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Towards many-dimensional real-time quantum theory for heavy-particle dynamics. II. Beyond
semiclassics by quantum smoothing of the singularity in quantum-classical correspondence
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A theory of many-dimensional real-time quantum dynamics is studied in terms of action decomposed function
(ADF), a class of quantum wave function. In the preceding companion paper [S. Takahashi and K. Takatsuka,
Phys. Rev. A 89, 012108 (2014)], we showed that semiclassical dynamics for ADF in the Lagrange picture
of phase flow can be described in terms of what we call deviation determinant and associated quantum phases
without use of the stability matrix. Consequently, the Hessian of the involved potential functions is not required in
this formalism. This paper is devoted to an analysis of the mechanism of quantum diffusion (quantum smoothing)
that removes the singularity inherent in the semiclassical ADF: We derive a Lorentzian form for the amplitude
factor of ADF. The real part of its denominator comes from the deviation determinant, while the imaginary part
reflects quantum diffusion and is proportional to the Planck constant. The presence of the nonzero imaginary part
smooths out the singularity and removes the divergence. Besides, this imaginary part can be obtained through
a Wronskian relation with the deviation vectors, which can be solved rather easily at each space-time point on
a classical trajectory. A number of theoretical advantages of the Lorentzian form and the Wronskian relation
are illustrated theoretically and numerically. It turns out that there is no essential difficulty in applications to
many-dimensional heavy-particle systems such as molecules. The theory is examined with stringent numerical
tests.
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I. INTRODUCTION

This work is devoted to a study of many-dimensional
quantum mechanical theory for heavy-particle dynamics as
in chemical reactions in terms of the so-called action de-
composed function (ADF). In paper I [1], we developed a
many-body semiclassical theory, which does not resort to
the so-called stability matrix. The semiclassical ADF thus
formulated suggests its potential ability to treat large-scale
molecular systems. However, as in the lowest-order WKB
theory, ADF diverges at caustics or turning points, depending
on an initial condition chosen, which reflects the mathematical
(geometrical) relationship between quantum and classical
mechanics. In this paper, we study a mechanism for genuine
quantum effects to smooth the singularity, and propose a
methodology that takes a systematic account of such quantum
effects, thereby constructing singularity-free wave functions
in many-dimensional systems.

To formulate the issue in a self-contained manner, we briefly
summarize the previous construction of ADF theory up to the
semiclassical stage. We begin with the following time- (t-)
dependent wave function:

� (q,t) = F (q,t) exp

(
i

�
S (q,t)

)
(1)

on a coordinate q in configuration space, where S is assumed
to satisfy the Hamilton-Jacobi (HJ) equation [2]. Then, the
Schrödinger equation for �(q,t) is transformed to the equation
of motion for the complex-valued amplitude function as

∂F (q,t)

∂t
=

(
−p · ∇ − 1

2
(∇ · p)

)
F (q,t) + i�

2
∇2F (q,t),

(2)

where p is a conjugate momentum at (q,t) or q(t) as

p = ∇S(q,t). (3)

Throughout this paper, we use the mass-weighted coordinates
that scale all the masses (m) to unity m = 1, and therefore any
momentum p is numerically equivalent to the corresponding
velocity v.

Equation (2) is further transformed from the Euler picture
in the terminology of fluid mechanics to the Lagrange picture
by defining

D

Dt
= ∂

∂t
+ v · ∇ (4)

as

D

Dt
F (q,t) =

[
−1

2
(∇ · p) + i�

2
∇2

]
F (q,t). (5)

In this representation, we write the amplitude of ADF as F (q −
q(t),t), which is carried along a classical path q(t). The Trotter
decomposition for a short time gives

F (q − q(t + �t),t + �t)

� exp

[
i�

2
�t∇2

]
exp

[
−1

2
(∇ · p)�t

]
F (q − q(t),t) (6)

or

F (q − q(t + �t),t + �t)

� exp

[
−1

2
(∇ · p)�t

]
exp

[
i�

2
�t∇2

]
F (q − q(t),t). (7)

The semiclassical level approximation takes account of the
momentum gradient ∇ · p = ∑

k ∂pk/∂qk alone as

F (q − q(t + �t),t + �t)

� exp
[ − 1

2 (∇ · p)�t
]
F (q − q(t),t). (8)

The time evolution of it is approximately given as follows:
Let qi(t) (i = 1, . . . ,N) be a configuration-space point of an

1050-2947/2014/89(1)/012109(12) 012109-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.012108
http://dx.doi.org/10.1103/PhysRevA.89.012108
http://dx.doi.org/10.1103/PhysRevA.89.012108
http://dx.doi.org/10.1103/PhysRevA.89.012108
http://dx.doi.org/10.1103/PhysRevA.89.012109


KAZUO TAKATSUKA AND SATOSHI TAKAHASHI PHYSICAL REVIEW A 89, 012109 (2014)

ith nearby path of a reference trajectory q(t), along which
we are propagating the ADF. Thus, ADF propagated by the
momentum gradient alone is given as [1]

F (q − q(t + �t),t + �t)|q=q(t+�t)

=
(

σ (t)

σ (t + �t)

)1/2

F (q − q(t),t)

∣∣∣∣
q=q(t)

(9)

or

σ (t + �t)1/2F (q − q(t + �t),t + �t)|q=q(t+�t)

= σ (t)1/2F (q − q(t),t)|q=q(t), (10)

where the deviation determinant σ (t) is expressed as

σ (t) =
N∏

i=1

∧[qi(t) − q(t)], (11)

which is an N -dimensional orientable tiny volume surrounding
the point q(t) in configuration space. This propagation suggests
a possible way to many-dimensional theory with neither
resorting to the integration of the 2N × 2N stability matrix
nor the calculation of the related Hessian matrix of potential
functions.

Numerical tests [1] have shown that the value of a full
quantum wave function is accurately reproduced by the semi-
classical ADF at each space-time point along a classical path.
However, this function diverges at points where the momentum
gradient happens to diverge since it holds there that σ (t) = 0
in Eq. (10). As is well known, this divergence takes place
at a focal point either in configuration or momentum space.
Therefore, it is in the process of smoothing the singularity
that one of the essential characteristics of quantum mechanics
can be identified. In this paper, we proceed to the study of
many-dimensional quantum dynamics for heavy particles in
a stage beyond semiclassical approximation and propose a
method to remove the singularity in a tractable manner.

