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We study a quantum theory in terms of action decomposed function (ADF), a class of quantum wave function,
towards many-dimensional applications to quantum dynamics of heavy particles as in chemical reactions. The
equation of motion for the complex-valued amplitude of ADF represents a coupling between the internal diffusive
motion of a wave packet and dynamics of its group velocity in a hierarchical manner ascending from classical
to purely quantum mechanics via semiclassical dynamics. We attempt to solve this equation of motion dividing
it into two stages: a semiclassical level and beyond. In this paper, as the first stage, we develop a semiclassical
approximation in the Lagrange picture of classical phase flow. In the Euler picture (as in the standard WKB
picture), continuous integration of the stability matrix along the paths is required. By adopting the Lagrange
picture, on the other hand, we represent the semiclassical amplitude in terms of what we call deviation determinant,
which can be evaluated readily in many-dimensional systems. Numerical tests show that ADF reproduces quantum
wave packets at each space-time point along classical paths very well. However, the ADF in this stage is not
free of the semiclassical singularity. In other words, the wave functions diverge at turning points or caustics,
depending on the initial conditions chosen. This divergence is known to take place at points where classical paths
smoothly distributed in phase space have “focuses” in configuration space (or momentum space) and reflects an
intrinsic relationship between quantum and classical mechanics. Therefore, it is by studying the mechanism of
removing the singularity that the essential feature of quantum mechanics will be clarified. This aspect will be
discussed in a companion paper [K. Takatsuka and S. Takahashi, Phys. Rev. A 89, 012109 (2014)] as the second
stage of many-body quantum theory.
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I. INTRODUCTION

Asymptotic analysis has revealed that there lies a deep
discrepancy in-between quantum and classical mechanics
reflecting a difference in their mathematical structures [1]. In
particular, the stationary phase approximation (SPA) applied
in reducing the Feynman path integrals to its semiclassical
representation [2,3], under an assumption of small � as in
dynamics of nuclei in molecules, frequently brings about di-
vergence in the amplitude of a semiclassical wave function and
related quantities [2,3]. This divergence is intuitively attributed
to a singular projection of phase-space distribution of classical
trajectories onto configuration space in representing a quantum
wave function. More precisely, the SPA applied to the Feynman
kernel gives, for instance,

K(qf ,qi ,t) ≡ 〈qf | exp

[
− i

�
Ĥ t

]
|qi〉

� (2π�)−N/2

∣∣∣∣∂qf

∂pi

∣∣∣∣
− 1

2

exp

[
i

�
S(qf ,qi ,t) − iπλ

2

]
,

(1)

where qf and qi are the end points of an N -dimensional
classical path generated by a Hamiltonian H for a time t , S

is the classical action integral along the path, and ∂qf /∂pi

is a minor determinant of the so-called stability matrix
[∂(qf ,pf )/∂(qi ,pi)]. The preexponential factor |∂qf /∂pi |−1/2

diverges at every caustic point due to zeros of ∂qf /∂pi ,
whereby the Maslov phase is to be accumulated as much as
−πλ/2 at each passage across zero with λ being the number
of passages. Aside from the singularity, the computation of
the stability matrix along an N -dimensional classical path

needs continuous integration of coupled ordinary differential
equations of 2N × 2N dimensions. Furthermore, to carry
out this integration, one has to calculate an N × N Hessian
matrix (the second-order derivatives) of the potential function
involved, which is not easy to do for complicated potential
functions in high dimensions.

To overcome these difficulties, many works have been
devoted in the long history. A classic approach to deal with
the singularities is the so-called uniform approximation. In
the case where two or more roots coalesce in the stationary
phase conditions applied to oscillatory integrals such as those
involving path summations, one has to include the terms higher
than the second order into the phases [4–8]. This way of
unfolding the singularity is mathematically interesting, but
incorporating higher-order terms one by one is generally
not suitable for many-dimensional applications. We also
recall the higher-order WKB approximations, the Maslov
recursive transport equations of quantum dynamics [1], and a
perturbation theoretic � expansion of the Wigner phase-space
distribution function [9,10]. However, applications of these
recursive and perturbative methods to systems of higher than
two dimensions have not been performed yet.

