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Corrections to the Berry phase in a solid-state qubit due to low-frequency noise
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We present a quantum open-system approach to analyze the nonunitary dynamics of a superconducting
qubit when it evolves under the influence of external noise. We consider the presence of longitudinal and
transverse environmental fluctuations affecting the system’s dynamics and model these fluctuations by defining
their correlation function in time. By using a Gaussian-like noise correlation, we can study low- and high-
frequency noise contribution to decoherence and implement our results in the computation of geometric phases
in open quantum systems. We numerically study when the accumulated phase of a solid-state qubit can still
be found close to the unitary (Berry) one. Our results can be used to explain experimental measurements of
the Berry phase under high-frequency fluctuations and design experimental future setups when manipulating
superconducting qubits.
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I. INTRODUCTION

Geometric phases are closely linked to the classical concept
of parallel transport of a vector on a curved surface. This
analogy is particularly clear in the case of a two-level system
(a qubit) in the presence of a biased field that changes in
time. Take, for example, a spin-1/2 particle in a changing
magnetic field. The general Hamiltonian for such a system is
H = �/2 �R · �σ , where �σ = (σx,σy,σz) are the Pauli operators
and �R is the biased field vector. The qubit state can be
represented by a point on a sphere of unit radius, called a Bloch
sphere. This sphere can be embedded in a three-dimensional
space of Cartesian coordinates, and hence the Bloch vector �R
is a vector whose components (x,y,z) single out a point on the
sphere. This representation offers a particularly well-suited
framework to visualize the dynamics of the qubit, which
consists in the qubit state continually precessing about the
vector �R, acquiring a dynamical phase γ (t). If the evolution is
done adiabatically, the qubit also acquires a geometric phase
(GP), sometimes called a Berry phase.

It is known that the system can retain the information of its
motion in the form of this GP, which was first put forward
by Pancharatnam in optics [1] and later studied explicitly
by Berry in a general quantal system [2]. Since then, great
progress has been achieved in this field. The application of the
GP has been proposed in many fields, such as the geometric
quantum computation. Due to its global properties, the GP
is propitious to construct fault-tolerant quantum gates. In this
line of work, many physical systems have been investigated to
realize geometric quantum computation, such as NMR [3],
Josephson junctions [4], ion traps [5], and semiconductor
quantum dots [6]. The quantum computation scheme for the
GP has been proposed based on the Abelian or non-Abelian
geometric concepts, and the GP has been shown to be robust
against faults in the presence of some kind of external noise
due to the geometric nature of the Berry phase [7–9]. Then,
for isolated quantum systems, the GP is theoretically perfectly
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understood and experimentally verified. However, it was seen
that the interactions play an important role in the realization
of some specific operations. As the gates operate slowly
compared to the dynamical time scale, they become vulnerable
to open-system effects and parameter fluctuations that may
lead to a loss of coherence. Consequently, study of the GP was
soon extended to open quantum systems. Following this idea,
many authors have analyzed the correction to the GP under
the influence of external thermal or nonequilibrium environ-
ments using different approaches (see [10–15] and references
therein). In all cases, the purely dephasing model considered
was a spin-1/2 particle coupled to the environment’s degrees
of freedom through a σz coupling. Interest in the GP in
open systems has also been extended to some experimental
setups [16].

The GP is a promising building block for noise-resilient
quantum operations. Lately, the GP has also been observed in a
variety of superconducting systems [17,18]. Superconducting
circuits are good candidates to potentially manipulate quantum
information efficiently. Current circuit technology allows
scaling to large and more complex circuits [19,20]. Several
experiments with superconducting Josephson-junction circuits
have demonstrated quantum coherent oscillations with a long
decay time, probing coherent properties of Josephson qubits
and positioning them as useful candidates for applications in
quantum computing and quantum communication. Despite the
long coherence times of the quantum state, the decoherence-
induced process still deserves study for using these circuits for
the development of a quantum processor. When the two lowest
energy levels of a current-biased Josephson junction are used
as a qubit, the qubit state can be fully manipulated with low-
and microwave-frequency control currents. Circuits presently
being explored combine in variable ratios the Josephson effect
and single Cooper-pair charging effects. In all cases the
Hamiltonian of the system can be written

