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Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering
between counterpropagating traveling waves

Jan Wiersig
Institut für Theoretische Physik, Universität Magdeburg, Postfach 4120, D-39016 Magdeburg, Germany

(Received 1 October 2013; published 22 January 2014)

We study the properties of energy eigenstates in open quantum systems in which clockwise and
counterclockwise traveling waves are weakly coupled. We show that under rather general conditions the energy
eigenstates of such systems can appear in pairs of nonorthogonal, copropagating traveling-wave states. The
relation to exceptional points of the effective non-Hermitian Hamiltonian is discussed.
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I. INTRODUCTION

The physics of open quantum and wave systems plays an
important role in several research areas. Examples are ultracold
atoms and molecules in optical lattices [1,2], semiconductor
quantum dots coupled to phonons [3], parity-time symmetric
systems in optics [4], microwave systems [5,6], and optical
microcavities [7]. The most obvious aspect of the coupling to
an environment is that it can convert bound energy eigenstates
into decaying quasibound states as already introduced by
Gamow [8] in 1928.

In the case of optical microcavities the decay stems from
optical losses due to absorption and radiation. Deformed
optical microdisks are in particular interesting cavities to study
quantum chaos [9–11] and nontrivial consequences of the
openness [12,13] both in theory and experiment. Recently,
it has been discovered in numerical simulations that the
coherent backscattering of counterpropagating waves in such
deformed cavities can be asymmetric provided that the cavity
does not possess a mirror-reflection symmetry [12,14]. This
asymmetric backscattering has counterintuitive consequences,
such as the appearance of pairs of optical modes (the analog
of quasibound states), where in each pair (i) the two modes
are significantly nonorthogonal, (ii) each of the two modes
has a finite orbital angular momentum (“chirality”) and (iii)
both modes mainly copropagate in the same direction. This
nonorthogonality, chirality, and copropagation is strongly
enhanced near so-called exceptional points (EPs; see [15–17])
in parameter space at which two or more eigenvalues and
eigenstates coalesce. This above-mentioned chirality is related
to the intrinsic chirality of EPs [18,19] and not to optical
activity in chiral media; see, e.g., [20]. The asymmetric
backscattering and the resulting nonorthogonality and chirality
is not limited to deformed microdisk cavities. It also shows up
in microdisks perturbed by small external scatterers [21] and
in parity-time-symmetric quantum rings [22].

The aim of this paper is to reveal that this set of interrelated
phenomena arise generically in all quantum and linear wave
systems provided the following conditions are simultaneously
met: (i) the system is open, (ii) no mirror-reflection symmetries
are present, and (iii) backscattering between counterpropagat-
ing waves is weak. Our analysis is restricted to time-reversal-
symmetric systems which can be described, at least in a local
sense, by an effective non-Hermitian Hamiltonian [23]. Such
effective Hamiltonians have been routinely and successfully
applied to various physical systems, e.g., microwave cavities

[24], in the context of the complex-scaling method for the
study of atomic and molecular dynamics [25], ultracold atoms
in optical lattices [1,26], quantum-dot-microcavity systems
[27], in nuclear physics [28], and to electron transport in
low-dimensional nanostructures [29].

This article is organized as follows: Section II provides a
simple physical system to demonstrate the relevant effects.
In Sec. III, the general theory is formulated. Finally, some
concluding remarks are given in Sec. IV.

II. ILLUSTRATIVE EXAMPLE

To illustrate the phenomenology of the “troika” consisting
of nonorthogonality, chirality, and copropagation we analyze
the simplest possible example, which is a single quantum
particle of mass M moving along a circle in a complex
potential. Using a normalized coordinate x ∈ [0,2π ) and
energy units such that �

2/2M = 1, the effective Hamiltonian
reads in coordinate representation

Heff = − ∂2

∂x2
+ V (x). (1)

We consider the linear potential

V (x) = V0x, (2)

which does not possess any mirror-reflection symmetry unless
V0 = 0. With the coordinate x unfolded to the real axis, V (x)
would be a sawtooth-shaped periodic potential. A sawtoothlike
potential with real V0 has been realized in antidot arrays [30]
and for ultracold atoms in optical lattices [31]. For the latter
type of systems it is also possible to design complex optical
potentials, the (negative) imaginary part of which describes
an incoherent loss of atoms, in a controlled manner [1]. So,
the case of complex V0, for which the Hamiltonian (1) is
non-Hermitian, might be realized in this type of systems. Note
that the Hamiltonian (1) obeys time-reversal symmetry also
for complex potentials, in the sense that time reversal maps
decaying states into states which increase in time and vice
versa [32].

