The QKD protocol with decoy states [19,20] which we

employ here is analogous to the one described in Sec. II, apart
from the following differences:

(1) When Alice and Bob prepare the state, they also
choose at random and independently its intensity μ, which
is a continuous parameter with 0 � μ < ∞. One particular
intensity μ is chosen with probability of almost one.

(2) The measurements for pulses with intensity μ are used
for extracting a secret key, whereas the others are used for
detecting Eve’s PNS attack.

The formula for the secret key rate is analogous to Eq. (1)
with the modifications due to the fact that Eve can perform
PNS attacks. It is given by [5]

r∞ := max
μ>0

(
1

〈T 〉
{
f11

[
1 − h

(
e11
X

)] − h(eZ)
})

, (11)

where f11 is the fraction of bits in the raw key which are
generated when Alice and Bob send single-photon states and
e11
X is the QBER of these bits. The QBER e11

X is accessible
due to the fact that we use decoy states [5]. The QBER eZ is
determined using all data. All quantities entering in the formula
of the secret key rate in Eq. (11) depend on a generic intensity
μ. This intensity is used as free parameter for the optimization
of the secret key rate. The optimal intensity is denoted by μ

(see above). In the following we derive analytical expressions
for these parameters as function of the imperfections of the
setup. We assume that detectors have no dark counts. This will

4The model we have considered is D(ρ) := e− t
τ ρ + 1−e− t

τ

2 1, where
τ is the coherence time.

permit closed formulas, which allow to understand the role of
each parameter. Dark counts do not play a crucial role as long
as ηMD � pD . For realistic choice of parameters this condition
is easily satisfied.

Given a pulse of n photons, the probability that at least
one photon is stored into the quantum memory is given by
[1 − (1 − ηT )n], where ηT is the probability that one photon
has not been absorbed by the quantum channel. In general, the
probability P0 that a state has been stored into the quantum
memory is given by

P0 :=
∞∑

n=1

p(n)[1 − (1 − ηT )n] = 1 − e−μηT , (12)

which for μηT � 1 reduces to P0 = μηT as expected.
The BSM success probability depends on the probability to

store a state with n photons given that the source has generated
a state of m photons with m � n. Formally,

P (n) :=
∞∑

m=n

p(m)

(
m

n

)
ηn

T (1 − ηT )m−n = (ηT μ)n

n!
e−ηT μ.

(13)

The quantity (m

n
)ηn

T (1 − ηT )m−n is the probability that n

photons survive from a state with m photons after the
transmission through the channel. The probability that the
BSM is successful given that one quantum memory contains na

photons and the other nb photons is given by (see the appendix
for our derivation)

PBSM(na,nb) =
[(

1 − ηMD

2

)na

− (1 − ηMD)na

]

×
[(

1 − ηMD

2

)nb

− (1 − ηMD)nb

]
. (14)

For na = nb = 1 we obtain PBSM(1,1) = 1
2η2

MD in accordance
with Eq. (4). Thus, the BSM success probability is given by

PBSM := 2

∑∞
na=1

∑∞
nb=1 P (na)P (nb)PBSM(na,nb)∑∞

na=1

∑∞
nb=1 P (na)P (nb)

(15a)

= 2
e−2μηT (ηMD−1)(e

1
2 μηMDηT − 1)2

(eμηT − 1)2
. (15b)

The denominator in Eq. (15a) gives the probability that two
photons are stored in the quantum memories, which is equal
to P 2

0 . The numerator is the total probability of all events
in which the BSM is successful when one quantum memory
contains na photons and the other one contains nb photons.
The factor 2 comes from the fact that the BSM with linear
optics can distinguish only two Bell states. For the limiting
case μηT � 1 we obtain PBSM = PBSM(1,1).

Under the assumption that an infinite number of decoy
states is used, the fraction of measurements coming from single
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photons is denoted as f11 and given by

f11 = P (1)2PBSM(1,1)∑∞
na=1

∑∞
nb=1 P (na)P (nb)

(16a)

= μ2η2
MDη2

T eμηMDηT −2μ

4
(
e

1
2 μηMDηT − 1

)
2

, (16b)

which in the limit μηT � 1 becomes f11 = 1 as in this limit all
measurements come from single-photon states. The numerator
of Eq. (16a) represents the probability that the sources of
Alice and Bob produce single photons which are stored in the
quantum memories and which lead to successful BSM. The
denominator is the total probability to obtain a state which
does not contain the vacuum.