H = �

2
ωaσz + ��R cos(ωt + ϕR)σx, (1)

where ��R is the dipole interaction amplitude between the
qubit and the microwave field of frequency ω and phase
ϕR. �R/2π is the Rabi frequency. This Hamiltonian can
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be transformed to a rotating frame at the frequency ω by
means of a unitary transformation, resulting in a new effective
Hamiltonian of the form

Heff = �

2
(�σz + �xσx + �yσy), (2)

where �x = �R cos ϕR and �y = �R sin ϕR. This model is
similar to the generic situation of a qubit in a changing
magnetic field, where R = (�x,�y,�) and � = ωa − ω is the
detuning between the qubit transition frequency and the ap-
plied microwave frequency. In an experimental situation [18]
� can be kept fixed and one can control the biased field to
trace circular paths of different radii �R.

The same physical structures that make these supercon-
ducting qubits easy to manipulate, measure, and scale are also
responsible for coupling the qubit to other electromagnetic
degrees of freedom that can be a source of decoherence
via noise and dissipation. Thus a detailed mechanism of
decoherence and noise due to the coupling of Josephson
devices to external noise sources is still required. It has been
shown that low-frequency noise is an important source of
decoherence for superconducting qubits. Generally, this noise
is described by fluctuations in the effective magnetic field
which are directed either in the z axis, longitudinal noise,
or in a transverse direction, transversal noise. Both types
of noise have been phenomenologically modeled by making
different assumptions on these fluctuations, such as being
due to a stationary, Gaussian and Markovian process [17].
Others, have considered that the 1/f noise must be rooted
in a non-Gaussian long-time correlation stochastic process.
In the context of quantum information, the implication of
long-time correlations of stochastic processes is that the effects
suffered by the system’s evolution due to the 1/f noise
are protocol or measurement dependent. Apparently, some
protocols clearly reveal a non-Gaussian nature while others
Gaussian approximations attain the main effects in a short-time
scale [21].

In this manuscript, we shall present a fully quantum
open-system approach to analyze the nonunitary dynamics
of the solid-state qubit when it is considered evolving under
the influence of external fluctuations. We consider the qubit
coupled in longitudinal and transversal directions. As a physi-
cal example, we study the dynamics and decoherence-induced
process on the superconducting qubit. We further analyze when
the accumulated phase gained by the system after one period
can still be found close to the unitary (Berry) phase and focus
on the importance of the longitudinal coupling as a source of
decoherence. The paper is organized as follows: In Sec. II,
we develop a general quantum open-system model in order
to consider different types of fluctuations (longitudinal and/or
transverse) that induce decoherence on the main system. By
means of a general master equation for the reduced density
matrix of the qubit, we follow the nonunitary evolution
characterized by fluctuations, dissipation, and decoherence.
This gives us complete insight into the state of the system:
complete knowledge of different dynamical time scales and
analysis of the effective role of noise sources inducing
decoherence. Section III contains the numerical evaluation of
the geometric phase and its noise-induced corrections for the
several scenarios considered. We shall emphasize the effect

of longitudinal and transversal noise on the global geometric
phase. Comparison between theory and experiment verifies
our understanding of the physics underlying the system as
a dissipative two-level device. Berry’s-phase measurements
provide an important constraint to take into account with regard
to noise models and their correction induced over the GP, at
least at the times in which the experiments are performed.
Comprehension of the decoherence and dissipative processes
should allow their further suppression in future qubits de-
signs or experimental setups. In Sec. IV we summarize our
findings.

II. MASTER EQUATION APPROACH TO DECOHERENCE
IN A SUPERCONDUCTING QUBIT

We shall begin by deriving a general master equation
for the reduced density matrix for the qubit (obtained after
tracing out all the environmental degrees of freedom). The
dynamics of a generic two-level system steered by a system’s
Hamiltonian of the type (where we have set � = 1 all along the
paper)

HTotal = Hq + Hint + HE , with (3)

Hq = 1
2 (�σx + �σz), (4)

where we have defined a qubit Hamiltonian Hq similar to that
of a solid-state qubit Eq. (2), setting ϕR = 0 for simplicity, and
HE is the Hamiltonian of the bath. The interaction Hamiltonian
is thought as some longitudinal and transverse noise coupled
to the main system:

Hint = 1
2 (δω̂1σx + δω̂0σz). (5)

