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Imagine three parties, Alice, Bob, and Charlie, who share a state of three qubits such that all two-party reduced
states A-B, A-C, and B-C are separable. Suppose that they have information only about these marginals but not
about the global state. According to recent results, there exists an example for a set of three separable two-party
reduced states that is only compatible with an entangled global state. In this paper, we show a stronger result
by exhibiting separable two-party reduced states A-B, A-C, and B-C, such that any global state compatible
with these marginals is nonlocal. Hence, we obtain that nonlocality of multipartite states can be certified from
information only about separable marginals.
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I. INTRODUCTION

Entanglement [1] and nonlocality [2] are two defining
aspects of quantum mechanics providing powerful resources
for numerous applications in quantum information science.
Although long ago they were thought to be two facets of
the same phenomenon, these two notions of inseparability
have turned out to be quite different [3]. Crucially, due
to Bell’s theorem [4], distant parties sharing an entangled
quantum state can generate nonlocal correlations, witnessed
by violation of a Bell inequality, which rules out any local
realistic model. However, it is difficult to fully identify the set
of entangled states which are nonlocal, i.e., give rise to Bell
violation.

In the simplest bipartite scenario, for instance, there exists a
family of quantum states, the so-called Werner states [5], which
are entangled but nevertheless are local (i.e., admit a local
realistic model for any single-shot measurement). Similarly, in
the tripartite case, there exists a family of entangled three-qubit
states having a local realistic model for any single-shot von
Neumann measurement [6]. Interestingly, some of these three-
qubit states are genuinely multipartite entangled, representing
a very strong form of multipartite entanglement. Conversely,
it has been recently shown that a three-qubit bound entangled
state (where entanglement in the system presents in a very
weak, almost invisible form) exhibits nonlocality; that is, it
violates a tripartite Bell inequality [7].

This selection of works already suggests that the relation
between entanglement and nonlocality is very subtle. In our
present work, we wish to give a further example linking the
two concepts to each other in an intriguing way. The question
we pose is the following. Does there exist a three-party system
with a set of two-party separable reduced states for which any
global state compatible with these reduced states is nonlocal?
Note that two related questions have already been addressed:
(i) Can one deduce that a global state is entangled from the
observation of separable reduced states [8,9]? (ii) Can one
deduce that a global state is nonlocal from the observation of
local marginal correlations [9,10]?

To both questions the answer turns out to be yes. However,
as posed above, our goal in this paper is to answer a question
which is strictly stronger than both questions above. In partic-
ular, we wonder if there exist reduced states which are nonen-

tangled where, however, any three-qubit state compatible with
these marginals is nonlocal. In this case, subcorrelation Bell in-
equalities [9–12] come to our aid. These types of Bell inequal-
ities do not involve full-correlation terms (that is, correlation
terms which consist of all parties), and in the special case of
three parties they contain only two- and one-body expectation
values.

As a starting point for our study, we exhibit in Sec. II a
tripartite quantum state which has separable two-party reduced
states. Then, we introduce in Sec. III a subcorrelation Bell
inequality (involving only one- and two-body mean values)
which is violated by the above quantum state provided well-
chosen measurements are performed on it. Note that due to the
special form of our Bell inequality, the quantum expectation
values and, consequently, the quantum violation of the Bell
inequality depend only on the two-party reduced states and not
on the global state itself. Then, we obtain that any extension
of the above set of separable two-party reduced states to a
global state results in a nonlocal global state. This already
implies our main result stated in the abstract. However, it turns
out that the Bell violation with the above two-party reduced
states is very small (in the range of 10−2) and therefore very
sensitive to noise, which arises inevitably in any experimental
setup.

In order to propose a scheme which is more robust to noise,
we give a simple method in Sec. IV based on semidefinite
programming (SDP), which allows us to decide whether a
global state is fully determined by its reduced states. By
applying this method to our set of three two-party reduced
states introduced in Sec. II, we find out that these marginals in
fact fully determine the global three-party state. This implies
that the violation of an arbitrary three-party Bell inequality
(possibly consisting of all-correlation terms as well) signals the
nonlocality of any global state compatible with the two-party
reductions of the global state. Therefore, in the following we
do not have to restrict ourselves to the study of two-body
Bell inequalities. Indeed, we provide in Sec. V a three-party
Bell inequality which is violated by a large amount using
our unique state with separable marginals. The relatively
big violation suggests that our example is promising from
the viewpoint of possible experimental implementation as
well.
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VÉRTESI, LASKOWSKI, AND PÁL PHYSICAL REVIEW A 89, 012115 (2014)