On the other hand, those singularities as in Eq. (1)
have been removed by various semiclassical methods in
such ways as coordinate transformation [in the so-called
initial value representation (IVR) [11–13]], assuming a po-
tential function to be quadratic everywhere [14], lifting
semiclassical mechanics into phase space [15,16]. Among
others, the IVR and the so-called Herman-Kluk (sometimes
referred to as Heller-Herman-Kluk-Kay) representations [17–
21] are now recognized as practical methods for chemical
reaction dynamics. Furthermore, there have been proposed
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practical approximations to reduce the computational efforts
in multidimensions, including separable approximation for
the prefactor and time averaging in semiclassical molecular
spectra [22–24], prefactor-free semiclassical propagation by
averaging in phase space and in time [25], prefactor-free
semiclassical on-the-fly computation [26], and linearization
approximation to the double phase-space integral expression
of the semiclassical time correlation function, leading to only
a single phase-space expression [27–30] [for an application of
this approximation to devise a practical propagation method
based on the Herman-Kluk propagator (see [31])] along with
an efficient method to accelerate the numerical computations
related to the potential Hessians [32]. Moreover, the Herman-
Kluk propagator has been shown to arise as the lowest-order
term of a series expansion to represent the exact quantum
propagator, either in a perturbative expansion [33–37] or in an
�-series expansion [38–42].

With the advent of current massive parallel computers,
it has become increasingly more feasible to perform the
larger-scale molecular dynamics simulations. In the studies
of real-time chemical dynamics, it is desirable that quantum
dynamics is appropriately described along classically prop-
agated trajectories. Despite the theoretical developments as
above, quantum many-body real-time dynamics is still worth
further study in various aspects. Besides, precise analysis
of the quantum-classical correspondence may be linked to
interpretation and understanding in depth of the essential
features of quantum mechanics that differentiates it from
classical mechanics. In this and companion papers, we study an
approximate quantum theory for many-dimensional real-time
quantum dynamics, by tracking a different route from those
referred to as above. Our proposed dynamics incorporates the
quantum effects without resorting to the � series. It is based on
a propagation of a bundle of classical trajectories rather than
the stability matrix calculation, and hence no computation
of the potential Hessian matrix is demanded [43]. This is
crucial in practice not only for large-dimensional systems
having complicated potential energy functions, but also even in
lower-dimensional ab initio quantum-chemistry calculations
with use of highly correlated electronic wave functions.
Ab initio molecular dynamics, or the first-principles calcu-
lations with classical trajectories on accurate potential energy
surfaces (PES), is now readily applied to chemical dynamics,
thanks to the progress in very accurate quantum-chemical
methodology that successfully provides the analytical ex-
pressions of the energy gradient [44]. On the other hand, it
is sometimes the case that the analytical expressions of the
second derivative for highly accurate ab initio PESs are not
yet formulated.

This work is described in two papers: paper I, this
paper, is devoted to development in the first stage up to the
many-dimensional semiclassics, and paper II, a following
companion paper, proposes a theory to cope with the second
stage beyond semiclassical singularity [45]. In both papers,
we study a quantum wave-packet dynamics in terms of what
we call action decomposed function (ADF). After reviewing
the structure of the equation of motion for ADF, we propose in
this paper a theory in the level of semiclassical approximation
but without using the stability matrix. Being free of the factor
such as |∂qf /∂pi |− 1

2 in Eq. (1), the method can be applied

to many-dimensional systems as exemplified later. However,
this semiclassical ADF is not free of divergence at caustics or
turning points.

