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Size of quantum superpositions as measured with classical detectors

Pavel Sekatski,* Nicolas Sangouard, and Nicolas Gisin
Group of Applied Physics, University of Geneva, CH-1211 Geneva 4, Switzerland

(Received 13 June 2013; published 17 January 2014)

We propose a criterion which defines whether a superposition of two photonic components is macroscopic. It
is based on the ability to discriminate these components with a particular class of “classical” detectors, namely,
a photon number measurement with a resolution coarse-grained by noise. We show how our criterion can be
extended to a measure of the size of macroscopic superpositions by quantifying the amount of noise that can be
tolerated and taking the distinctness of two Fock states differing by N photons as a reference. After applying our
measure to several well-known examples, we demonstrate that the superpositions which meet our criterion are
very sensitive to phase fluctuations. This suggests that quantifying the macroscopicity of a superposition state
through the distinguishability of its components with “classical” detectors not only is a natural measure but also
explains why it is difficult to observe superpositions at the macroscopic scale.
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I. INTRODUCTION

Quantum physics is sometimes presented as a theory of
microscopic phenomena only, suggesting that there could be a
boundary beyond which quantum laws do not apply. However,
there is nothing in quantum physics itself that predicts the
existence of such a boundary. So either quantum theory is
incomplete or quantum effects apply at any scale but demand
a particular effort to be maintained and revealed. This concern
provided strong motivation over the last decades to prove
through experiments that macroscopic systems can exhibit
quantum effects. The question at issue is how to judge whether
a quantum system is macroscopic.

Let us set the problem. Take an entangled bipartite state,

|↑〉A |A〉B + |↓〉A |D〉B , (1)

where party A is a qubit and B involves two photonic compo-
nents. Note that even though the terminology of macroscopic
superposition is sometimes used, qubit A is necessary to fix
components |A〉 and |D〉 (up to rotations). Assume that one
knows how to reveal the entanglement in (1). To call this
entanglement macroscopic, one wants states |A〉 and |D〉
to be macroscopically distinct [1]. But how does one tell
whether this is the case? So far there is no concensus on
what this criterion should be and there could be a variety of
different, though related, concepts. However, we know what
macroscopicity cannot be.

The notion of macroscopicity cannot be invariant under
local unitaries, in strong contrast to entanglement. This is
already clear in Schrödinger’s gedanken experiment, where
a microscopic state of a photonic mode (|0〉 or |1〉) is mapped
with a unitary transformation onto the macroscopic state of a
cat (|Alive〉 or |Dead〉). Another example is a series of C-NOT

gates that allows one to map a microscopic superposition of
qubit states |↑〉 and |↓〉 onto a large GHZ-type superposition of
|↑〉⊗N and |↓〉⊗N . Therefore, in our quest for a macroscopicity
criterion, the local unitary invariance has to be abandoned.
Furthermore, finding a physically motivated way to break this
invariance is the solution to the problem we are aiming at.

*pavel.sekatski@unige.ch

Several criteria have been proposed recently to define the
notion of macroscopicity [2–8]. Specifically, Korsbakken and
coauthors [4] linked the macroscopicity of a superposition state
carried by an ensemble of qubits with the ease of distinguishing
its components when only a few qubits are analyzed. This
approach (as the majority of available criteria) relies on the
partition of the total Hilbert space into individual particles, and
there is no such partition for bosonic system. The criterion that
we introduce recognizes that the entangled state, (1), is macro-
scopic if its components, |A〉 and |D〉, are well distinguishable.
It demands that these components can be distinguished in a
single shot with classical detectors; i.e., the components lead
to very different results when measured with detectors whose
limited resolution forbids the resolution of microscopic states.
Indeed common sense tells us that a property (the distinctness
here) is macroscopic if it is available first-hand for us to
observe. This follows the intuition that there is no need for
a microscopic resolution to distinguish the dead and alive
components of the Schrödinger cat. More precisely, we focus
on photon number measurements coarse-grained by noise, a
measurement resolving large photon number differences only.
It can distinguish a vacuum from an N -photon Fock state |N〉
(as long as N is larger than the detector’s uncertainty) but
it is unable to discriminate a vacuum from a single photon.
This supports the natural claim that state (1) with Fock states
|A〉 = |M〉 and |D〉 = |M + 1〉 is a micro-micro entangled
state, whereas it corresponds to micro-macro entanglement for
|A〉 = |M〉 and |D〉 = |M + N〉 (when N � 1). The choice of
the photon number measurement for our criterion is arbitrary
to some extent. The whole development could just as well be
deployed starting with another observable, leading to another
hierarchy of macroscopic states. However, the energy (photon
number) is a very particular quantity. It is what the human eye
measures, and more importantly, it is the only one that can be
measured with a passive device and without phase reference
(in the nondegenerate case) (see Appendix).