We must note that the system’s unitary dynamics and
coupling to the environment is different from the usual
purely dephasing models proposed to study geometric phases
in open systems (see Refs. [10–16]). We shall derive the
master equation in the Born-Markov approximation for general
noise terms δω̂1 and δω̂0 interacting with the system in the
x̂ and ẑ directions, respectively. We will consider a weak
coupling between the system and environment and that the
bath is sufficiently large to stay in a stationary state. In other
words, the total state ρSE (system and environment) can be
split as

ρSE ≈ ρ(t)ρE , (6)

for all times. It is important to stress that due to the Markov
regime, we will restrict our discussions to cases for which the
self-correlation functions generated at the environment (due
to the coupling interaction) would decay faster than typical
variation scales in the system. In this way, the evolution
equation for ρ(t) is local in time [22]. In the interaction
picture, the evolution of the total state is ruled by the Liouville
equation

ρ̇SE = −i[Hint,ρSE], (7)

where we have denoted the state ρSE in the interaction picture
in the same way as before, just in order to simplify notation.
A formal solution of the Liouville equation can be obtained
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perturbatively using the Dyson expansion [23]:

ρSE(t) =
∑
n�0

∫ t

0
ds1

∫ s1

0
ds2. . . .

∫ sn

0
dsn

(
1

i

)

×[Hint(s1),[Hint(s2),[. . . . ,[Hint(sn),ρSE(0)] . . . ]]].

(8)

From this expansion, one can obtain a perturbative master
equation, up to second order, in the coupling constant between
system and environment for the reduced density matrix ρ =
TrEρSE . In the interaction picture the formal solution reads as

ρ(t) ≈ ρ(0) − i

∫ t

0
dsTrE ([Hint(s),ρSE(0)])

−
∫ t

0
ds1

∫ s1

0
ds2TrE {[Hint(s),[Hint(t),ρSE(0)]]}.

(9)

Taking the temporal derivative of the previous equation and
assuming that system and bath are not correlated at the initial
time, the master equation can be written as [22]

ρ̇ = −i TrE [Hint(t),ρ(t)ρE (0)]

−
∫ t

0
ds TrE [Hint(t),[Hint(s),ρ(t)ρE (0)]]

+
∫ t

0
dsTrE {[Hint(t),TrE [Hint(s),ρ(t)ρE (0)]ρE (0)]}.

Considering that the δω̂i of the Hint [Eq. (5)] are operators
acting only on the Hilbert space of the environment (and the
Pauli matrices applied on the system Hilbert space), the master
equation, in the Schrödinger picture, can be written as

ρ̇ = −
∫ t

0
ds TrE [Hint(t),[Hint(s),ρ(t)ρE (0)]]. (10)

The master equation explicitly reads

ρ̇ = −i[Hq,ρ] − Dxx(t)[σx,[σx,ρ]] − fxy(t)[σx,[σy,ρ]]

−fxz(t)[σx,[σz,ρ]] − fzx(t)[σz,[σx,ρ]]

−fzy(t)[σz,[σy,ρ]] − Dzz(t)[σz,[σz,ρ]], (11)

where the noise coefficients are given by

Dxx(t) =
∫ t

0
ds 〈δω̂1(0)δω̂1(−s)〉E X1(−s),

fxy(t) =
∫ t

0
ds 〈δω̂1(0)δω̂1(−s)〉E Y1(−s),

fxz(t) =
∫ t

0
ds 〈δω̂1(0)δω̂1(−s)〉E Z1(−s),

(12)

fzx(t) =
∫ t

0
ds 〈δω̂0(0)δω̂0(−s)〉E X0(−s),

fzy(t) =
∫ t

0
ds 〈δω̂0(0)δω̂0(−s)〉E Y0(−s),

Dzz(t) =
∫ t

0
ds 〈δω̂0(0)δω̂0(−s)〉E Z0(−s).

It is possible to recognize Dab and fab as normal and
anomalous diffusion coefficients, respectively (a,b = x,y,z).
The functions X0,1,Y0,1, and Z0,1 are derived by obtaining
the temporal dependence of the Pauli operators σi in the
Heisenberg representing through the differential equations,

dσk(t)

dt
= i[Hq,σk(t)], (13)

with k = x,y,z and Hq as in Eq. (4). The solution can be
expressed as a linear combination of the Pauli matrices (in the
Schrödinger representation),

σ 0,1
z = X0,1(t)σx + Y0,1(t)σy + Z0,1(t)σz. (14)

The solution can be easily written as

X1(t) = �2 + �2 cos(2t
√

�2 + �2)

�2 + �2
,

Y1(t) = � sin(2t
√

�2 + �2)√
�2 + �2

,

Z1(t) = X0(t) = ��[1 − cos(2t
√

�2 + �2)]

�2 + �2
,

Y0(t) = −� sin(2t
√

�2 + �2)√
�2 + �2

,

Z0(t) = 1 − �2[1 − cos(2t
√

�2 + �2)]

�2 + �2
.