This paper is organized as follows. In Sec. II, we analyze
the mathematical mechanism for quantum diffusion to smooth
the semiclassical divergence within the ADF formalism. Next
in Sec. III, we develop a tractable method to smooth the
singularity in the one-dimensional case, which brings about
finite valuedness to ADF in a Lorentzian form. The validity of
the basic idea up to this step is numerically examined. Then,
we proceed to a practice to treat many-dimensional systems,
which needs further ideas. Identifying first an important feature
of geometry behind the singularity in Sec. IV, we propose a
practical method to remove the singularity, which is shown
to work quite well. It is numerically demonstrated that the
method can be indeed applied to many-dimensional systems.
This paper concludes in Sec. V.

II. QUANTUM SMOOTHING OF THE SEMICLASSICAL
SINGULARITY WITH THE IMAGINARY DIFFUSION

The main task in this paper is to let the diffusion term
i�
2 ∇2 in Eq. (5) work appropriately. There are several ways

to do so, depending on a numerical method adopted and/or
functional form to represent F (q − q(t),t). A direct way is
to carry out the numerical calculation of ∇2F (q − q(t),t). In
fact, Wyatt and his collaborators have developed an efficient

way to compute the second-order derivative in the Bohmian
dynamics [3–5]. This method should work in our theoretical
scheme as well since we let nearby trajectories run around a
reference path to calculate F (q − q(t),t) in the semiclassical
level. However, it is known that the numerical differential is
not always a stable procedure, particularly in high-dimensional
systems and in short-wavelength regions. Therefore, we take
a little more analytical way.

A. Gaussian moving spline function

Let us consider one-dimensional cases for a while until we
will specify multidimensional extension. We first represent
F (q − q(t),t) of ADF only in a close vicinity of q = q(t)
in a moving basis function G(q − q(t),t), which is peaked
(localized) at q = q(t). We assume in this close vicinity

F (q − q(t),t) � G(q − q(t),t), (12)

but at the peak point q = q(t) it is supposed to satisfy

F (q − q(t),t)|q=q(t) = G(q − q(t),t)|q=q(t) . (13)

Besides, G(q − q(t),t) should behave as a spline function such
that

|G(q − q(t),t)| → 0 as |q − q(t)| becomes large. (14)

Let qnearby(t) be a path running nearby the reference path
q(t) at t , and define σ (t) ≡ qnearby(t) − q(t) and σ (t + �t) ≡
qnearby(t + �t) − q(t + �t). Then, Eq. (12) imposes a condi-
tion on G(q − q(t),t) similar to Eq. (10) as

[qnearby(t + �t) − q(t + �t)]1/2

×G(q − q(t + �t),t + �t)|q=q(t+�t)

� [qnearby(t) − q(t)]1/2G(q − q(t),t)|q=q(t). (15)

Thus, the height of the G function is modulated only by the
distance qnearby(t) − q(t). On the other hand, if viewed from a
point running on a nearby orbit qnearby(t), the reference path
q(t) is regarded as a neighboring path of qnearby(t). Therefore,
the same discussion can be applied to the nearby path with
respect to the reference path. Thus, we may expect

[q(t + �t) − qnearby(t + �t)]1/2G(qnearby(t + �t)

− q(t + �t),t + �t)

� [q(t) − qnearby(t)]1/2G(qnearby(t) − q(t),t). (16)

Those G functions that satisfy these conditions can be
constructed as follows: Consider a time-dependent Gaussian
function of the form

G(q − q(t),t) =
(

2

π

)1/4

g(q(t)) exp{−(γ (t))[q − q(t)]2},

(17)

for which the exponent should satisfy

γ (t + �t) = γ (t)

(
σ (t)

σ (t + �t)

)2

(18)

and the amplitude is to be propagated as

g(q(t + �t)) = g(q (t))
(

σ (t)

σ (t + �t)

)1/2

. (19)
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It is not difficult to see G(q − q(t),t) fulfill the above three
conditions. This Gaussian is valid as a local approximation
to F (q − q(t),t) only in the corresponding local area, and its
norm is conserved in the sense that∫

dq|G(q − q(t + �t),t + �t)|2 =
∫

dq|G(q − q(t),t)|2.
(20)

Note that both γ (t) and g(q(t)) may be complex valued.

B. Quantum diffusion

Operation of the integral kernel of free-particle propagation
exp[ i�

2 �t∇2] onto a Gaussian function, that is,

exp

[
i�

2
�t∇2

]
f (q) =

(
m

2πi��t

)1/2 ∫ ∞

−∞
dy

× exp

[
im(q − y)2

2��t

]
f (y) (21)

can be treated analytically, an important consequence being
that a Gaussian remains Gaussian. We next consider this
propagation of the quantum diffusion to the function of
Eq. (17). To do so, we beforehand apply the momentum
gradient term exp[− 1

2 (∇p)�t] as

Gmg(q − q(t + �t),t + �t)

= exp

[
−1

2
(∇p)�t

]
G(q − q(t),t)

=
(

2

π

)1/4

g(q(t))
(

σ (t)

σ (t + �t)

)1/2

× exp{−[γ mg(t + �t)][q − q(t + �t)]2}, (22)

where

γ mg = γ (t)

(
σ (t)

σ (t + �t)

)2

(23)

as we saw above in Eqs. (18) and (19). Then, the quantum
diffusion gives rise to

G(q − q(t + �t),t + �t)

= exp

[
i�

2
�t∇2

]
Gmg(y − q(t + �t),t + �t)

=
(

2

π

)1/4

g(q(t))
(

σ (t)

σ (t + �t)

1/γ mg

1/γ mg + i2��t/m

)1/2

× exp

[
− 1

1/γ mg + i2��t/m
[q − q(t + �t)]2

]
, (24)

which gives

1

γ (t + �t)
= 1

γ mg
+ i

2��t

m
(25)

and

g(q(t + �t)) = g(q(t))
(

σ (t)

σ (t + �t)

1/γ mg

1/γ mg + i2��t/m

)1/2

.

(26)

C. Inverse complex exponents and dynamics

The above analysis, particularly Eq. (24), suggests that
G(q − q(t),t) can be more conveniently expressed as

G(q − q(t),t)

=
(

2

π

)1/4

g(q(t)) exp

[
− 1

c(t) + id(t)
[q − q(t)]2

]
, (27)

with both c(t) and d(t) being real valued. Equation (23) gives
a recursion relation for c(t)

c(t + �t) = c(t)

(
σ (t + �t)

σ (t)

)2

(28)

and Eq. (25) gives rise to

d(t + �t) = d(t)

(
σ (t + �t)

σ (t)

)2

+ 2��t

m
. (29)

As seen in these expressions, their roles are summarized as
follows: (1) c(t), the real part of 1/γ (t), is responsible only
for the WKB (semiclassical) flow. (2) d(t), the imaginary part
of 1/γ (t), is responsible for quantum diffusion and also its
coupling with the WKB flow. Note that the Planck constant
appears only in d(t).