II. CRITERION FOR MACROSCOPICITY

A noisy photon number measurement is given by the
textbook model depicted in Fig. 1. A classical pointer on a
scale x interacts with state |S〉 of mode B and its position
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FIG. 1. A simple model of the photon number measurement.

is shifted by a value corresponding to the photon number
in B.1 The number of photons in |S〉 is inferred by reading
out the final position of the pointer, which spans position x

with probability pS(x) = trBpi(x + a†a) |S〉 〈S| . If the initial
position of the pointer p0

i (x) is δ-peaked around 0, the final
probability p0

S(x) exactly reproduces the statistics of a†a and
corresponds to a projective measurement. On the other hand,
when the initial position of the pointer has a nonzero Gaussian
spread, pσ

i (x) = 1√
2πσ

exp(− x2

2σ 2 ), the probability distribution
pσ

S (x) available to the experimenter does not contain full
information on the photon number statistics. Increasing σ

lowers the resolution of the detector, making it more and more
“classical.” A normally distributed position of the pointer is
something one would expect from a classical object, where
statistical fluctuations come from a lot of uncorrelated factors.2

According to our definition, the macroscopic state (1)
involves components |A〉 and |D〉, which can be distinguished
with such a detector. Consider a game where B receives one
of these two components (for example, prepared by party A)
and has to guess which one has been sent. The probability of
making a correct guess in a single shot,

P σ [|A〉 , |D〉] = 1
2

{
1 + D

[
pσ

A(x),pσ
D(x)

]}
, (2)

is related to the trace distance D[pσ
A(x),pσ

D(x)] =
1
2

∫
dx|pσ

A(x) − pσ
D(x)| between the outcome distributions

pσ
A(x) and pσ

D(x). The size of the superposition should be
related to the amount of noise σ that can be tolerated.

III. QUANTIFYING THE SIZE

To define a measure of macroscopicity we have to make
comparisons to a reference case for which there is a natural
definition of the size of a superposition. Fock states provide
a perfect chance for such a calibration, the probability of
guessing between two Fock states |M〉 and |M + N〉 with
a detector coarse-grained by Gaussian noise is independent of
M and reads

P σ
Fock[N ] = 1

2

(
1 + erf

(
1

2
√

2

N

σ

))
. (3)

The size of state (1) is given by N , for which P σ
Fock[N ]

coincides with P σ [|A〉 , |D〉]. However, that leaves a free

1Physically this may, for example, correspond to a shift of the
kinetic moment of a material pointer given by the radiation pressure
Hamiltonian H = x̂a†a.

2Note that if the initial state of the pointer was set to be pure instead,
then the detector would perform a weak measurement of the photon
number saturating the information-disturbance relation.

parameter, σ , and to deal with it, we fix the required minimal
probability to correctly guess between the two components Pg .
The maximal tolerable noise σPg [|A〉, |D〉] is then the solution
of the equation P σ [|A〉, |D〉] = Pg . Given σPg [|A〉, |D〉],
the size of the superposition, (1), is obtained by inverting
P

σ [|A〉,|D〉]
Fock [N ] = Pg and corresponds to the N for which the

Fock states achieve the same probability Pg . If state (1) does
not reach the required Pg , we set its size to be 0. In general,
the parameter Pg can be suggested by a particular task that one
has in mind. For the numerical application, we use Pg = 2/3,
as it is common in the literature on probabilistic algorithms
[9]; in this case,3

SizePg= 2
3
[|A〉 , |D〉] ≈ 0.86 σ [|A〉 , |D〉]. (4)

Remember that by changing the basis on side A, we are free
to choose the components |A′〉 = |cθA + sθ e

iϕD〉 and |D′〉 =
|cθD − sθ e

iϕA〉 that maximize the size.