It is easy to check that if the Rabi frequency is zero and
δω̂1 = 0, we recover the dynamics of a spin-1/2 precessing a
bias field vector R.

The idea is to use different noise correlation functions to
model different types of noise that can be found in solid-state
qubits. Once the coefficients in Eq. (12) are defined, we can
numerically solve the master equation and obtain the evolution
in time of the reduced density matrix. Once this quantity is
known, we can further obtain interesting features of the qubit
dynamics such as the biased vector R and the decoherence
induced on the superconducting qubit.

The noise correlations can be defined by their spectral
density Ji(ω) = 1/(2π )

∫
dteiωt 〈δω̂i(0)δω̂i(−s)〉E , with i =

0,1. Herein, we shall focus on the long- and short-correlated
noise (slow and sharp decay of 〈δω̂i(0)δω̂i(−s)〉), i.e., on
the noise power peaked at low or high frequencies. We will
describe different types of noise as

〈δω̂i(0)δω̂i(−s)〉E = γiF(αi,t), (15)

(where γi is a dissipative constant that includes the coupling
strength between the system and bath, and αi is a parameter
with frequency units). This function F keeps the information
about the correlation times and couplings in the environment.
Phenomenologically, F can be thought as a Dirac δ functional
for short correlations in the time domain, or a Gaussian-like
function of time for a more general scenario. In solid-state
systems decoherence is potentially strong due to numerous
microscopic modes. Noise is dominated by material-dependent
sources, such as background-charge fluctuations or variations
of magnetic fields and critical currents, with a given power
spectrum, often known as 1/f . This noise is difficult to
suppress and, since the dephasing is generally dominated
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FIG. 1. (Color online) The evolution of the system can be illus-
trated by the path traversed by the vector R in the Bloch sphere. By
solving the master equation it is possible to analyze the decoherence
process by means of the change in the absolute value of R, which
implies the loss of purity of the system, and also its change of
ẑ component. The black dotted line corresponds to the unitary
evolution, i.e., when the qubit evolves isolated from the environment
in a circle on the sphere surface. The orange trajectory, which
approaches the center of the sphere, corresponds to the δ-correlated
noise with γ0 = γ1 = 0.03�. We can see that after a few numbers
of periods, the system looses coherence completely and the final
state is a totally mixed one. Red and blue trajectories correspond to
different values of parameters α0 and α1 of the Gaussian-correlated
noise models. The red curve shows a more decoherent behavior and
corresponds to a low value of α0 = α1 = 0.03�, while the blue line to
higher values α0 = α1 = 30�. We can see that the slower the decay
of noise correlations, the greater the decoherence on the qubit in the
weak coupling case γ0 = γ1 = 0.03�. We have set � = 0.5�.

by the low-frequency noise, it is particularly destructive
(though it is said that can be reduced by tuning the linear
longitudinal qubit-noise coupling to zero [24]). A further
relevant contribution is the electromagnetic noise of the control
circuit, typically Ohmic at low frequencies.

Gaussian noise. An interesting way to model the fluctua-
tions is through a Gaussian-correlated noise. We assume that
the operator δω̂i(t) is given by a random function δωi(t) with
〈δω̂i(t)〉E = 0 and its correlation between the values of δωi(t)
at two different times is nonzero only for this time interval.
Explicitly,

〈δω̂i(t1)δω̂i(t2)〉E = �i(t1 − t2), (16)

where �i(t) is a function sharply peaked at t = 0 and vanishing
for t > τc for a critical time scale τc. We have set �i(t) =
γiF(αi,t) as defined in Eq. (15), where F is a Gaussian-like
function of time. By setting the parameter αi (α0 for the
longitudinal noise since it affects the coupling in the ẑ axis
and α1 the transverse noise coupling in x̂-) of the model, we
can study the low- or high-frequency noise contribution to
decoherence. Therefore, in this case, decoherence depends on
the interplay of α0 and α1 and the value of the dissipation
constants γ0 and γ1. For example, in Fig. 1 we present the
trajectory of the Bloch vector during a cyclic (or quasicyclic)
evolution. The black circle on the surface of the Bloch sphere
is the evolution of the vector R in the unitary case, i.e.,

γ0 = 0 = γ1. Herein, we see that in absence of environment the
qubit performs a closed trajectory in a period τ , acquiring the
known GP, φG = π [1 − cos(ϑ)], with ϑ = �/(

√
�2 + �2).