The difference equation for d(t) in Eq. (29) becomes
difficult to treat numerically near points of σ (t) = 0, which
are the singular points in the semiclassical ADF. Besides,
other types of difference equations such as Eq. (29) can result
depending on the operator ordering when Eq. (5) is represented
in the Trotter decomposition. For instance, while the operator
ordering of Eq. (6) gave (29), Eq. (7) gives

d(t + �t) =
(

d(t) + 2��t

m

)
σ (t + �t)2

σ (t)2
. (30)

However, such dependence on the operator ordering can
be eliminated by reducing the difference equations into
differential equations taking a limit of �t → 0. For d(t), we
have

ḋ(t) = 2
σ̇ (t)

σ (t)
d(t) + 2�

m
, (31)

where the dot above the symbols indicates the first-order time
derivative. Obviously, for c(t) we have

ċ(t) = 2
σ̇ (t)

σ (t)
c(t). (32)

We next analyze the singularity with these differential
equations.

D. Analysis on the removal of singularity by quantum diffusion

As shown in Eq. (20), G(q − q(t),t) in the level of
momentum gradient conserves the norm up to the phase. It
is obvious that the kernel operation in Eq. (21) also conserves
the norm of a wave function applied. Therefore, G(q − q(t),t)
should conserve the norm in the time propagation. We may
hence set that G(q − q(t),t) is normalized to unity without
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loss of generality. Then, it can be written as

G(q − q(t),t) =
(

2

π

)1/4

[c(t)]1/4[c(t) + id(t)]−1/2

× exp

[
− 1

c(t) + id(t)
[q − q(t)]2

]
, (33)

in which the height should be chosen to fulfill the condi-
tion (13), that is,(

2

π

)−1/4

F (q − q(t),t)|q=q(t) = [c(t)]1/4[c(t) + id(t)]−1/2

≡ X(t). (34)

In Eq. (33), G(q − q(t),t)|q=q(t) and F (q − q(t),t)|q=q(t)

as well seem to have a divergence in their amplitudes X(t),
when both c(t) and d(t) happen to be zero. Hence, it is crucial
to confirm that such a divergence is smoothed away and does
not actually appear. Let us concentrate a time t∗, at which
σ (t∗) = 0. Then, the differential equation for c(t) gives

c(t) = c(0)

σ (0)2
σ (t)2 (35)

and hence c(t∗) = 0 naturally follows. On the other hand, the
differential equation for d(t) [Eq. (31)] may be transformed
by setting

d(t) = σ (t)2f (t)

to

ḟ (t) = 2�

σ (t)2
(36)

(m = 1 as usual.) Let us expand σ (t) around the singular time
as

σ (t∗ + ε) = σ1ε + σ2ε
2 + σ3ε

3 + · · · (37)

for a small time increment ε. Then, a simple analysis gives

f (t∗ + ε) = − a

σ 2
1

1

ε
− 2a

σ2

σ 3
1

ln ε − 2a
σ3

σ 3
1

ε − · · · + const,

(38)

with a = 2�/m, giving rise to

d(t∗ + ε) � −2�ε. (39)

Therefore, it is in fact expected that c(t) and d(t) approach
simultaneously zero as σ (t) becomes zero (|ε| → 0), and
the singularity seems to remain. However, from Eq. (35) we
observe

c(t∗ + ε) � c(0)

σ (0)2
σ1(t∗)2ε2, (40)

and, due to the difference in the rates of approaching zero
for c(t∗ + ε) [Eq. (40)] and d(t∗ + ε) [Eq. (39)], the zero
in the denominator of X(t) is actually canceled [to be
shown explicitly in Eq. (45)]. This is the mechanism of a
manner how the semiclassical divergence due to c(t∗) = 0 is
mathematically suppressed by d(t∗) = 0.

To be a little more precise, we write how the amplitude
part of F (q − q(t),t) behaves near t = t∗. Representing the

denominator in the polar representation as

c(t) + id(t) = reiθ , (41)

we rewrite X(t) as

X(t) =
(

c(t)

c(t)2 + d(t)2

)1/4

exp

(
−i

θ (t)

2

)
. (42)

Then, we study the dynamics nearby a singular point at time
t = t∗ + ε. Then, it holds that

tan θ (t∗ + ε) = d(t∗ + ε)

c(t∗ + ε)
� −2�ε

c(0)
σ (0)2 σ1(t∗)2ε2

→
{ ∞ for ε < 0,

−∞ for ε > 0.
(43)

This implies that the angle passes across π/2 smoothly through
the singular point with the phase

θ (t∗) → π

2
+ nπ, (44)

where tan θ = d(t)/c(t). Thus, we have

X(t∗) →
[

c(0)
σ (0)2 σ1(t∗)2

4�2

]1/4

exp
(
−i

π

4

)

=
[

c(0)
σ (0)2

4�2

]1/4

exp
(
−i

π

4
+ i

nπ

2

)
σ1(t∗)1/2, (45)

where the phase proceeds continuously and monotonically,
and n in this expression represents the number for a trajectory
to pass across the zeros of σ (t).

III. LORENTZIAN FORM FOR ADF AMPLITUDE

We proceed further to find a tractable method to remove the
singularity. Again, we first consider a one-dimensional case.
Extension to multidimensional cases will be made in the next
section.

A. Lorentzian form of the amplitude

Along a reference path q(t), we study X(t) of Eq. (34),
which is rewritten in the form

X(t) =
(

1

c(t)1/2 + id(t)/c(t)1/2

)1/2

. (46)

Recalling σ (t) = qnearby(t) − q(t) and the relation of Eq. (35),
Eq. (46) is further rewritten as

X(t) = 1

A
1/2
0

(
1

σ (t) + iη(t)

)1/2

, (47)

where

η(t) = A0
d(t)

c(t)1/2
= B0

d(t)

σ (t)
(48)

with

A0 = c(0)1/2

σ (0)
and B0 = σ (0)2

c(0)
. (49)
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η(t) is obviously responsible for the removal of singularity at
a time of q(t) = qnearby(t) [or σ (t) = 0]. Our goal is thus to
determine η(t).

After the manner of Eq. (10), we write the conservation rule
for the quantum ADF as

[σ (t + �t) + iη(t + �t)]1/2F (q − q(t + �t),t

+�t)|q=q(t+�t)

= [σ (t) + iη(t)]1/2F (q − q(t),t)|q=q(t). (50)

The amplitude of ADF is thus modulated not only by σ (t),
which represents the path density surrounding a reference
path, but also η(t), through which quantum kinematic diffusion
couples with σ (t) dynamics. Even if the nearby dynamics σ (t)
is constant in time or happens to be zero, η(t) keeps affecting
the absolute height of the quantum wave function as shown in
Eq. (59). Also, since σ (t) in one dimension is just a distance
in real-valued configuration space between the reference path
and a nearby one, iη(t) may have an analogous interpretation
as imaginary distance or imaginary deviation. [σ (t) + iη(t)]1/2

serves as a square root of the measure for integration associated
with the classical path [q(t),p(t)]. We will discuss this aspect
elsewhere.