In paper II, we proceed to the realm where the singularities
are naturally removed in a tractable manner. The critical notion
behind this procedure is quantum smoothing due to “quantum
diffusion” having an imaginary diffusion constant (implicitly
suggesting a stochastic dynamics behind), which brings an �

dependence into the amplitude of ADF and thereby smooths
the singularity. Since the theory is built in a stepwise manner,
we proceed to the goal verifying the underlying ideas with
numerical examinations in each step.

This paper is organized as follows: We first summarize
in Sec. II the equation of motion for the amplitude factor of
ADF. Section III reviews the ADF in the standard WKB-like
picture, which is based on the Euler picture of classical phase
flow. We then show in Sec. IV how the semiclassical ADF can
be represented in terms of the so-called deviation determinant.
The validity and accuracy of the basic idea are examined in
Sec. V, which also exposes the limitation of the semiclassical
approximation. We demonstrate that large-scale systems are
indeed treated in a tractable manner. The paper concludes in
Sec. VI with some remarks.

II. ACTION DECOMPOSED FUNCTION

A. Definition and equation of motion

Let us begin with the following time- (t-) dependent wave
function:

�(q,t) = F (q,t) exp

(
i

�
S(q,t)

)
(2)

on a point q in configuration space, where S(q,t) is assumed
to satisfy the Hamilton-Jacobi (HJ) equation

∂S(q,t)

∂t
+ 1

2m
[∇S(q,t)]2 + V (q) = 0, (3)

where m collectively represents the masses of particles [46]. In
Eq. (2), exp[ i

�
S(q,t)] is regarded as a transformation function

to determine the unknown function F (q,t). The equation of
motion for this is then given as

∂F (q,t)

∂t
=

(
−p · ∇ − 1

2
(∇ · p)

)
F (q,t) + i�

2
∇2F (q,t),

(4)
where p is a momentum at (q,t) as

p = ∇S(q,t). (5)

We use throughout the paper the mass-weighted coordinates
that scale all the masses to unity (m = 1), and hence
numerically p = v.

Since dynamics arising from the group velocity of �(q,t) is
taken into account by the HJ equation, Eq. (4) is responsible for
representing only the kinematics of the shape-changing motion
inside the wave packet. The first two terms of the right-hand
side of Eq. (4) represent the coupling between the kinematics
and the group motion, and the last one reflects the (quantum)
diffusive motion having a diffusion constant of pure imaginary
value. It is noticed that the “diffusion operator” in Eq. (4) is
of the same form as that of the total kinetic energy operator in
the original Schrödinger equation. However, i�

2 ∇2 in Eq. (4) is
responsible only for kinematics within the wave packet since
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kinetic energy due to the group velocity of external motion of
the packet has already been separated out by the HJ equation.
In other words, the Schrödinger equation collectively treats
the two roles of kinematics in a single Laplacian.

By the way, since we plan to apply the ADF to chemical
dynamics under laser fields, we need to know how the above
equation of motion Eq. (4) should be modified. As shown
in the Appendix, it turns out that the equation of motion is
of the exactly same form in classical electromagnetic vector
fields. This is because the ADF equation arises only from the
kinematic part of the Schrödinger equation. Some preliminary
applications are seen in Ref. [47]. Once one specifies a point
(q,t) on an action surface S(q,t), p(q,t) is also automatically
specified on a classical path due to Eq. (5). Thus, F (q,t) is
determined on a classical trajectory.

B. From Euler picture to Lagrange one:
Simplification of the dynamics

Rewriting Eq. (4) as(
∂

∂t
+ p · ∇

)
F (q,t) = −1

2
(∇ · p)F (q,t) + i�

2
∇2F (q,t),

(6)
we have a time-derivative operator moving along a flow line
defined in the vector field of p(q,t):

D

Dt
= ∂

∂t
+ p · ∇, (7)

and the equation of motion is reformulated as

D

Dt
F (q,t) =

[
−1

2
(∇ · p) + i�

2
∇2

]
F (q,t). (8)

In analogy to fluid dynamics, we refer to the presentation of
Eq. (4) as the Euler picture, while Eq. (8) as the Lagrange
picture. The seeming difference between the two is only
−p · ∇F (q,t), but its consequence is not small. In what
follows, we write F (q,t) as F (q − q(t),t) to note that the
dynamics is described along the classical flow lines q(t).