By considering different values for the parameters of our
noise model, γi and αi , we can evaluate how the distinct
environments affect the system’s dynamics. In Fig. 1, we also
present the different trajectories of the Bloch vector R for
a value of γ0 = 0.03� and γ1 = 0.03�. As γi are related
to the square of the coupling constant, these values for γi

represent a significant environment within the weak coupling
approximation. The blue dotted line is the trajectory of the
Bloch vector when α0 = 30� and α1 = 30�. This trajectory
is very similar to the unitary one, which means that the
environment has little influence on the systems’ dynamics.
The blue arrow line that starts in the center of the sphere and
goes to the surface indicates the position of the Bloch sphere
after one cycle τ = 2π/�̃, �̃ = �/

√
�2 + �2. The red solid

arrow line is the trajectory for a low value of α0 = 0.03� = α1.
This is what we shall call low-frequency noise. In this case,
we can note that the trajectory differs substantially from the
unitary one, meaning the system’s dynamics is affected by
the decoherence process. Qualitatively, decoherence can be
thought of as the deviation of probabilities measurements from
the ideal intended outcome. Therefore decoherence can be
understood as fluctuations in the Bloch vector R induced by
noise. Since decoherence rate depends on the state of the qubit,
we will represent decoherence by the change of |R| in time,
starting from |R| = 1 for the initial pure state, and decreasing
as long as the quantum state loses purity. The red dashed Bloch
vector after a cycle is no longer on the surface of the sphere,
as can be seen in Fig. 1. The module of the red dashed Bloch
vector has been reduced 16% after one cycle with respect to
the module of the unitary Bloch vector.

As a particular case, we can mention a noise correlation
function given by a function F = δ(s). If the general envi-
ronment considered in this approach is a bath of harmonic
oscillators with a δ-correlation function (J (ω) ∼ ω), then
we will be modeling an ohmic bath in the limit of finite
temperature [12]. This assumption implies that the only
coefficients in Eq. (11) which are constant and nonzero are
Dzz = γ0kBT and Dxx = γ1kBT . This model is commonly
known as dephasing. This modeling of the environment is also
included in Fig. 1 for γ0 = γ1 = 0.03� with an orange line.
It is easy to see that the Bloch vectors decay to the center of
the sphere, losing purity faster than in the Gaussian model.
In the latter, due to the presence of more terms in the master
equation, the Bloch vector does not decay to the center of the
sphere [25].

In Fig. 2, we present a different scenario since the trajec-
tories presented correspond to a very weak environment γ0 =
γ1 = 0.03�. Once again, the black solid line is the reference
for the unitary case, while the blue line (almost coincident
with the black) is for high-frequency (α0 = α1 = 30�) and
the red one for low-frequency noise (α0 = α1 = 0.003�).
Here, the Bloch vector for the low-frequency noise (red) is
5% reduced with respect to the unitary Bloch vector after one
cycle τ .

Finally, we can comment on the 1/f noise mentioned
above. This noise can be modeled by a bath composed of
an infinite set of harmonic oscillators (similarly to what has
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FIG. 2. (Color online) Numerical solution of the master equation
for the trajectory of vector R in the Bloch sphere, for the Gaussian
noise models for smaller dissipative constants γ0 = γ1 = 0.03�. As
before, the black solid line corresponds to the unitary evolution. The
dotted red and blue trajectories correspond to different values of
parameters α0 and α1 of the Gaussian-correlated noise models. The
red curve shows a more decoherent behavior due to a low value of
α0 = α1 = 0.03�. The blue line corresponds to higher values α0 =
α1 = 30�. We have set � = 0.5�.