Since η(t) is proportional to the Planck constant, through
d(t) in Eqs. (48) and (31), the � dependence of the amplitude
is now revealed to be

X(t) ∼
(

1

σ (t) + iC(t)�

)1/2

, (51)

where both σ (t) and C(t) can be always chosen to be free of
�. Note also that we have not used a perturbation expansion
of the wave function with respect to �. Thus, this dependence
on � must be generic. Equation (51) should be compared with
the semiclassical kernel (in one dimension), for example, the
amplitude of which is totally different as seen in [6–9]

K(qf ,qi,t) ≡ 〈qf | exp

[
− i

�
Ĥ t

]
|qi〉

� (2π�)−1/2

∣∣∣∣∂qf

∂pi

∣∣∣∣
− 1

2

exp

[
i

�
S(qf ,qi,t) − iπλ

2

]
,

(52)

where λ is the Maslov index in this representation. It is
anticipated that the amplitude of the form of Eq. (51) may have
a significant contribution to energy quantization in a large limit
of �. Indeed, it is known that phase quantization alone does not
reproduce the quantum eigenvalues in a large-� limit [10,11].
On the other hand, it is obvious that the factor (2π�)−1/2 in
Eq. (52) can modulate the spectral height but should have no
effect on the spectral positions. Therefore, the � dependence of
the amplitude factor in Eq. (52) is not theoretically sufficient.
Application of the quantum ADF having Eq. (51) to energy
quantization is under way.

B. A Wronskian relation for σ (t) and η(t)

To determine η(t), let us define a function

ς (t) ≡ d(t)

σ (t)
= η(t)

B0
. (53)

Using Eqs. (31) and (32), we have

d

dt
ς (t) = σ̇ (t)

σ (t)
ς (t) + a

σ (t)
(54)

(a = 2�/m), which is rearranged to a Wronskian relation

σ (t)ς̇(t) − σ̇ (t)ς (t) = a. (55)

This is what we really need to solve.
The most important role of η(t) should be played when

σ (t) = 0. Therefore, let us consider the behavior of η(t) at a
time t∗:

σ (t∗) = 0. (56)

Under this condition we have

ς (t∗) = − a

σ̇ (t∗)
, (57)

and rendering this value back into Eq. (55), we see

ς̇ (t∗) = σ̇ (t∗)

σ (t∗)

(
− a

σ̇ (t∗)

)
+ a

σ (t∗)
= 0. (58)

Thus, it turns out that the absolute value of ς (t) [and η(t)]
becomes extremum at the zeros of σ (t).

Another special case, which serves as a test system to
examine the validity of the Wronskian relation, is a system
of no potential and the deviation vector lies on the trajectory,
with σ̇ (t) = 0 always. Then, we see

η(t)

B0
= ς (t) = a

σ (0)constant
t + const. (59)

This result reproduces the free-particle Gaussian wave packet
exactly.

A straightforward approximation to solve the Wronskian
relation is shortly described in Appendix A.

C. Rescaling procedure of nearby trajectories

As shown in paper I [1], the nearby orbit can be repositioned
in phase space in a way to conserve the value of the momentum
gradient for a reference path [q(t),p(t)]:

∂p

∂q
� pnearby(t) − p(t)

qnearby(t) − q(t)
= [pnearby(t) − p(t)] × A

[qnearby(t) − q(t)] × A
, (60)

which renews [qnearby(t),pnearby(t)] to

qnew
nearby(t) = q(t) + [qnearby(t) − q(t)] × A (61)

and

pnew
nearby(t) = p(t) + [pnearby(t) − p(t)] × A. (62)

The Wronskian relation should be accordingly modified as

σnew(t) + iηnew(t) = [σold(t) + iηold(t)]A, (63)

where the left-hand side includes the rescaled quantities.
Thus, we can improve the values of [σ (t),η(t)] when nearby
paths deviate farther from the reference path. This rescaling
procedure will be actually applied and verified in Sec. III D.

012109-5



KAZUO TAKATSUKA AND SATOSHI TAKAHASHI PHYSICAL REVIEW A 89, 012109 (2014)

FIG. 1. (Color) Snapshot of the real part of FQ (red curve)
and ADF (green curve) wave packets after about 3.5 oscillations
as a function of the coordinate x (in atomic units). In the inset,
the corresponding semiclassical ADF (green curve) is compared
with the FQ (full quantum) result (red curve), which are both
taken from paper I. It is confirmed from both results that some
of the strongly divergent parts have been clearly suppressed by
incorporating quantum diffusion via the Wronskian relation.

D. Numerical verification of the idea

Before proceeding to multidimensional extension of the
above idea, we here verify how practically both the Lorentzian
and Wronskian work in a one-dimensional system. Wave-
packet dynamics on the following Morse potential is examined:

V (q) = De[1 − e−α(q−qe)]2, (64)

where m = 1.165 × 105, De = 0.05717, qe = 5.039, and α =
0.9830 in atomic units [12,13]. The same system with the
same initial conditions as that in paper I [1] is adopted here,
which was used to test the semiclassical ADF. It has been
already confirmed that full quantum wave packets are very
well reproduced by the semiclassical ADF that takes account
of only momentum gradient, except in spatial regions near
singular points (caustics) [1].

In Fig. 1 are presented snapshots of propagated wave
packets with the two methods after about 3.5 oscillations:
one in the red curve has been obtained with full quantum
(FQ) calculation in terms of the symplectic integrator fast
Fourier transform (FFT) method [14], while the wave packet
given by the present ADF (termed as quantum ADF) is
represented in the green curve. The initial wave function is
given as a coherent-state wave packet of p0 = 0, q0 = 4.535,
E0 = 0.02342 (in a.u.), and � = 1.0. The values of the ADF
are calculated at equally spaced grid points at t = 0, which are
propagated along classical trajectories starting from individual
initial coordinates and the same p0 = 0. At any time step, the
global ADF wave function is reconstructed by summing up
X(t) of the trajectories found within each bin. The number
of trajectories used is 10 000, each of which is accompanied
with a nearby trajectory running close to it. Rescaling of the
nearby path is performed when σ (t) becomes larger than
a predetermined threshold value ζ [set to ζ = 2.0 × σ (0)
here]. In the inset of Fig. 1, the semiclassical ADF of

paper I is reproduced, in which two points of divergence
are apparent. On the other hand, the ADF treated as above
with the quantum diffusion demonstrates that agreement of
the real part of wave packets is excellent, although there
remain a few spatial regions where the smoothing is not
enough. It is confirmed, however, that the divergence has been
certainly suppressed by incorporating quantum diffusion via
the Wronskian relation, leading to a better description of the
wave packet. We therefore may judge that the theory is worth
extending to multidimensional systems.