In the trivial situation V0 = 0 the eigenstates of the
Hamiltonian (1) can be written as

�m(x) = 1√
2π

exp (imx) (3)

with quantum number m ∈ Z. Since the configuration space
has the topology of a circle, m plays the role of an orbital
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angular momentum number. Positive m correspond to coun-
terclockwise (CCW) traveling waves, negative m to clockwise
(CW) traveling waves. The energy eigenvalues m2 are twofold
degenerate for |m| �= 0, so the eigenstates with the same |m|
can be superimposed to give new eigenstates, e.g., standing
waves cos mx and sin mx with m = 1,2, . . ..

For real V0 �= 0, exact solutions for the energy eigenstates
have been derived in Ref. [33] in terms of Airy functions.
However, the resultant transcendental equations are not helpful
for our purpose. We therefore rely on a full numerical solution
of the eigenvalue problem for the complex potential. To
determine the numerical solution, the right eigenstates ψj (x)
of the Hamiltonian (1) are expanded in the angular momentum
basis

ψj (x) =
∞∑

m=−∞
αj,m�m(x). (4)

The Hamiltonian Heff is expressed as

Heffm,m′ =
{

m2 + πV0 if m = m′,
iV0

m−m′ otherwise.
(5)

To obtain the eigenvalues Ej ∈ C and the right eigenvectors
�αj = (αj,1,αj,2, . . .) of this non-Hermitian matrix we restrict
the indices |m|,|m′| to mmax = 1000 and diagonalize the
truncated matrix numerically.

For the following discussion we consider a complex V0 with
Im(V0) < 0 describing absorption. The case of amplification,
Im(V0) > 0, can be deduced from time reversal. We choose
V0 = 1 − i without loss of generality. Figure 1 shows the
complex eigenvalues Ej of the first 45 states ordered according
to increasing real part of Ej . The imaginary part of Ej is the
decay rate of the j th state. It can be clearly seen that the
twofold degeneracy is broken, but for not too small energies
the eigenvalues appear in nearly degenerate pairs. This can be
easily understood as for not too small |m| the absolute value
of the potential V (x) is much smaller than the unperturbed

FIG. 1. Calculated complex eigenvalues Ej of the effective
Hamiltonian (1) with complex potential (2) using V0 = 1 − i. The
splitting of the pairs is relatively strong for the first states and
decreases for increasing real part of the energy. Note the logarithmic
scale on the horizontal axis.

FIG. 2. (Color online) Components of the eigenvectors �α6 (cir-
cles and black solid lines) and �α7 (crosses and green dashed lines):
(a) absolute value (both curves are on top of each other), (b) real, and
(c) imaginary part; the phase of the eigenvectors is chosen such that
Im(αj,3) = 0. The corresponding energy eigenvalues are marked in
Fig. 1. The lines are guides to the eye.

part of the Hamiltonian m2. Alternatively stated, the coupling
between the unperturbed CW and CCW traveling components
is weak and therefore the energy splitting is small.

Figure 2 displays as example the eigenvector pair �α6 and
�α7 with eigenvalues E6 ≈ 11.978 24 − i3.147 13 and E7 ≈
12.300 98 − i3.489 54. We observe a remarkable imbalance
between the CW and CCW components. The CCW com-
ponents are larger than the CW components by a factor of
about 3. This is the chirality which has been discovered
before in deformed or perturbed microdisks [12,14,21] and
parity-time-symmetric quantum rings [22]. Hence, both states
are mainly traveling waves. Moreover, they copropagate in
the CCW direction. Figures 2(b) and 2(c) reveal the small
difference between the components. For negative index m both
the real and the imaginary part of the eigenvector components
have a different sign for the two states. This allows us to
superimpose the two eigenstates to form nearly pure CW or
CCW quasimodes [12].