been done in the spin boson model [12]). At T = 0, the noise
kernel ν(t) can be evaluated when J (ω) ∼ A/ω. Then, the
1/f noise is determined by a correlation function ν(t) =
−γ� CI (�t), where CI (x) is the cosine integral function,
and � is the typical infrared cutoff for the 1/f noise. In
the high-temperature limit, this kernel is given by ν(t) =
T γ� [−π/2 t + cos(�t)/� + t SI (λt)], with SI (x) the sine
integral function. This quantitative modeling of the 1/f noise
through a master equation approach is somewhat analogous
to the effect of the phenomenological modeling of the noise
through an ensemble of “spin fluctuators” [21]. In Fig. 3 we
effectively note how harmful this type of noise is for the
dynamics of the qubit, even in the very-low-temperature limit.
Therein, the black solid line represents the unitary trajectory
of the Bloch vector. In this model, the relevant parameter is
the infrared frequency cutoff �. The blue dotted line is for a
big value of the infrared cutoff � = 0.1�, while the red solid

FIG. 3. (Color online) Numerical solution of the master equation
for the trajectory of vector R in the Bloch sphere for the 1/f noise
model. The black solid line indicates the trajectory of the qubit in
absence of environment. The blue dotted line is the trajectory of the
qubit under the influence of an environment with a “high” infrared
cutoff � = 0.1�. The red curve is the trajectory for a “low” infrared
cutoff � = 0.001�. We have set � = 0.5�.

line is for a low-frequency cutoff � = 0.001�. Both cases are
affected by decoherence. In the low-frequency cutoff case the
module of the Bloch vector, indicated as a dashed red arrow
from the center of the sphere, is reduced 20% in a cycle τ .

III. APPLICATION: GEOMETRIC PHASE OF A
SOLID-STATE QUBIT IN A NONUNITARY EVOLUTION

Practical implementations of quantum computing are al-
ways done in the presence of decoherence. Thus a proper gen-
eralization for the geometric phase to nonunitary evolutions
is central in the evaluation of the robustness of geometric
quantum computation. This generalization has been done
in [10], where a functional representation of GP was proposed,
after removing the dynamical phase from the total phase
acquired by the system under a gauge transformation.

The GP for a mixed state under nonunitary evolution is then
defined as

� = arg

{∑
k

√
εk(0)εk(τ )〈�k(0)|�k(τ )〉e− ∫ τ

0 dt〈�k | ∂
∂t

|�k〉
}
,

(17)

where εk(t) are the eigenvalues and |�k〉 the eigenstates
of the reduced density matrix ρ, a solution of the master
equation. In the last definition, τ denotes a time after the total
system completes a cyclic evolution when it is isolated from
the environment. Taking the effect of the environment into
account, the system no longer undergoes a cyclic evolution.
However, we will consider a quasicyclic pathP : tε[0,τ ], with
τ = 2π/�̃ [10]. It is worth noting that the phase in Eq. (17)
is manifestly gauge invariant, since it only depends on the
path in the state space, and that this expression, even though
it is defined for nondegenerate mixed states, corresponds to
the unitary geometric phase in the case that the state is pure
(closed system).

It is expected that Berry’s phase can be only observed in
experiments carried out in a time scale slow enough to ignore
nonadiabatic corrections but rapid enough to avoid destructive
decoherence [13]. The noise-induced corrections to the GP
depend on the value of parameters present in the noise model,
for example, αi and γi used in the above section. The purpose
of this section is twofold: study how the GPs are affected
by the different models of noise and explain some recent
experimental setups where the GP has been measured in the
presence of noise [17,18]. In the mentioned works, authors
observed the Berry’s phase in a superconducting qubit by
different approaches. However, both experiments agree on the
fact that the longitudinal noise affects the system’s dynamics in
a clearer way that the transversal noise. Another important fact
is that in [18] the authors claimed to have observed the Berry
phase under high-frequency fluctuations. They considered
that this robustness of the GPs to high-frequency noise may
be exploitable in the realization of logic quantum gates for
quantum computation. Therefore we aim to explain these
features of the GP for our model from a primary derivation
of a master equation approach. In the following, we shall use
the Gaussian model of noise for the study of the GP, since
it is widely said that the 1/f can be reduced in spin-echo
experiments by tuning the linear longitudinal qubit noise to
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FIG. 4. (Color online) Ratio between the computed GP in the
presence of noise and the one computed in the isolated case �U , as
a function of α0 and α1 (in units of �), with γ0 = γ1 = 0.001�. The
GP is more affected by the presence of longitudinal noise frequency
α0 since the rate is bigger. The GP does not considerably depend on
the transversal noise α1. We have set � = 0.5�.

zero [24]. In our Gaussian model, we have shown that the
decoherence process was very dependent on the value of the
αi parameter, which we associated to a frequency. In all cases
shown, decoherence was enhanced in the low-frequency case
(small values of α, see Figs. 1 and 2).