IV. MULTIDIMENSIONAL DYNAMICS

We next consider a multidimensional extension of the
above-developed quantum approximation. We first formulate
a formal theory and then investigate geometrically and numer-
ically to see how the formal theory can be approximated in
actual calculations.

A. Formal theory

Let [q0(t),p0(t)] be a path along which the momentum
gradient and quantum diffusion are to be considered. To
represent the deviation determinant explicitly, we assume
appropriate nearby paths [QI (t),PI (t)] (I = 1, . . . ,N), run-
ning on a prespecified action plane S with appropriate initial
conditions. Their deviation vectors are denoted as

�QI (t) = QI (t) − q0(t). (65)

For each of them, let eI be a unit vector parallel to �QI such
that

�QI = �QI eI , (66)

and these are assumed to be orthogonal

eI · eJ = δIJ . (67)

It is further assumed that these coordinates satisfy

∂2S

∂QI∂QJ

= ∂PI

∂QJ

= ∂PJ

∂QJ

δIJ , (68)

which indicates the action function S is locally separable with
respect to this coordinate system and the higher-order terms
such as

∂

∂QI

(
∂PI

∂QJ

)
(69)

must be very small.
Then, Eq. (5) is written as

F (Q − Q(t + �t),t + �t)

� exp

[ ∫ t+�t

t

dt
∑

J

(
−1

2

∂PJ

∂QJ

+ i�

2

∂2

∂Q2
J

)]

×F (Q − Q(t),t) (70)

for a short period �t, and due to the property of Eq. (68) one
may approximately factor Eq. (70) to a product form

F (Q − Q(t + �t),t + �t)

�
∏
J

exp

[∫ t+�t

t

dt

(
−1

2

∂PJ

∂QJ

+ i�

2

∂2

∂Q2
J

)]

×F (Q − Q(t),t). (71)

012109-6



TOWARDS MANY-DIMENSIONAL . . . . II. BEYOND . . . PHYSICAL REVIEW A 89, 012109 (2014)

As in the one-dimensional case [Eq. (12)], we prepare a
Gaussian function to approximate F (Q − Q(t),t) only in the
close vicinity of Q = Q(t). Making use of the separable form
of Eq. (71) for a short-time interval, we can construct the
following Gaussian function:

G(Q − Q(t),t) =
(

2

π

)N/4∏
J

cJ (t)1/4

[cJ (t) + idJ (t)]1/2

× exp

[
− 1

cJ (t) + idJ (t)
[QJ (t) −Q0

J (t)]2

]
(72)

as a moving basis. Then, as in the one-dimensional case we
have

ċJ (t) = 2
σ̇J (t)

σJ (t)
cJ (t) (73)

and

ḋJ (t) = 2
σ̇J (t)

σJ (t)
dJ (t) + 2

�

mJ

(74)

with mJ = 1.

In each instantaneous coordinate satisfying Eq. (68) we can
apply the theory developed for one-dimensional systems in
the preceding section. Then, the height of the ADF function is
given as

X(t) =
∏
J

cJ (t)1/4

[cJ (t) + idJ (t)]1/2

= A
−N/2
0

∏
J

[σJ (t) + iηJ (t)]−1/2 , (75)

where again

ηJ (t) = B0
dJ (t)

σJ (t)
= B0ςJ (t) (76)

with A0 = cJ (0)1/2/σJ (0) and B0 = σJ (0)2/cJ (0). It is conve-
nient to choose the initial conditions so that they give common
values of A0 and B0.

Note that this divergence-free amplitude factor is given in a
short interval of [t,t + �t], and the long-time propagation of
F (Q − Q(t),t) along the reference path q0(t) is obtained by
the recursive relation

F (Q − Q(t + �t),t + �t)|Q=Q(t+�t)

= X(t + �t)

X(t)
F (Q − Q(t),t)

∣∣∣∣
Q=Q(t)

. (77)

As in the case of momentum gradient only (see paper I [1]),
both X(t + �t) and X(t) are to be determined within the same
time interval [t,t + �t]. Therefore, it can be written in more
general fashion as

F (Q − Q(t + 2�t),t + 2�t)|Q=Q(t+2�t)

= X(2)(t + 2�t)

X(2)(t + �t)

X(1)(t + �t)

X(1)(t)
F (Q − Q(t),t)

∣∣∣∣
Q=Q(t)

,

in which X(1)(t + �t) and X(1)(t) are determined in [t,t + �t],
while X(2)(t + 2�t) and X(2)(t + �t) are given in the next

interval [t + �t,t + 2�t]. Therefore, X(1)(t + �t) can be
different from X(2)(t + �t). Likewise, we can extend the
procedure to a finite time as

X(t + n�t,t) = X(n)(t + n�t)

X(n)[t + (n − 1)�t]
· · ·

× X(2)(t + 2�t)

X(2)(t + �t)

X(1)(t + �t)

X(1)(t)
, (78)

which serves as a kernel along a classical path since X is
independent of the initial amplitude of F (Q − Q(t),t). After
all, we have

F (Q − Q(t + n�t),t + n�t)|Q=Q(t+n�t)

= X(t + n�t,t)F (Q − Q(t),t). (79)

In this regard, the dynamics of ADF is akin to the Bohmian
rather than to that of the Feynman kernel.

B. Practical approximations

The practical aspects of the above formalism are surveyed
with numerical examples in the rest of this paper. The most
serious challenge here is how to choose the coordinate systems
that give independent deviation vectors {�QJ |J = 1, . . . ,N}
satisfying the diagonalization condition of an action function
as in Eq. (68). This is not an easy task.

The following modified Hénon-Heiles Hamiltonian

H (x,y,px,py) = p2
x

2m
+ p2

y

2m
+ x2 + y2

2

+ x2(0.6y2 + y) + 1

3
y3(0.2y − 1) + 0.1x

(80)

is chosen as the first example with m = 1. In the present
numerical tests, we check if the time evolution of the height of
a wave packet is reproduced. In contrast to the case of Fig. 1,
we do not intend to generate a global wave packet, but rather
the height of an ADF at a space-time point is tracked along a
single path. The results are compared with the full quantum
counterparts. Such a pointwise comparison imposes a really
stringent test. In the corresponding full quantum calculations,
a wave packet is propagated with an initial form

F (q − q(0),0) =
(

1

π�

)1/2

exp

[
−(q − q0) · M · (q − q0)T

+ i

�
p0 · (q − q0)

]
, (81)

where

M =
(

1
2�×w

0

0 1
2�×w

)
, (82)

q − q0 = (x − x0,y − y0)T , and p0 = (px0 ,py0 )T . At each
time step, we track the wave-packet height along the corre-
sponding classical trajectory with the energy E � 0.10.