Regarding the QBER we observe that if there are no
dark counts then both e11

X and eZ are zero. This property of
the protocol has been discussed also in Ref. [5]. Therefore,
errors will arise only due to decoherence. The calculation is
analogous to the one for single-photon sources of Eq. (6).
We assume the same decoherence model. The only difference
comes from the fact that now P0 is different; in particular, we
have

e11
X = e11

X (∞) + 1

2

[
1
2 − e11

X (∞)
] (

1 − P 11
0

)1+τ

2 − P 11
0

, (17)

eZ = eZ(∞) + 1

2

[
1
2 − eZ(∞)

]
(1 − P0)1+τ

2 − P0
, (18)

with P 11
0 = p(1)ηT the probability to store single-photon

states in one quantum memory.
We have thus derived all quantities present in the formula of

the secret key rate, and we can now evaluate and characterize
the protocol.

In Fig. 6 we show the comparison between MDI-QKD-
REPEATER-WCP and MDI-QKD-RELAY-WCP. As we see,
quantum memories permit us to increase significantly the
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FIG. 6. (Color online) Secret key rate vs distance between Alice
and Bob. Comparison between relay [5] (blue [gray]) and repeater
[see Eq. (11)] (red [gray]). Parameters: ηD = 0.2, ηM = 0.6, pD = 0,
α = 0.17 dB/km, τ = ∞.

secret key rate or the distance where it is possible to perform
QKD.

As shown in Fig. 3, the minimally allowed coherence time
τMIN

WCP is larger then τMIN
SPS . The reason is that now the produced

state contains also a vacuum that reduces the probability
that a photon arrives to the quantum memory. However, the
difference is less than one order of magnitude. Moreover,
analogously to the case of SPS the flat region(τ → ∞) of
the secret key rate is reached already with τ = 5τMIN

WCP.
In practical cases, only a finite number of different decoy

states is used. In order to adapt our result to this case it is
enough to use the results of Ref. [13]. Moreover, finite-size cor-
rections are necessary for giving realistic estimates. This can
be done by adopting the formalism developed in Refs. [15–17].

IV. CONCLUSIONS

In this paper we have explored the possibility to enable
long-distance QKD without entanglement sources. We have
shown that when quantum memories are used it is possible to
improve the distance where measurement-device-independent
quantum key distribution can be implemented. Moreover, we
have shown that the protocol we consider in this paper is
robust against common device imperfections such as detector
efficiency, quantum memory retrieval efficiency, and finite
decoherence time. Moreover, the robustness of measurement-
device-independent QKD has been also investigated under the
effect of additional imperfections in the quantum channel,
in the detectors and in the quantum memories in Ref. [36].
We believe that our result could be used as a first step in
the development of long-distance quantum key distribution.
It requires weak coherent pulse sources, which are already
available commercially, and heralded quantum memories,
which are under current development.
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APPENDIX

We prove Eq. (14) when the Bell-state measurement is done
between two WCP states in the computational basis. The proof
for the case of the diagonal basis is analogous.

We define

Gi1i2i3i4

(
ρ

(na )
A ,ρ

(nb)
B

)
:= tr

(
�

(1)
di1

�
(0)
di2

�
(1)
di3

�
(0)
di4
E
(
ρ

(na )
A ⊗ ρ

(nb)
B

))
,

(A1)
where E represents the action of the partial BSM and is given
by the following mapping (see Fig. 2):

bH → d3 + d4

2
, bV → d1 − d2

2
, (A2)

aH → d1 + d2

2
, aV → d3 − d4

2
, (A3)
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where aH ,aV are the modes of ρA and bH ,bV are the modes of
ρB . The positive-operator valued measure (POVM) elements
of threshold detectors are given by

�(0) :=
∞∑
i=0

(1 − ηD)i |i〉 〈i| ,�(1) :=
∞∑
i=0

(1 − (1 − ηD)i) |i〉 〈i| .

(A4)

The success probability of a BSM is given by

PBSM(na,nb) := 1

4

∑
i1i2i3i4∈A

∑
φ∈B

Gi1i2i3i4 (φ⊗na ,φ⊗nb ), (A5)

where A = {1234,1243,2134,2143} is the set containing the
combinations of two-fold detection leading to a successful

entanglement swapping and B = {|HH 〉 〈HH | , |V V 〉 〈V V |}
is a set containing the quantum states produced by the two
sources of Alice and Bob when they choose the computational
basis. The set B does not contain the cross-terms like
σ := |HH 〉 〈V V | because Gi1i2i3i4 (σ⊗na ,σ⊗nb ) = 0. Due to
the symmetries of the map E we find that the function G is
equal for all combinations of indices in A and quantum states
in B, and therefore

PBSM(na,nb) = 4 · 2

4
G1234(|HH 〉〈HH |⊗na ,|HH 〉〈HH |⊗nb ).

(A6)

We use the fact that |HH 〉 := a
†
Hb

†
H |0〉 and, using the

definition of E, it is straightforward but lengthly to calculate
G and finally to find the result in Eq. (14).
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