In Fig. 4 we present the ratio between the GP � computed
for a system evolving under a noisy environment after a
cycle τ and the unitary one �U , for different values of
αi , having γi fixed as γ0 = γ1 = 0.001�. We show how
this ratio varies once you have a fixed environment and a
tunable frequency. Herein, we can note that the ratio does
not practically change for different values of α1, meaning
that the transversal fluctuations are not relevant. However, we
can see that the ratio varies considerably in the α0 direction.
The GP is visibly corrected for small values of α0, i.e., for
low-frequency noise in the longitudinal coupling of the qubit.
This correction means that the Bloch vector has a relevant
difference with the initial unitary Bloch vector since the
environment induces more decoherence in the low-frequency
case (see Fig. 1).

In Fig. 5 we again present the ratio between the GP �

computed for a system evolving under a noisy environment
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FIG. 5. (Color online) Rate between the computed GP � in the
presence of noise and the one computed in the isolated case �U as
a function of the dissipative constants γ0 and γ1 (in units of �), for
a fixed value of α0 = α1 = 0.01�. The ratio is more affected by the
longitudinal noise. We have set � = 0.5�.
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FIG. 6. (Color online) Rate between the computed GP in the
presence of noise and the one computed in the isolated case �U

as a function of the dissipative constants γ0 and γ1 (in units of �),
for a fixed value of α0 = α1 = 10�. The correction to the GP is
almost negligible for higher values of αi , for weak coupling with the
environment. We have set � = 0.5�.

after a cycle τ and the one unitary-computed �U . This time
we show how this ratio varies for different values of γ0

and γ1 for small values of αi , say α0 = α1 = 0.01�. It is
easy to note that the GP � is very similar to the unitary
GP �U , in absence of longitudinal noise (γ0 = 0), which
means that the evolution is not considerably affected by the
transverse noise. However, we can see a different behavior
if we consider longitudinal noise (γ1 = 0). The GP varies
perceptibly as the environment coupled in the longitudinal
direction is stronger (bigger values of γ0). It is important to say
that the relevant role of the tunable frequency αi makes sense
if we are dealing with a considerable environment which can
effectively induce noise into our system’s dynamics. For very
small values of γ0, Fig. 5 shows that the GP computed is similar
to the unitary GP, independently of low- or high-frequency
fluctuations.

In Fig. 6 we present the ratio between the GP � computed
for a system evolving under a noisy environment after a cycle
τ and the one unitary-computed �U as a function of γ0 and γ1

for bigger values of αi , say α0 = α1 = 10�. Herein, we see
that the system evolution in the presence of an environment
with high-frequency fluctuations is very similar to the unitary
evolution, since the GP acquired is practically similar to the
�U , for almost all values of γ0. If we get a closer look, we can
note that the difference between both phases becomes slow to
increase for stronger values of γ0. We believe that the situation
depicted in Fig. 6 is very similar to the experimental situation
reported in [18], where authors have measured the Berry phase
for a superconducting qubit under high-frequency fluctuations.

Finally, in Fig. 7 we quantitatively show how the GP is
affected by the longitudinal and transverse noises separately.
We present the ratio between the observed GP � after a cycle
τ and the unitary GP �U as a function of both dissipative
constants γi . We consider that the qubit is coupled to only
one noise, i.e., that when we show how the ratio varies as a
function of γ0, the qubit is evolving only under a longitudinal
noise and γ1 = 0 (black-circled line). If the ratio varies as
a function of γ1, then the qubit is suffering the presence of
transversal fluctuations only when γ0 = 0 (blue-squared lines).
We have also add the αi parameter to have the full scenario.
The correction to the GP is almost imperceptible to low-
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FIG. 7. (Color online) Ratio of the computed GP � in the
presence of a noisy environment and the unitary GP �U as a function
of γ0 and γ1. The blue square–dotted line is the correction as a
function of the transverse noise γ1, for γ0 = 0. The black circle–dotted
line is the correction to the GP as a function of the longitudinal
noise γ0, when γ1 = 0. Noise in the ẑ direction corrects the phase
more than noise in the transversal directions. These corrections are
in agreement with the behavior of decoherence as a function of
dissipative constants. All γi are measured in units of �.