Here, in this test we check the performance of ADF in
a situation close to the semiclassical limit, and the Planck
constant is set to � = 0.001, while the parameter is set to
w = 5 to let the Gaussian have slightly broad width. It is
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generally impossible to attribute the entire dynamics of a wave
function to a “single” classical path since it is generally a
coherent sum of components coming from many other action
surfaces. We should also note that only the absolute values
of the wave-packet height are plotted for comparison because
such a small-� value causes highly oscillatory behavior in
both the real and imaginary parts individually. However, it has
been already confirmed that agreement of phase is very good
between ADF and FQ, although not shown here.

1. A naive approximation with use
of straightforward orthogonalization

We first show the results by a naive application of the
Wronskian relation to a test two-dimensional system. To
perform theoretically correct treatment of the Wronskian
relation, as described above in the preceding section, we
need to find nearby paths [QI (t),PI (t)] (I = 1, . . . ,N) that
satisfy the action-diagonalization condition of Eq. (68) and the
orthogonality condition of Eq. (67). However, it is practically
difficult to find such nearby paths at each time since we
usually prepare only one set of nearby orbits (N trajectories)
for a single reference path, whose deviation vectors do not
usually satisfy those conditions. Therefore, we first see what
will result if we ignore the action-diagonalization condition.
That is, we impose only the orthogonality condition on the
deviation vectors at each time step, which is carried out with the
Gram-Schmidt method. The value of the deviation determinant
is kept invariant by this orthogonalization.

Suppose we have obtained such mutually orthogonal
deviation vectors �QJ (t), their associated momenta �PJ (t),
and the corresponding deviation forces �FJ (t). Note that these
vectors should depend on the choice of the initial vector in
the Schmidt orthogonalization procedure, and accordingly so
does the resultant value of X(t). To obtain ηJ (t) for each
σJ (t), the information of σ̇J (t) and σ̈J (t) are required (see
Appendix A), which should be calculated through �PJ (t) and
�FJ (t), respectively. However, since �PJ (t) and �FJ (t) are
not generally parallel to �QJ (t), these are projected onto the
unit vector of eJ as defined in Eq. (66). Thus, we have a set of
{σJ (t),σ̇J (t),σ̈J (t)} in hand to solve the Wronskian relation.

In Fig. 2, we show ADF heights obtained with two different
sets of initial orientations of the deviation vectors but both
having a same σ (0). Initial orientations are randomly chosen
by rotations relative to the x and y axes. It is seen in Fig. 2 that
the resultant ADF heights (in green solid curves) are very close
to the quantum counterpart (in red broken curves). However,
at some places the |X(t)| is still too high, although the
singularities have been all suppressed. This behavior suggests
that |ηJ (t)| in the direction of �QJ (t) → 0 is not large enough.

The quantum ADF has thus dramatically improved the
semiclassical ADF, and they are already good enough
in the practical applications. Nonetheless, we keep exploring
the geometry of the semiclassical singularity to take more
proper account of quantum nature.

2. Collapse of the deviation-vector manifolds

In view of the above finding that the resultant X(t) depends
considerably on the choice of initial deviation vectors, we
need to survey the geometry of manifolds composed of those

FIG. 2. (Color) Comparison between the FQ (red curve) and ADF
(green curve ) wave-packet heights is shown for two different spatial
orientations of the initial deviation vectors but having the same σ (0).
It is confirmed that the time evolution of the wave-packet height on
the reference classical trajectory is considerably dependent on the
initial orientation.

deviation vectors by increasing the number of the initial sets
of them. As in the above section, we calculate the ADF height
in the same system as follows: (i) At t = 0, several nearby
trajectories more than two sets are prepared with different
orientations with respect to the original (xy) coordinate
system, but all having a common value of σ (0). (ii) All
the nearby and the reference trajectories are launched with the
common initial momentum to represent a same coherent-type
Gaussian wave packet. (iii) At each time step, the lowest height
out of the resultant set of X(t)′s is adopted as ADF. The ADF
height thus obtained is compared with the FQ counterpart in
Fig. 3. In this figure, we applied this “variational” approach

FIG. 3. (Color) The lowest ADF height obtained from seven
initial orientations of the deviation vectors is plotted at each time step
(in green curve). Red curve represents the corresponding FQ height.
The variational approach has dramatically improved the description
of wave packet except for the behavior near t = 8 and 19.5, when
near degeneracy in σ (t) = 0 is observed.
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FIG. 4. (Color) (Leftmost) Seven deviation vectors to be denoted
as �Q1(0) (red arrows) and those as �Q2(0) (green arrows) are
prepared at t = 0 to form tiny squares on the reference trajectory.
(Middle and rightmost) Time evolution of all nearby and the reference
trajectories leads to collapse of the manifold, whose direction is found
to be the same irrespective of the initial choice of deviation vectors.

with seven initial sets of the deviation vectors. It is found
that description of the wave-packet height is dramatically
improved by this procedure (compare each panel of Fig. 2 with
Fig. 3).

The above variational approach is not necessarily practical,
in particular, in systems of higher dimensions. However, the
method should certainly reflect a variational nature behind
the geometry of nearby orbits. To identify it, let us track the
history of seven sets of deviation vectors [�Q1(t),�Q2(t)],
which were used in the calculation of Fig. 3. In Fig. 4, selected
snapshots of the evolving deviation vectors are picked up along
the reference path. They are as follows: at t = 0 (left), at a
time hitting a caustic (right), and at some time in-between
(center). It is seen that the manifold expanded by the initial
deviation vectors begins to become elliptic and collapses
(flattens) at a singular point. It is in the direction of zero
diameter of this manifold that semiclassical singularity takes
place and an appropriate value of η(t) is essentially required.
Incidentally, note that the collapse of the surrounding manifold
of a reference path is a property of each reference path.
Hence, the orientation of collapsing vector and its orthogonal
complementary subspace do not depend on the choice of the
initial deviation vectors, provided that nearby orbits lie close
enough to the reference path.