To quantify the relative weight of CW and CCW compo-
nents we use the definition of the chirality of a state in the
angular momentum basis [14],

α = 1 −
min

( ∑−1
m=−∞ |αm|2,∑∞

m=1 |αm|2
)

max
(∑−1

m=−∞ |αm|2,∑∞
m=1 |αm|2

) , (6)

where αm stands for the components αj,m of the state with
number j . In the case of a standing-wave pattern with balanced
distribution of CW and CCW components the chirality is α =
0. This is the case for systems with mirror-reflection symmetry,
and also for closed systems [14]. For the two eigenvectors �α6

and �α7 shown in Fig. 2 we get α ≈ 0.8854 and α ≈ 0.8712
which reflects the significant chirality of the states. Figure 3
reveals the fact that here all nearly degenerate states have a
similar value of the chirality.

We remark that the chirality shown here is different from
the unidirectional transport observed in quantum ratchets.
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FIG. 3. Chirality α of the first 45 eigenstates vs the state index j .
The two eigenstates of each nearly degenerate pair exhibit a similar
chirality.

In the latter case, one or more particles initially at rest are
transported by a time-dependent potential; see, e.g., [31]. For
both phenomena, however, the absence of mirror-reflection
symmetries is crucial.

Next, we investigate the nonorthogonality of the eigen-
states. The orthogonality of two eigenstates ψj (x) and ψk(x)
is measured by the normalized overlap integral

Sjk =
∫ 2π

0 dx ψ∗
j (x)ψk(x)√∫ 2π

0 dx ψ∗
j (x)ψj (x)

√∫ 2π

0 dx ψ∗
k (x)ψk(x)

. (7)

For a given pair of eigenstates j and k we use the short-
hand notation S = |Sjk| where 0 � S � 1. If S = 0 (S = 1)
the states are orthogonal (collinear). In the presence of a
mirror-reflection symmetry or for a closed system, Sjk = δjk .
For the two eigenvectors �α6 and �α7 shown in Fig. 2 the
overlap turns out to be S ≈ 0.7798, so the eigenvectors
are highly nonorthogonal. Figure 4 demonstrates that such
nonorthogonality can be observed also for the other pairs
of nearly degenerate eigenstates. For eigenvectors which do
not form a nearly degenerate pair, the nonorthogonality is
typically considerably weaker. It should be mentioned that
nonorthogonality of quasibound states is well known, see,
e.g., [34], and plays an important role in different branches
of physics, for instance it leads to excess quantum noise in
open laser resonators [35–37], it influences reaction cross
sections [38], and it describes the interference between long-
and short-lived neutral kaon states [39].

Figure 5 summarizes the nonorthogonality and chirality of
the eigenstates in our model system by showing the overlap S

of each nearly degenerate eigenstate pair versus the chirality α

of each state. It can be seen that the whole range from nearly
orthogonal and almost no chirality to strong nonorthogonality
and chirality is covered. The chirality α and overlap S are
highly correlated. It fact, they fall on a curve given by the
simple formula

α = 2S

1 + S
. (8)
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FIG. 4. The nonorthogonality matrix Sjk for the first 25 eigen-
states. The absolute value of the matrix elements are shown as
a gray-scale intensity. The maximum value 1 (corresponding to
collinear vectors) is black and the minimum value 0 (orthogonal
vectors) is shown in white.

This quantitative relation between chirality and nonorthog-
onality was concluded from a phenomenological model for
deformed microdisk cavities in Ref. [14]. Figure 5 demon-
strates that for our one-dimensional quantum system there is a
nearly perfect agreement between the full numerical solution
and Eq. (8). The next section explains why this relation works
so well for this and other systems.

III. GENERAL THEORY

Having discussed a specific one-dimensional (1D) quantum
system for illustration purposes in the previous section, we here
show that the observed asymmetric backscattering and the
resulting nonorthogonality, chirality, and copropagation is a

FIG. 5. Chirality α vs spatial overlap S of pairs of almost
degenerate eigenstates ranging from number 4 to 400 (open circles).
Results for eigenstates from 1 to 3 are not shown as they do not form
unambiguous pairs; cf Fig. 1. The solid curve is given by Eq. (8).
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general phenomenon appearing also in other one-dimensional
as well as in two- and three-dimensional quantum or wave
systems. In the following derivation we require only that (i)
the system is open, (ii) no mirror-reflection symmetries are
present, and (iii) backscattering between counterpropagating
waves is weak.