A. Example 1. Optical cat states \boldmath |β/2〉 and |−β/2〉
Our first example involves two coherent states with opposite

phases, |A〉 = |−β/2〉 and |D〉 = |β/2〉. Such states have been
at the core of several experiments [10–12]. Obviously |A〉 =
|−β/2〉 and |D〉 = |β/2〉 have the same energy spectra with
the sign information encoded in the phase relation between
neighboring Fock components, and hence they are completely
confused by our detector. However, it is easy to modify these
states to circumvent this problem: Displacing mode B by −β/2
brings the components to |A〉 = |0〉 and |D〉 = |β〉 (example
1a), with the corresponding photon number distributions
separated by |β|2. For fixed Pg �= 1 and large enough β, the
size of this state,

Size(1)
Pg

= |β|2 − 2(erf−1(2Pg − 1))2, (5)

increases linearly with respect to the number of photons, as
expected. Remember that the size of the superposition can be
increased by further displacing the components to |A〉 = |α〉
and |D〉 = |α + β〉 (example 1b). In the limit α � β the size
of this superposition increases linearly with α, and for |β|2 �
erf−1(2Pg − 1) the size is proportional to the product α β.
The maximal achievable guessing probability is limα→∞ P σ =
1
2 (1 + erf( β√

2
)).

This example clearly shows that our measure is not
invariant under displacement, since the latter is a nontrivial
transformation of the energy spectrum. This is well known
in the context of homodyne measurements, where the detector
noise σ can be circumvented by displacing the measured mode.
The next example also exploits the noninvariance of the size
with respect to displacement.

B. Example 2. Coherent state and displaced single photon

We recently proposed [13] to investigate the quantum
features of macro states through a displaced single-photon

3In general,

SizePg
[|A〉 , |D〉] = 2

√
2erf−1(2Pg − 1)σPg [|A〉 , |D〉].
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FIG. 2. (Color online) Size of several states for Pg = 2/3 and
increasing “particle number” N . (1a) |0〉 and |β〉 with N =
|β|2. (1b) |α〉 and D(α) |β〉 with N = |α|2 and |β|2 = 4. (2)
D(α) |+〉 and D(α) |−〉 with N = |α|2. (3) |φ1〉⊗N and |φ2〉⊗N with
δ = 0.3.

entangled state D(α)B(|1A,0B〉 − |0A,1B〉), which can rewrit-
ten as D(α)B(|+A,−B〉 − |−A,+B〉), with |+〉 = |0 + 1〉 and
|−〉 = |0 − 1〉 (see [14] and [15] for the corresponding exper-
iments). The photon number distributions for |A〉 = D(α) |+〉
and |D〉 = D(α) |−〉 are both of width α and have their means
separated by 2α. For large enough |α|2 (>50) the statistic of a
coherent state follows a normal distribution, and the guessing
probability is a monotonous function of the ratio σ

α
(contrary to

σ
N

for Fock states), with limα→∞ P σ ≈ 0.899. Consequently,
the size of this state scales as the square root of the photon
number and is precisely given by

Size(2)
Pg

= 2 α erf−1(2Pg − 1)

√
1

π (2Pg − 1)2
− 2. (6)

C. Example 3. GHZ-like state with overlapping components

Let us now focus on the state studied in [2], where
the components |A〉 = |φ1〉⊗N and |D〉 = |φ2〉⊗N contain N

copies of two nonorthogonal states, |〈φ1|φ2〉|2 = 1 − ε2, each
copy corresponding to a two-level system. Although these
states are not photonic but describe spin ensembles, it is easy
to generalize our criterion to this case. To do so, replace the
number of photons with the population in the excited states
(number of |e〉’s) in the definition of the classical detector.
It is then clear that the size of the superposition depends not
only on the relative angle ε between |φ1〉 and |φ2〉 but also
on their azimuthal angle. For |φj 〉 = cos(θj ) |g〉 + sin(θj ) |e〉,
with θ = π

4 + (−1)j δ
2 and sin(δ) = ε, the mean populations

of |A〉 and |D〉 are maximally separated, and for large N ,

Size(3)
Pg

= Nε

√√√√1 − 2(Erf−1(2Pg − 1))2

N ε2

1−ε2

, (7)

which tends to Nε in the asymptotic limit.
Figure 2 shows the size of the states that we considered for

the guessing probability Pg = 2/3. The typical behavior of the
size as a function of Pg is shown in Fig. 3.