To estimate the appropriate value of η(t), we at least need
to know the true direction that makes σ (t) zero. In addition,
the correct value of σ̇ (t) [when σ (t) = 0] in this true direction
is necessary as is indicated in Eq. (57). On the other hand,
any deviation vector that passes across the collapsed manifold
can bear zero length, even if it does not lie on the true
collapsing vector. For such a vector, its direction deviates from
the true one and makes a skew angle (smaller than the right
angle) with the collapsed manifold (collapsing hyperplane).
Therefore, those false vectors are expected to pass through
the collapsing manifold with a higher speed than the true one,
and it is anticipated that |σ̇ (t)| at time σ (t) = 0 should be
larger than that of the true deviation vector. Hence, due to the
relation of Eq. (57), |η(t)| tends to be estimated smaller than
the correct one. Indeed, in the above example with use of the
seven sets of deviation vectors, one of the deviation vectors
has zero length and lies in the direction perpendicular to the
survived manifold (see the rightmost figure in Fig. 4), thus
making |η(t)| at caustics largest.

3. Search for the true collapsing direction in terms of the largest
length of momentum gradient vector

We next attempt to devise a systematic method to detect
the true collapsing direction of the manifold of nearby orbits
using only a small number of sets, hopefully one set, of nearby
trajectories. To be more precise, we try to find a way to
detect the direction in which the Wronskian relation may be
correctly applied. We assume that the collapsing direction is
one dimensional, that is, the zero of the deviation determinant
σ (t) is not degenerate.

First, we note that at a caustic point the magnitude of
the momentum gradient in the true deviation direction, say,
�etrue(t), is divergent. As shown in Eq. (53) of paper I [1],
σ̇true(t)/σtrue(t) is equivalent to the momentum gradient at t

in the direction �etrue(t). Therefore, it is anticipated that if
one keeps tracking the direction in which |σ̇J (t)/σJ (t)| takes
the largest value, it should smoothly coincide with the true
collapsing direction. Hence, we attempt to use a condition∣∣∣∣ σ̇J (t)

σJ (t)

∣∣∣∣ to be maximized (83)

in order to find the appropriate �Qtrue(t) and its associated
momentum �Ptrue(t). Note that �Ptrue(t) is parallel to this
collapsing direction.

Following the above guiding principle, we devise a method
to apply this variational principle to a two-dimensional system.
An extension to many-dimensional systems will be discussed
later. Suppose we have a set of two nearby orbits [q1(t),p1(t)]
and [q2(t),p2(t)] for a reference path [q0(t),p0(t)]. To find
a direction that satisfies the above condition, we linearly
transform the deviation vectors with an angle parameter ϕ:

�Q1(t) = (cos ϕ)�q1(t) + (− sin ϕ)�q2(t), (84)

�Q2(t) = (sin ϕ)�q1(t) + (cos ϕ)�q2(t), (85)

where �qJ (t) = qJ (t) − q0(t). �Q1(t) and �Q2(t) are re-
quired to be mutually orthogonal although the original �qJ (t)
are not necessarily orthogonal to each other. In this coordinate
transformation, we choose an orthogonal matrix since we
want to conserve the value of σ (t). Deviation vectors and
forces for the corresponding momentum are also transformed
with the same transformation matrix, leading to �PJ (t) and
�FJ (t). As before, σ̇J (t) and σ̈J (t) are obtained by projecting
those vectors onto the corresponding �QJ (t), respectively.
Explicit expressions for the optimized value of ϕ are given in
Appendix B.

We numerically apply this variational principle to the
system represented in Eq. (80). Only one set of nearby orbits
is randomly selected and tracked. In Fig. 5, the resultant
ADF height is compared with the FQ counterpart. It is seen
that agreement is excellent. (Note a possibility that the full
quantum calculation using the grid FFT method may miss
the true kinks that should appear in Fig. 5.) We have also
confirmed that �P(t) associated with �Q(t) = 0 is indeed
parallel to the the collapsing direction [more precisely, parallel
to �Q(t∗ + ε) with an infinitesimal ε for �Q(t∗) = 0], which
supports numerically that the true collapsing direction has been
well detected by this variational method. Comparing with the
corresponding semiclassical ADF in the lower panel of Fig. 5,
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FIG. 5. (Color) (Upper panel) ADF height obtained with use of
the maximization condition of |σ̇ /σ | (green solid curve) is compared
with the FQ counterpart (red dashed curve) for the system of Figs. 2
and 3 with an extension to a longer time. In the lower panel, the
semiclassical ADF height is reproduced for comparison (blue solid
curve), in which many divergent points are seen.

we immediately realize that the present quantum ADF is in a
different stage from that of the semiclassical version.

4. Application to many-dimensional systems

Finally, we attempt to apply the above procedure to mul-
tidimensional systems. Here again, we start with σ (t), which
is invariant with respect to a coordinate transformation. Let
us take an arbitrarily chosen plane expanded by two deviation
vectors �qI (t) and �qK (t). Transformation in N -dimensional
systems is performed with the product of two-by-two rotation
matrices including a rotation angle in a plane made of two
vectors ⎛

⎜⎜⎜⎜⎜⎜⎜⎝

. . .
cos ϕIK . . . − sin ϕIK

. . .
sin ϕIK . . . cos ϕIK

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (86)

For �qI (t) and �qK (t), parameter ϕIK is calculated in the
same way as performed in the two-dimensional case. This
leads to the optimal direction within that particular plane.
This two-by-two procedure is repeated until the convergence is
attained, finally leading to σJ (t) in the collapse direction. After
finding such a collapsing direction, we simply orthogonalize
all the remaining deviation vectors �qI (t) using the Gram-
Schmidt method. Next, we solve the Wronskian relation in
each direction (coordinate) to attain σJ (t) + iηJ (t). Even the
simple orthogonalization procedure should work accurately

FIG. 6. Height of the quantum ADF obtained for a 100-
dimensional test system. The height is dramatically lowered by the
quantum diffusion. Note that in this test the initial wave-packet height
is set to unity. In the inset, the corresponding semiclassical result is
shown (note the scale).

as suggested in Fig. 2, unless σJ (t) in a direction J thus
determined happens to be very small.

A numerical example is shown in Fig. 6. In this test, a time
evolution of the ADF height in a 100-dimensional system,
whose Hamiltonian is

H =
N∑
j

p2
j

2m
+

N∑
j

ωj

2
(qj − R0j )2

−
N−1∑

j

Dj (qj+1 − qj ) exp[−ζj (qj+1 − qj )], (87)

is tracked, where N = 100, m = 1, R0j = 2.0 × j , and ωj =
ω0 × (1.013)j with ω0 = 1.0 (ω100 � 3.6387). The Planck
constant is set to � = 1.0. This Hamiltonian models an energy-
transfer dynamics in linearly chained oscillators. Couplings are
considered only between the neighboring oscillators. Dj = 1.0
and ζj = 0.2 are set to be the same for all the couplings. X(0)
was set to unity in choosing the initial conditions. The time
step in the present ADF calculations is �t = 10−3. As we
have observed in paper I, |X(t)| rises very rapidly since all
the oscillators come to their caustics near the time t = 1. As
shown in the inset of Fig. 6, the height of semiclassical ADF
(neglecting the quantum diffusion) is lifted up to the order
of 1045. On the other hand, the quantum ADF is suppressed
below the order of 109 (see the main panel of Fig. 6). As
noted in paper I, the semiclassical ADF suffers from very
many divergences, although only the spikes of finite height
are seen, which are in fact associated with divergence. This
is because our chosen time interval (actually �t = 10−5 in
semiclassical calculations in paper I) to calculate σ (t) did not
coincide with the exact timings of σ (t) = 0. Nevertheless, it
is extremely interesting that the global features of both ADFs
are seemingly similar to each other in the visual image of the
graphs, although the absolute values are different in the order
of 1035.