For a 3D system we use a cylindrical coordinate system
(z,r,φ) where the z axis is chosen to be perpendicular to the
plane in which we study the backscattering of counterpropa-
gating traveling waves. In the case of a 2D system (1D on a
circle) the following formulas can be adapted by ignoring the
z (and the r) coordinate. If the system has a mirror-reflection
symmetry in the (r,φ) plane then we choose the azimuthal
coordinate φ such that the rays φ = 0 and φ = π are along this
symmetry axis in the (r,φ) plane. In this coordinate system a
convenient basis is given by

ψj,c(z,r,φ) = ηj (z,r) cos mφ; m = 0,1,2, . . . (9)

ψj,s(z,r,φ) = ηj (z,r) sin mφ; m = 1,2, . . . , (10)

where j comprises the three indices k, l, and m for the three
degrees of freedom. We do not need to specify the functions
ηj (z,r), except that we require them to be real valued and to
form an orthonormal basis.

The basis functions (9) and (10) can be considered as
standing waves in the azimuthal direction. In such a basis,
assuming that time-reversal invariance is not violated, a
non-Hermitian Hamiltonian describing an open system is a
complex-symmetric matrix. This has been shown in a general
setting [32] and for systems coupled to the continuum in the
framework of scattering theory [24].

For the sake of a clear discussion we consider a large but
finite number of basis functions. For fixed m we use n basis
functions (for 1D n = 1). For the azimuthal degree of freedom
we use mmax basis functions. For short, we write nmmax =
N . In this truncated basis the effective Hamiltonian can
be expressed as complex-symmetric (2N + n) × (2N + n)
matrix

Heff =
⎛
⎝E0 a b

aT Ec W

bT WT Es

⎞
⎠ . (11)

The superscript T denotes the transposition of a matrix. The
complex-symmetric n × n matrix E0 describes the m = 0
subspace. The complex-symmetric N × N matrices Ec and
Es describe the subspaces (9) (without m = 0) and (10),
respectively. The complex n × N matrices a and b couple
the m = 0 subspace to the subspaces (9) (without m = 0) and
(10), respectively. The complex N × N matrix W describes
the coupling between the subspaces (9) (without m = 0) and
(10), respectively. If a mirror-reflection symmetry is present
then W vanishes and there is no coupling between the two
subspaces. In this case, a well-defined parity can be introduced
and subspace (9) belongs to the positive parity and subspace
(10) to the negative parity.

Next we employ a transformation to the traveling-wave
basis

ψ̃j (z,r,φ) = ηj (z,r) exp (imφ) (12)

with m ∈ Z. This can be accomplished with the unitary (2N +
n) × (2N + n) matrix

M† =

⎛
⎜⎜⎝

11n×n 0 0

0 1√
2
11N×N − i√

2
11N×N

0 1√
2
11N×N

i√
2
11N×N

⎞
⎟⎟⎠ , (13)

where 11n×n and 11N×N are the n × n and N × N identity
matrices. The symbol † means Hermitian conjugation. A
similarity transformation H̃eff = M†HeffM of the effective
Hamiltonian in Eq. (11) to the traveling-wave basis gives

H̃eff = H̃ (0) + H̃ (1) =
⎛
⎝E0 0 0

0 E + F 0
0 0 E − F

⎞
⎠

+
⎛
⎝ 0 SCCW→0 SCW→0

S0→CCW 0 SCW→CCW

S0→CW SCCW→CW 0

⎞
⎠

(14)

with the complex N × N matrices

E = Ec + Es

2
, F = i

W − WT

2
, (15)

SCW→CCW = Ec − Es

2
− i

W + WT

2
, (16)

SCCW→CW = Ec − Es

2
+ i

W + WT

2
, (17)

where ET = E, F T = −F , and with the n × N matrices

SCCW→0 = a + ib√
2

, SCW→0 = a − ib√
2

(18)

and the N × n matrices

S0→CCW = aT − ibT

√
2

, S0→CW = aT + ibT

√
2

. (19)

The matrix E + F (E − F ) describes the forward scattering
within the CCW (CW) components. The matrices Sx→ y
belong to the scattering between different components (m = 0,
CCW, CW).