FIG. 3. (Color online) Size of several states for a fixed “particle
number” N as a function of the guessing probability Pg . (1a) |0〉
and |β〉 with |β|2 = 40. (1b) |α〉 and D(α) |β〉 with |α|2 = 400 and
|β|2 = 1. (2) D(α) |+〉 and D(α) |−〉 with |α|2 = 400. (3) |φ1〉⊗N and
|φ2〉⊗N with N = 500 and δ = 0.07.

D. A comment on the size for several copies

An interesting question is how the size of the superposition
in our definition behaves when several copies of the state
are available. Can one predict what happens when two
copies of the states are provided, going from {|A〉 , |D〉} to
{|A〉 |A〉 , |D〉 |D〉}? Unfortunately, this is impossible with any
definition based on the guessing probability Pg governed by
the trace distance. The problem appears already on the classical
level: when two copies are measured they give a couple of out-
comes (x,y) spanned by pA(x)pA(y) or pD(x)pD(y). But for
the trace distance no general relation between D[pA,pD] and
D[p⊗2

A ,p⊗2
D ] exists, and the optimal partition of the outcome

plane (x,y) depends on the particular shape of the distributions
pA and pD . A good example illustrating this is the task of
guessing between two biased coins with face-tail probabilities
pA = {p,1 − p} and pD = {1 − p,p}. One easily verifies that
the probability of making a correct guess does not increase
after the second throw. Remark that the fidelity between
two distributions F [pA,pD] = ∫

dx
√

pA(x)pD(x) behaves
nicely with respect to the number of copies F [p⊗N

A ,p⊗N
D ] =

FN [pA,pD]. But it does not have a nice interpretation in terms
of the probability of discriminating between the two states, so a
fidelity-based definition of the size is not physically motivated,
contrary to (4).

IV. PHASE RESOLUTION AND ENTANGLEMENT

So far we have presented an approach to determining
whether the components on side B of state (1) are ma-
coscopically distinct, assuming throughout that they are in
a superposition. A certified way of ensuring that this is
the case, i.e., that components |↑〉A |A〉B and |↓〉A |D〉B are
indeed superposed and not mixed, is to reveal entanglement
between A and B. To do so, measurements of the number
of photons used for macroscopicity are not sufficient on
their own; one also needs at least one measurement in
another basis. In the single-mode case any such measurement
will imply the use of a local oscillator providing phase
information, since the underlying POVM necessarily involves
coherences between different Fock components |n〉 〈m|. In
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practice, any measurement involving a local oscillator will
suffer from a limited phase resolution �ϕ. This limitation can
be equivalently pictured as a degradation of the local oscillator
phase or as a quantum channel injecting a random phase in the
system

E�ϕ(ρ) =
∫

dϕ p̃(ϕ)e−iϕa†aρeiϕa†a, (8)

with a normally distributed random variable ϕ characterized
by the standard deviation �ϕ. The entanglement in state
(1), which is experimentally accessible with measurements
having a limited phase resolution �ϕ, equals the algebraic
entanglement in EB

�ϕ(|↑〉A |A〉B + |↓〉A |D〉B).
The usual phase noise channel, (8), admits a representation

by a unitary evolution of the system plus the environment,
which is delightful in the present context. Consider an
environmental pointer state |E0〉 interacting with the system
ρ via U = e−ip̂ a†a . The propagator U shifts the position of
the pointer in a controlled way, |E0(x)〉 → |E0(x − a†a)〉,
similarly to the detector defined above. For a pure state |E0(x)〉
with a Gaussian envelope and spread �x, what we have
described is nothing other than a weak measurement of the
photon number performed by the environment. The state of the
system after such an interaction is ρ ′ = trE Uρ |E0〉 〈E0| U †.
Using 1E = ∫

dp |p〉 〈p| one finds

ρ ′ =
∫

dp p̃(p)e−ipa†aρeipa†a = E�p(ρ), (9)

where p̃(p) = |〈p|E0〉|2 = |Ẽ0(p)|2 is a Gaussian with stan-
dard deviation �p. The probability amplitude Ẽ0(p) in the
momentum space is the Fourrier transform of the amplitude
E0(x) in the position space, so the following relation holds:
�x = 1

2�p
. Therefore, a standard phase noise channel with

fluctuation �ϕ corresponds to a weak photon number mea-
surement of the state by the environment, with a pointer of
spread 1

2�ϕ
.