In the graph for the quantum ADF, we notice that some
small number of points do not lie on the smooth curve. This
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is mainly due to insufficient convergence in the above two-
by-two search for the maximum value of σ̇J (t)/σJ (t). More
precisely, the insufficient convergence is often encountered
when the deviation matrix has degenerate roots that give
σ (t) = 0, that is, when there are more than one collapsing
direction simultaneously. Such degeneracy is readily detected
by examining the behavior of σ (t) around the timings of
σ (t) = 0. Obviously, we need another strategy to cope with
this situation. Technically, however, such a difficulty can be
avoided with use of the interpolation technique since the global
feature of X(t) is clear and the degeneracy is rather a rare event.

We have thus shown that the quantum ADF can be applied
to systems of large dimensions without divergence.

V. CONCLUDING REMARKS

A theory of many-dimensional real-time quantum dynamics
has been studied in terms of the action decomposed function
(ADF) in this and the preceding companion papers. Following
paper I, in which the time evolution of a wave function
is described in terms of the deviation determinant and its
resulting phases, this paper has been devoted to a study of
the mechanism of quantum diffusion (quantum smoothing)
that removes the semiclassical singularity. The deviation
determinant reflects phase-space dynamics nearby a reference
path, along which an ADF is supposed to be carried. We have
proposed a Lorentzian form of the amplitude factor of ADF,
the real part of which comes from the deviation determinant,
while the imaginary part is proportional to the magnitude of
the Planck constant, thus playing the role of smoothing the
semiclassical singularity in ADF.

It has been found that the length of a deviation vector
and the imaginary part of the Lorentzian mutually couple in
a Wronskian relation. A number of theoretical advantages
of the Wronskian relation have been illustrated in actual
numerical calculations. Among others, it should be stressed
that there is no essential difficulty in practical applications
to many-dimensional heavy-particle systems like those in
chemical reactions.

Finally, we have discussed a quantum mechanical time
propagation of ADF in such a way that the value of it is
carried from a point to another with quantum mechanical
modulation arising from momentum gradient and quantum
diffusion. Those ideas have been verified by comparing the
ADF with the corresponding full quantum wave functions
at each space-time point along classical trajectories. This is
the most stringent test one can impose on this kind of study.
However, what we need in our actual applications are quite
often integrated quantities such as the S matrix and transition
probabilities. The construction of ADF thus far presented in
this paper is not so designed, and pointwise propagation may
not be always useful in actual applications. Extension of the
method in this aspect is under way and will be reported shortly.
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APPENDIX A: SOLVING THE WRONSKIAN

One of the theoretical advantages of the Wronskian relation
is that it can be solved with a local approximation at a given
time t , provided that σ (t), σ̇ (t), and σ̈ (t) are given. This is in
a contrast to the calculations of stability matrix, which need a
continuous integration of the relevant (2N × 2N )-dimensional
ordinary differential equations. First, let us assume that we
have σ (t) at three mutually close time points t−1, t0, t1 as
{σ (t−1) ,σ (t0) ,σ (t1)}. These three points are used to fit with
a sine function

σ (t) = Aσ sin [α (t − t0) + β] (A1)

only in the close vicinity of t = t0. Then, we have σ (t0) =
Aσ sin β, σ̇ (t0) = Aσα cos β, and σ̈ (t0) = −Aσα2 sin β. The
Wronskian relation specifies ς (t) in the form

ς (t) � Bσ cos [α (t − t0) + β] , (A2)

where Bσ is to be determined in the Wronskian relation such
that

σ (t)ς̇(t) − σ̇ (t)ς (t) = −AσBσα = a (A3)

and therefore

Bσ = − a

Aσ α
. (A4)

Note that only the product Aσα is required, but not the
individual terms Aσ and α. Thus, we have

η(t0) = B0ς (t0) = −B0
a

Aσα
cos(β). (A5)

Obviously, the above treatments with sine and cosine functions
are valid only when σ (t0)σ̈ (t0) < 0. In the case of σ (t0)σ̈ (t0) >

0, one can adopt hyperbolic-sine and hyperbolic-cosine func-
tions instead, and the similar procedure may be applied.

In the approximation using the trigonometric functions, it is
readily seen that the singularity is clearly avoided as follows.
At the singular point, let t0 = t∗, and

σ (t∗) � Aσ sin (β) = 0, (A6)

resulting in β = 0. Then,

σ̇ (t∗) = Aσα cos β = Aσα (A7)

and therefore Eq. (A4) gives

Bσ = − a

Aσ α
= − a

σ̇ (t∗)
, (A8)

and Eq. (A2) leads to

ς (t∗) = −Bσ = − a

σ̇ (t∗),
(A9)

which is equivalent to Eq. (57). This suggests a validity of
using the local approximation.
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APPENDIX B: SOLUTION OF THE VARIATIONAL PRINCIPLE WITH |σ̇J (t)/σJ (t)|
The condition of Eq. (83) is formulated as

d

dϕ

(
σ̇J (t)

σJ (t)

)
=

|�QJ (t)|2 d
dϕ

[�QJ (t) · �PJ (t)] − [�QJ (t) · �PJ (t)] d
dϕ

|�QJ (t)|2
|�QJ (t)|4 = 0 (B1)

with the solution being found as

ϕ = − arctan

⎛
⎝a1b3 − a3b1 ±

√
a2

1b
2
3 − 2a1b3a3b1 + a2

3b
2
1 − a1b2a2b3 + a2

2b1b3 + a1b
2
2a3 − a2b1a3b2

(a2b3 − a3b2)

⎞
⎠ , (B2)

where the following quantities are used:

a1 = �q1 · �p1, a2 = −(�q1 · �p2 + �q2 · �p1), a3 = �q2 · �p2,

b1 = |�q1|2, b2 = −2�q1 · �q2, b3 = |�q2|2. (B3)

The ± sign in the square root should be appropriately chosen to pick the maximum value.
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