In the following we assume that the scattering between
counterpropagating traveling waves and the coupling of CW
and CCW components to m = 0 components is weak. In this
regime of weak backscattering we can consider H̃ (1) as a
perturbation to H̃ (0) in Eq. (14). Note that this assumption
is much less restrictive than assuming a weak perturbation
of a rotationally invariant system. The 2N eigenstates of the
unperturbed part H̃ (0) without the m = 0 eigenstates are

v
(0)
CCW,j =

⎛
⎜⎝

0

x
(0)
j

0

⎞
⎟⎠ , v

(0)
CW,j =

⎛
⎜⎝

0
0

y
(0)
j

⎞
⎟⎠ , (20)
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FIG. 6. (Color online) Components of the eigenvectors of H̃ (0)

(a) v
(0)
CCW,j and (b) v

(0)
CW,j (circles and solid lines) for the complex

potential (2) corresponding to the eigenvectors of the full problem
shown in Fig. 2. (c) The two resulting superpositions v±,j according
to Eq. (32) (circles and black solid lines, and crosses and green dashed
lines). The lines are guides to the eye.

where v
(0)
CCW,j and v

(0)
CW,j are 2N + n-dimensional complex

vectors and x
(0)
j and y

(0)
j are N -dimensional complex vectors.

The latter fulfill the eigenvalue equations

(E + F )x(0)
j = 
CCW,j x

(0)
j , (21)

(E − F )y(0)
j = 
CW,j y

(0)
j . (22)

The vectors x
(0)
j and y

(0)
j are in general different but have

the same eigenvalue 
j = 
CCW,j = 
CW,j because of (E −
F )T = (E + F ) and the fact that the transposition of a square
matrix does not change its eigenvalues. If the mirror-reflection-
symmetry breaking is weak (F ≈ 0) then x

(0)
j ≈ y

(0)
j .

For illustration Figs. 6(a) and 6(b) show two eigenvectors
v

(0)
CCW,j and v

(0)
CW,j for the example from the previous section.

Clearly, these vectors are not just eigenstates of the kinetic
part of the Hamiltonian but are influenced by the complex
potential (2).

As E + F is in general a non-Hermitian matrix, it is not
guaranteed that the right eigenvectors x

(0)
j are orthogonal to

each other. To cure this deficiency we introduce the associated
left eigenvectors,

(E + F )†x̃(0)
j = 
∗

j x̃
(0)
j . (23)

The set of eigenvectors x
(0)
j and x̃

(0)
i are assumed to form a

biorthogonal basis with

x̃
(0)†
i · x

(0)
j = δij . (24)

Moreover, we require the independent normalization condition
x

(0)†
j · x

(0)
j = 1. The normalization for x̃

(0)†
j is then fixed by

Eq. (24). It the same way we define a biorthogonal partner for
y

(0)
j by

(E − F )†ỹ(0)
j = 
∗

j ỹ
(0)
j (25)

with

ỹ
(0)†
i · y

(0)
j = δij (26)

and y
(0)†
j · y

(0)
j = 1. In the case of a non-Hermitian unperturbed

Hamiltonian such biorthogonal bases have to be used for
perturbation theory [32]. For given j the eigenvalue of H̃ (0)

is obviously twofold degenerate with the two eigenstates
given by Eq. (20). We have therefore to employ degenerate
perturbation theory using left and right eigenvectors; see
for example [40]. In first order the perturbed eigenvalues
and eigenstates can be computed by projecting the effective
Hamiltonian H̃eff onto the two-dimensional subspace spanned
by the two eigenstates in Eq. (20). This gives the non-
Hermitian 2 × 2 matrix

H̃ =
(


 A

B 


)
(27)

with

A = x̃
(0)†
j SCW→CCW y

(0)
j , (28)

B = ỹ
(0)†
j SCCW→CW x

(0)
j , (29)

where the dependence of 
, A, and B on j is suppressed for
notational convenience. The eigenvalues and (not normalized)
eigenvectors of the effective Hamiltonian H̃ are given by


± = 
 ±
√

AB, (30)

ψ± =
( √

A

±√
B

)
. (31)

The corresponding eigenvectors in the original vector space
are therefore

v±,j =

⎛
⎜⎝

0√
Ax

(0)
j

±√
By

(0)
j

⎞
⎟⎠ . (32)

Equations (27)–(32) constitute the central result of this paper.
Using the eigenvectors (32) we can express the chirality [for
1D in Eq. (6)] as

α = 1 − min (|A|,|B|)
max (|A|,|B|) (33)

for both states and the overlap [for 1D in Eq. (7)] as

S = |v†
+,j · v−,j |√

v
†
+,j · v+,j

√
v
†
−,j · v−,j

= ||A| − |B||
|A| + |B| . (34)

With the Eqs. (33) and (34) the relation between the overlap
and the chirality in Eq. (8) can be easily derived.