II. A FAMILY OF THREE-QUBIT STATES

Our starting point is the following family of states:

� =p0|0〉〈0| ⊗ |ψ0〉〈ψ0|
+ |1〉〈1| ⊗ (p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2|), (1)

where Alice holds the first qubit and the pure two-qubit states
|ψi〉, i = 0,1,2, possessed by Bob and Charlie have the special
parametric form

|ψ0〉 = cos α|00〉 + sin α|11〉,
|ψ1〉 = (cos β|0〉 + sin β|1〉) ⊗ (cos γ |0〉 + sin γ |1〉), (2)

|ψ2〉Y = 1√
2

(sin δ|00〉 + cos δ|01〉 + cos δ|10〉 − sin δ|11〉).

Note that |ψ1〉 is a product state, whereas |ψ0〉 is a partially
entangled state for generic angle α and |ψ2〉 is a maximally
entangled state. Also note that, due to construction, the state
is biseparable with respect to cut A|BC, which implies that
both �AB and �AC two-party reduced states are separable (for a
review of different notions of separability, we refer the reader
to Ref. [13]). On the other hand, tracing out Alice’s qubit, we
get the reduced state ρBC = ∑

i=0,1,2 pi |ψi〉〈ψi |. Let us now
fix weights pi ,

p0 = 0.759101,

p1 = 0.015596, (3)

p2 = 0.225303,

and the angles

α = 0.093586,

β = 1.228106,
(4)

γ = 1.063034,

δ = 0.050725

entering the three-party state (1) along with two-qubit pure
states (2) held by Bob and Charlie.

In the following, let us denote by �∗ the state (1) with the
specially chosen parameters (2), (3), and (4). Using the Peres
transposition map [14], we find that the two-party reduced state
ρBC = ∑

i=0,1,2 pi |ψi〉〈ψi | of the global state �∗ is separable
as well. Hence, we can conclude that all three two-party
reduced states of the state �∗ are separable.

III. TWO-BODY BELL INEQUALITY

We now present a three-party Bell inequality, where each
party has a maximum of two possible binary measurements
Ai,Bi,Ci , i = 1,2. The Bell expression consists of only single-
party marginals and two-body correlation terms defined by the
following sum of expectation values:

B = −A1 + (B1 − B2 − C2)(1 + A1) + QCHSH,BC � 3, (5)

where the last term on the left-hand side defines the Clauser-
Horne-Shimony-Holt (CHSH) quantity [15],

QCHSH,BC = B1C1 + B1C2 + B2C1 − B2C2. (6)

Let us briefly mention that the above Bell inequality (5) defines
a facet of the polytope of classical correlations which now lives

in the reduced space of single- and two-party correlators (i.e.,
neglecting correlators of order 3). One may arrive at the above
Bell inequality, for instance, by means of a geometric approach
similar to the one used in [9].

Let us remark that Alice in the above Bell inequality (5)
performs only a single measurement A1. In the classical case,
(that is, in case of local realistic models) the Bell expression (5)
is bounded by the value of 3. However, by performing suitable
measurements on the state �∗, it becomes possible to beat this
bound. Here we show it by giving the actual measurements.
All of them are of equatorial von Neumann type, which
can be written in the form Ai = cos θa

i σz + sin θa
i σx , where

σx and σz are Pauli matrices. The measurements Bi , Ci for
Bob and Charlie are denoted analogously. The corresponding
measurement angles are defined by

θa
1 = 0,

θb
1 = 0.320997,

θc
1 = 1.442524, (7)

θb
2 = 2.707329,

θc
2 = −3.108820.

Indeed, the measurements defined by the angles (7) acting on
the state �∗ lead to the value of Q = 3.017583 in the Bell
expression (5), giving rise to a small (but nonzero) violation
of the inequality.

In order to arrive at the above Bell violation, we applied
the simplex uphill method [16] to find the best measurement
operators and the state with the given form (1) fulfilling
the condition that the two-qubit marginal ρBC is separable.
This latter condition was imposed by the simple two-qubit
separability condition [17], requiring that a two-qubit state ρBC

is separable if and only if det(ρTB

BC) � 0, where the operation
TB denotes partial transposition [14].