and high-frequency transversal fluctuations (full and empty
squares with α1 = 0.03� and α1 = 10�, respectively), at least
in the weak coupling limit. On the contrary, if the fluctuations
of the environment are longitudinal, only those high-frequency
ones do not considerably affect the measurement of the
geometric phase. It is evident that low-frequency longitudinal
noise induces a bigger correction to the phase (as can be
seen from the full black-circled line with α0 = 0.03�). These
results agree with the previous analysis done on decoherence
induced in the qubit and with the experimental setups reported
of the observed geometric phase [17,18]. It is important to
emphasize that our approach is general and allows several
ways of modeling the environment coupled to the main
system.

IV. FINAL REMARKS

We have considered the effective two-state Hamiltonian
for the current-biased Josephson junction. The qubit has been
shown to be fully manipulated with the control currents. Like
any other quantum object, the qubit is subject to decoherence
due to the interaction with uncontrolled degrees of freedom
in its environment, including those in the device itself. These
degrees of freedom appear as noise induced in the parameters
entering the qubit Hamiltonian and also as noise in the control
currents. These noise sources produce decoherence in the
qubit, with noise, mainly, at microwave frequencies affecting
the relative population between the ground and excited state,
and noise or low-frequency fluctuations affecting the phase
of the qubit. It is important to study the physical origins of
decoherence by means of noise spectral densities and noise
statistics.

We have derived a master equation for the two-level system
including the combined effect of noise in the longitudinal

and transversal directions. We considered different types of
noise by defining their correlation function in time. We
have mainly analyzed a Gaussian-like correlated type of
noise, with low and fast decaying times that induce different
decoherence processes in the low- or high-frequency parts
of the environmental spectrum. We have even presented very
correlated noise, where the noise kernel is proportional to a
Dirac δ function in time and the 1/f known commonly used in
spin fluctuator environments. For each type of noise presented,
we numerically solved the master equation and obtained the
system’s dynamics. Qualitatively, decoherence can be thought
of as the deviation of probability measurements from the ideal
intended outcome. Therefore decoherence can be understood
as fluctuations in the Bloch vector R induced by noise. Since
decoherence rate depends on the state of the qubit, we have
represented decoherence by the change of |R| in time, starting
from |R| = 1 for the initial pure state, and decreasing as long
as the quantum state losses purity.

We have extended our analysis of decoherence to under-
stand the corrections induced in the geometric phase, when the
qubit evolves in time under fluctuations of the environment.
Within the general picture of the master equation, we provide
a framework to understand when the accumulated phase can
still be found close to the unitary (Berry) one. We have focused
on the effect of longitudinal and transverse noise on the global
geometric phase. It is important to note that the relevant role
of the tunable frequency αi in our Gaussian model makes
sense if we are dealing with a considerable environment
which can effectively induce noise into our system’s dynamics.
For very small values of γ0, we have shown that the GP
computed is similar to the unitary GP, independently of low-
or high-frequency fluctuations. We have also noted that the
difference between both phases increases for stronger values
of γ0, becoming important when there are low-frequency
longitudinal fluctuations in the environment. The differences
among the phases are not considerable if the fluctuations of
low frequency are originated in a transversal noise (γ1). The
correction to the GP is almost imperceptible to the transversal
fluctuations, at least in the weak coupling limit.

It is important to recall that the results presented show
that the system evolution in the presence of an environment
with high-frequency fluctuations is very similar to the unitary
evolution, since the GP acquired is practically similar to the
�U , for almost all values of γ0. We believe that these results
show a very similar scenario to that of the experimental
situation reported in [18], where they have measured the
Berry phase for a superconducting qubit under high-frequency
fluctuations. In addition, we have checked that noise in the
ẑ direction induces a bigger correction to the phase than the
noise in the transversal components. This correction agrees
with the previous analysis done on decoherence induced in the
qubit and with the experimental setups reported of the observed
geometric phase. Comparison between theory and experiment
verifies our understanding of the physics underlying the system
as a dissipative two-level device. The analysis of the dephasing
time scales may provide additional information about the
statistical properties of the noise. Berry’s phase measurements
provide an important constraint to take into account regarding
noise models and their correction induced over the GP, at least,
at the times in which the experiments can be performed. The
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comprehension of the decoherence and dissipative processes
should allow their further suppression in future qubit designs
or experimental setups.
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