The entanglement in state E�ϕ(|↑〉A |A〉B + |↓〉A |D〉B)
degrades when the “which-path” information (|A〉 or |D〉)
available to the environment increases. The probability that af-
ter the weak measurement the environment will correctly guess

between |A〉 and |D〉 is lower-bounded by P
1

2�ϕ [|A〉 , |D〉] (it
is not an equality because measuring in the x basis might not
be the optimal choice for the environment). To put it more
quantitatively, to experimentally reveal a fraction E of the
initial entanglement in state (1), one needs measurements with
a phase resolution smaller than

�ϕ =
√

2erf−1(2P − 1)

SizeP [|A〉 , |D〉] , (10)

where P = 1
2 (1 + √

1 − E2). In other words, for a fixed phase
resolution, quantum features are washed out as the size of
state (1) increases: any trace of entanglement progressively
disappears from the measurement results.

V. CONCLUSION

We have proposed a measure of the size of macroscopic
quantum superpositions. Our criteron relies on the intuition
that what makes a property macroscopic is the possibility

of observing it with the simplest device. Accordingly, we
define two components as being macroscopically distinct
if they can be distinguished in a single shot with a noisy
photon number measurement (“classical” detector). The size
of a superposition of these components is determined by first
quantifying the maximal amount of noise that still allows
one to distinguish them with a fixed probability and then
comparing this to a superposition of Fock states |M〉 and
|M + N〉, which we calibrate to be of size N . We applied
our measure to several examples and extended our criteria to
spin ensembles. We further showed that any phase fluctuation
can be seen as a noisy (weak) measurement of the photon
number. Therefore, any single-mode superposition state will
only reveal its quantum features under measurements with a
phase resolution inversely proportional to the size. Although
there is a large variety of criteria for macroscopicity, reflecting
the complexity of the concept of macroscopic quantum states,
we contend that our way of defining macroscopicity via
measurements is not only very natural but also explains
why it is so hard to observe quantum features in macro
systems. An interesting perspective would be to apply our
approach to other detectors that can reasonably be called
“classical,” e.g., detection in the phase space using noisy
quadrature measurement. It would also be interesting to extend
our approach to states with more than two components,
λ0 |0〉A |A〉B + λ1 |1〉A |D〉B + λ2 |2〉A |S〉B +, etc. There the
guessing probability could be replaced with the information
obtained by the detector in a single shot. Such a mea-
sure would apply to continuous variable entangled states,
which typically have large Schmidt numbers. Also, it will
be interesting to compare our measure to those defined
previously.
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APPENDIX: MEASUREMENTS WITHOUT PHASE
REFERENCE AND PASSIVE MEASUREMENT

When phase information is disregarded any element Mk

from a POVM becomes a mixture of projectors on energy
eigenstates Mk = ∑

n p(k)
n |En〉 〈En| (it is a measurement of

the energy with a random choice of n). A passive device (not
actively prepared), by definition, starts in a stationary state,
i.e., a mixture of energy eigenstates ρ0 = ∑

n pn |En〉 〈En|
of the Hamiltonian of the measurement device HM (the
Hamiltonian of the system is HS). The outcome state |a〉 of
the measurement device also has to be stationary in time, as
it carries the record of the measurement result, so it is also an
eigenstate of HM . The fact that the total energy is conserved
during the evolution U is expressed by the commutation
relation [U,HS + HM ] = 0 (or [U,HS] = [HM,U ]). Finally,
the probability of an outcome |a〉 of the measurement device
is given by trS&Mρ0 ⊗ ρSU

† |a〉 〈a| ⊗ 1SU = trSρS(trMρ0 ⊗
1SU

† |a〉 〈a| ⊗ 1SU ) and corresponds to the operator Ma =
trMUρ0 ⊗ 1SU

† |a〉 〈a| ⊗ 1S acting on the system. Using the
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three previous observations one gets
[Ma,HS] = trM [HM,U ]ρ0 ⊗ 1SU

† |a〉 〈a| ⊗ 1S + trMUρ0

⊗1S[HM,U †] |a〉 〈a| ⊗ 1S = 0. (A1)

Therefore Ma is diagonal in the eigenbasis of the system’s
energy; in other words, it corresponds to a measurement of
energy.
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