Note that in the case of optimality, the value of the angle δ

in Eq. (4) is close to zero; hence, the maximally entangled state
|ψ2〉 in (2) is close to the Bell state |�+〉 = (|01〉 + |10〉) /

√
2.

By fixing the form of state |ψ2〉 to be state |�+〉, one gets a
Bell violation of 3.017454, which is only slightly lower than
the optimal one presented above with the parametric form of
|ψ2〉.

On the other hand, one may wonder what the largest
quantum violation is if one does not stick to the form of the
family of states (1) but one allows the most general form
of a three-qubit state with separable two-qubit marginals. In
that case, using a seesaw-type iteration technique [18], the
best state found gives the slightly higher quantum violation of
3.017924.

Let us stress again the unusual feature of the Bell inequality
(5), namely, that Alice performs only one measurement on
her share of the quantum state. In fact, this measurement
acts as a filter, heralding the desired entangled state for the
remaining two parties. Let us next analyze the Bell violation
from this perspective by giving an alternative way to arrive at
the quantum value of Q = 3.017583 obtained above with the
state �∗ and particular measurement angles (7).

Alice, by measuring in the standard basis, which corre-
sponds to the observable A1 = σz, will collapse �∗ into another
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state. In particular, whenever the result is A1 = +1, which
occurs with a probability of p0, the projected state becomes

�+
BC = |ψ0〉〈ψ0|, (8)

whereas for the outcome A1 = −1, which occurs with a
probability of 1 − p0, the projected state becomes

�−
BC = p1|ψ1〉〈ψ1| + p2|ψ2〉〈ψ2|

p1 + p2
, (9)

where we have written both states in a normalized form.
Similarly, the three-party Bell inequality (5) traces back to
two different two-party Bell inequalities depending on the
outcomes A1 = ±1,

B+ = B(A1 = +1)

= 2(B1 − B2 − C2) − 1 + QCHSH,BC � 3, (10)

B− = B(A1 = −1) = QCHSH,BC + 1 � 3,

where QCHSH,BC is defined by Eq. (6). Above, the B±
expressions are obtained by substituting A1 = ±1 into the Bell
expression (5). Our task now is to compute the overall quantum
Bell value Q by weighting the probability of occurrences
of the two distinct cases, Q+ = Tr (ρ+

BCB+) = 2.898134 and
Q− = Tr (ρ−

BCB−) = 3.393981,

Q = p0Q+ + (1 − p0)Q− = 3.017583 > 3. (11)

Despite the fact that only the second inequality B− is violated,
due to the non-negligible probability (1 − p0) = 0.240899 of
the A1 = −1 outcome occurring, we get the net violation of
Q = 3.017583 reported above.

Let us next analyze how economic the above-devised Bell
test is regarding the number of settings and the state used.
First, let us look at the number of settings in Eq. (5). Alice has
one setting, whereas the other two parties can choose between
two alternative settings. By removing one setting from any of
the parties we get either a trivial or, effectively, a two-party
Bell inequality. In neither case can we arrive at the conclusion
that separable two-party marginals imply nonlocal quantum
correlations. So, regarding the number of settings, the Bell
inequality (5) defines a minimal construction.

Regarding the state, suppose that we set to zero the small
p1 weight defined by (3) in the state �∗. Then, there will be
at most two terms in the eigendecomposition of the two-party
marginal �BC = ∑

i=0,1,2 pi |φi〉〈φi |. Then, it is known that for
any natural measure the set of (2 × 2)-dimensional separable
states occupies a nonzero volume [19]. However, due to a
recent work [20], the respective volume is zero for rank-2
states, such as in the case of the above �BC with p1 = 0. This
implies that for p1 = 0 the reduced state �BC almost certainly
becomes entangled. Hence, we found that the small nonzero
component p1 takes care of the separability of the reduced
state �BC of �∗. This means that the rank-3 biseparable state
�∗ with nonzero weight p1 is also a minimal construction in
terms of the number of pure-state decompositions. However,
regarding the global state, we assumed the special form of
(1), and it remains an open question whether rank-2 (or even
rank-1) genuinely tripartite entangled states [13] would suffice
to prove our result.