To make the results clear, we again consider the saw-
tooth potential from the previous section. Figure 6(c) shows
two vectors v±,j for the potential (2) computed from
Eqs. (27)–(32). A nice agreement with Fig. 2(a) can be
observed. Moreover, our theory predicts the chirality α ≈
0.8572 for both states and the overlap S ≈ 0.75. This is in good
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agreement with α ≈ 0.8854 and ≈0.8712, and S ≈ 0.7798
from the full numerics having in mind that our treatment
is based on first-order perturbation theory. The agreement
improves considerably for higher eigenstates as the influence
of the perturbation becomes effectively weaker. For instance,
for the eigenvectors 12 and 13 we get α ≈ 0.664 and ≈0.6614,
and S ≈ 0.4954 from the full numerics and α ≈ 0.6564 for
both states and the overlap S ≈ 0.4885 from our theory. So,
our theory gives quantitative correct values for the chirality
and overlap. Moreover, the copropagation is self-evident from
the structure of the vectors in Eq. (32).

It follows from Eqs. (16), (17), (28), and (29) that
generically the backscattering between counterpropagating
traveling waves is asymmetric, |A| �= |B|. In the following
special situations the backscattering is symmetric, |A| = |B|,
in the presence of a mirror-reflection symmetry (W = 0) and
for a closed system (W and Ec − Es are real-valued matrices).
Clearly, only for symmetric backscattering the chirality α

and the overlap S vanishes. For complete asymmetry in
the backscattering (A = 0 with B �= 0 or the other way
around), we get α = 1 and S = 1, i.e., full chirality and
collinear eigenstates. The latter indicates an EP. In this case
the eigenvalues (30) and eigenvectors (31) degenerate. From
Eq. (32) it is clear that EPs of the 2 × 2 Hamiltonian (27)
are also close to EPs of the full Hamiltonian (11) provided
that the first-order perturbation theory describes the system
accurately.

IV. CONCLUDING REMARKS

Our first-order perturbation theory shows that the interre-
lated phenomena nonorthogonality, chirality, and copropaga-
tion appear generically in open quantum and wave systems in
which the backscattering between counterpropagating travel-
ing waves is weak. Good quantitative agreement with a simple
quantum system, a particle moving along a circle in a complex

potential, is observed. The relation to exceptional points of the
effective non-Hermitian Hamiltonian is explained.

The 2 × 2 non-Hermitian Hamiltonian (27) has been used
previously as a phenomenological model to describe coupling
of CCW and CW traveling waves in deformed microcavities
[12,14]. In the case of the deformed disks it was unclear why
the large set of different angular momentum components can
be treated effectively as a two-state system (CW and CCW).
Only for the special case of a dielectric circular disk perturbed
by two nanoparticles, in which two angular momentum
components dominate each state pair, was the Hamiltonian
(27) rigorously derived in a two-state approximation [21].
Our theory here explains why the 2 × 2 non-Hermitian
Hamiltonian (27) works so well also for the case in which
many angular momentum components are involved.

Since the theory presented in this paper is very general,
we expect to find the discussed phenomena not only in
optical microdisk cavities and parity-time-symmetric quantum
rings but also in other physical systems. As a final remark,
we comment on the observability of these phenomena in
experiments. The asymmetric backscattering could be directly
detected in transmission and reflection measurements on a
perturbed or deformed microdisk without any mirror-reflection
symmetries coupled to two waveguides; see, e.g., [41]. The
chirality could be observed in perturbed or deformed microdisk
lasers since traveling waves can use the gain more efficiently
[42]. The nonorthogonality of eigenstates in open quantum and
wave systems can be observed indirectly by measuring changes
of resonance widths resulting from Hermitian perturbations of
the system [40].
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