As stated before, the example analyzed in this section
already implies the existence of nonentangled two-party

reduced states which are only compatible with nonlocal global
states. However, by looking more closely at the state �∗, it
will turn out that its three separable bipartite reduced states
define a unique extension to a global state (which is the state �∗
itself). We find this result via a compatibility test which will be
described in Sec. IV. Then, based on the uniqueness property
of the global three-qubit state �∗, violation of a generic
three-party Bell inequality with the state �∗ demonstrates
the existence of separable two-party reduced states that are
compatible with nonlocal global states. Indeed, in Sec. V we
find a large violation of a three-party Bell inequality with the
particular state �∗, which implies our stated result.

IV. COMPATIBILITY TEST OF THE STATE

In this section, we show a simple method based on SDP
which allows us to decide whether a given three-qubit state is
fully determined by its two-qubit reduced states. The method
below is related in spirit to the SDP used in Refs. [9,21] and can
be easily generalized to higher-dimensional states and more
particles as well. However, we conjecture that the complexity
of the problem will increase rapidly with the dimension of the
state and the number of parties involved.

First, note that any three-qubit density matrix ρ can be
expressed in a tensor form,

ρ = 1

8

3∑

i1,i2,i3=0

Ti1,i2,i3σi1 ⊗ σi2 ⊗ σi3 , (12)

where σik ∈ {1σ1,σ2,σ3} are the Pauli matrices of the kth
observer. On the other hand, the tensor components of a
three-qubit state can be readily obtained by the expectation
values,

Ti1,i2,i3 = Tr ρσi1 ⊗ σi2 ⊗ σi3 . (13)

In particular, let us denote by T ∗
i1,i2,i3

the tensor components
of our particular state �∗ defined by Eqs. (1), (2), (3), and (4).
Also, note that the B-C two-party reduced state of a general
three-qubit state ρ can be expressed as

TrA ρ = 1

4

3∑

i2,i3=0

T0,i2,i3σi2 ⊗ σi3 , (14)

and analogous expressions hold for the other bipartite states, A-
B and B-C, as well. Let us now solve separately the following
two SDP problems for all i1,i2,i3 = 1,2,3:

T U
i1,i2,i3

= maximize Ti1,i2,i3

ρ,T

subject to ρ � 0,

T0,j2,j3 = T ∗
0,j2,j3

,

Tj1,0,j3 = T ∗
j1,0,j3

,

T0,j2,j3 = T ∗
0,j2,j3

,

∀ j1,j2,j3 = 0,1,2,3

(15)

012115-3
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and

T L
i1,i2,i3

= minimize Ti1,i2,i3

ρ,T

subject to ρ � 0,

T0,j2,j3 = T ∗
0,j2,j3

,

Tj1,0,j3 = T ∗
j1,0,j3

,

T0,j2,j3 = T ∗
0,j2,j3

,

∀ j1,j2,j3 = 0,1,2,3.

(16)

The above SDP optimization problems (note that ρ is a
linear function of the tensor components Ti1,i2,i3 ) are actually
the same problems with the only difference being that in the
first case a maximization is carried and in the second case a
minimization is carried out.

Having solved the SDP problem with the particular T ∗
components coming from the state �∗ and making use of
formula (14), we find that T L

i1,i2,i3
= T U

i1,i2,i3
for all i1,i2,i3 =

1,2,3 up to a precision of ∼10−10, which is roughly the
numerical accuracy of our SDP solver SEDUMI [22]. Hence,
we conclude that state �∗ is completely determined by its
two-party reduced states up to high numerical precision. In
other words, all the information of state �∗ is stored within
its two-party reduced states. It is interesting to note that
states with such a property are generic among multipartite
pure states [23,24]. In particular, it was shown by Jones and
Linden [25] that generic N -party pure quantum states (with
equidimensional subsystems) are uniquely determined by the
reduced states of just over half the parties. For a special set
of multipartite states, the so-called n-qubit ring cluster states,
an even stronger result has been obtained by Tóth et al. [8],
who proved that for n � 6 all neighboring three-party reduced
states are separable and determine uniquely the global state.
However, we are not aware of such results from the literature
in the case of mixed three-qubit states.

V. GENERIC THREE-PARTY BELL INEQUALITIES

In the previous section, we have seen that the two-party
marginals of the state �∗ defined by Eqs. (1), (2), (3), and
(4) determine the state completely; hence it is legitimate to
use generic Bell inequalities to test the nonlocal nature of
the state �∗. Namely, if we find a violation of a three-party
Bell inequality (possibly consisting of three-body terms as
well) with our state �∗, we can be certain that the only global
state compatible with the two-party marginals of state �∗ is
nonlocal. Our goal now is to find a three-party Bell inequality
which gives the biggest Q/L ratio, where L defines the local
bound on the Bell inequality in question and Q is the maximum
quantum value attainable by using state �∗. The magnitude of
the Q/L ratio indicates how useful the Bell inequality is for
our purposes.

Let us first pick the Mermin inequality [26], which consists
of three-party correlation terms,

M =−A1B1C1 + A1B2C2 + A2B1C2 + A2B2C1 � 2. (17)

This is equivalent to number 2 in the complete list of two-
setting three-party Bell inequalities collected by Sliwa [27].

Let us now choose the following settings:

A1 = A2 = σz,

B1 = σz, B2 = σy,
(18)

C1 = cos θ1σz + sin θ1 cos θ2σx + sin θ1 sin θ2σy,

C2 = − cos θ1σz − sin θ1 cos θ2σx + sin θ1 sin θ2σy,

with θ1 = 3.500760 and θ2 = 1.605042. Note the optimal
settings are not on the XY plane as usual for a Greenberger-
Horne-Zeilinger state equal to (1/

√
2)(|000〉 + |111〉) [28].

With our settings (18), we get a quantum violation of Q =
2.086929. However, the optimal quantum violation with the
same state �∗ but allowing completely general settings is
marginally bigger, given by Q = 2.087190.

By listing all the inequalities in Sliwa’s set, number 4
happens to give the biggest Q/L ratio. The inequality looks as
follows:

S4 = (1 − A1)QCHSH,BC + 2A1 � 2, (19)

where QCHSH,BC is defined by Eq. (6). Compared to inequality
(5), Alice still performs a single measurement, but the in-
equality now contains three-body terms as well. The quantum
maximum of (19) using state �∗ turns out to be Q = 2.334184,
which easily follows from our previous analysis in Sec. III.

Namely, let Alice measure in the standard basis. With
probability p0 = 0.759101 she projects the state on |ψ0〉
[defined by (8)] and with probability 1 − p0 on state (9). Then,
if Alice gets outcome A1 = +1, we obtain the trivial two-party
Bell inequality B+ = 2 with local bound Q+ = 2, independent
of the performed measurements of Bob and Charlie. On the
other hand, in the case of outcome A2 = −1, the resulting
two-party Bell inequality is B− = 2QCHSH,BC − 2. Because
B+ does not depend on the actual form of Bob’s and Charlie’s
measurements, we can apply the Horodecki formula [29] for
the calculation of the CHSH value corresponding to state (9),
which turns out to be QCHSH,BC = 2.693620. This way, we
obtain the quantum value Q− = 2QCHSH,BC − 2 = 3.387240.
Hence, the overall maximum is Q = p0Q+ + (1 − p0)Q− =
2.334184, entailing the ratio Q/L = 1.167092. Interestingly,
Bob’s and Charlie’s settings now require complex numbers,
whereas in the case of the two-body Bell inequality of Sec. III
it was enough to consider real-valued measurements.

We wish to note that using the software developed in [30]
based on the geometric method [31], we could not find a better
Q/L ratio with our state �∗ up to five measurement settings
per party. Hence, we conjecture that the ratio Q/L = 1.167092
found for �∗ is optimal or at least very close to optimality for
any number of measurement settings.

VI. CONCLUSION

We have provided an affirmative answer to the following
open question: Is there an example of a set of separable two-
party marginals, such that any global state compatible with
these marginals is nonlocal, witnessed by violation of a Bell
inequality? We found such a state, which is, in fact, uniquely
determined by its two-party reduced states. Among two-setting
Bell inequalities, this state is maximally violated by Sliwa’s
inequality 4, giving a ratio of 1.167092 for the quantum per
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classical bound. Interestingly, the same state also violates a
Bell inequality built up from only two-body correlation terms.
An intriguing open question is whether our result could be
strengthened by considering the stronger notion of the genuine
nonlocality scenario [32] instead of the standard nonlocality
scenario considered in the present study. That is, we inquire
whether there exist two-party separable marginals such that
any global three-party state compatible with these marginals
is genuinely tripartite nonlocal. The state we considered here
was not genuinely multipartite entangled and hence cannot
lead to genuine nonlocality. Therefore new insight is very
likely needed to tackle this interesting open problem.
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