In practical calculations, the Trotter decomposition

F (q − q(t + �t),t + �t)

� exp

[
−1

2
(∇ · p)�t

]
exp

[
i�

2
�t∇2

]
F (q − q(t),t) (9)

or

F (q − q(t + �t),t + �t)

� exp

[
i�

2
�t∇2

]
exp

[
−1

2
(∇ · p)�t

]
F (q − q(t),t) (10)

can be applied. To reduce possible error in this approximation,
�t should be taken appropriately small. The operator ordering
is somewhat a tedious problem, but our final results do not
depend on it.

C. Hierarchical structure from classical mechanics
to quantum theory

In the dynamics of Eq. (8), we observe a very simple
hierarchical structure from classical to full quantum mechanics
as follows.

Classical flow. First, nullify as the most crude approxima-
tion all the terms in the right-hand side of Eq. (8) as

DF (q − q(t),t)
Dt

∣∣∣∣
q=q(t)

= 0. (11)

Since the time derivative D/Dt is explicitly defined on a
classical trajectory [one of solutions of Eq. (3)] in Eq. (7),
the solution of Eq. (11) is obtained in a straightforward way as

|F (q − q(t),t)|q=q(t)|2 = |F (q − q(0),0)|q=q(0)|2. (12)

Thus, the absolute height of the classical ADF is preserved
along a relevant path [q(t),p(t)], and the shape change of the
total wave packet is represented by geometrical redistribution
of classical trajectories. The conservation of probability is
secured by Eq. (12) and the classical Liouville theorem.

Semiclassical flow. By including the term of “divergence”
(∇ · p) to the classical approximation as

DF (q − q(t),t)
Dt

= −1

2
(∇ · p)F (q − q(t),t), (13)

we can consider the dynamical change of the nearby region
of a reference path [q(t),p(t)]. In what follows, we call
∇ · p “momentum gradient” to avoid confusion by using the
word “divergence.” It can be readily proven that the quantum
probability is reserved in this dynamics, as will be seen later.
This level of approximation is essentially equivalent to the
lowest-order WKB approximation [46].

Full quantal flow. We then retrieve the complete form of
right-hand side by further adding the term of quantum diffusion

DF (q − q(t),t)
Dt

=
[
−1

2
(∇ · p) + i�

2
∇2

]
F (q − q(t),t).

(14)

Note that only in this level, the Planck constant emerges in the
amplitude function F (q − q(t),t). In this series of works, we
attempt to solve approximately this equation without resorting
to perturbation expansion in � and to the stationary phase
approximation.

The above hierarchical structure in-between classical and
quantum mechanics is also useful in the application of
hybrid use of quantum-semiclassical-classical representation
of dynamics. For instance, in a protein dynamics, the skeletal
structure may be well treated in classical simulation, while
other interacting parts may need quantum and/or semiclassical
descriptions.

D. Linearity

We here compare the ADF with the Bohm trajectory method
since they are seemingly look-alike. (For the great progress
in the relevant methodology achieved by Wyatt and his
co-workers, see [48–51]. About the applications of quantum
trajectories, see also [52–56]. Furthermore, refer to [57–61]
for a generalization of the Bohmian dynamics or quantum
trajectory method.) Let us first summarize the Bohm theory
briefly [62]. Represent a wave function as

�(q,t) = R(q,t) exp

(
i

�
S(q,t)

)
, (15)
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where both R and S are real-valued functions. The equations
of motion for them are

∂R

∂t
+ ∇S · ∇R + R

2
∇2S = 0 (16)

and

∂S

∂t
+ 1

2m
(∇S)2 + V − �

2

2m

∇2R

R
= 0. (17)

The first equation is nothing but the equation of continuity,
that is,

m
∂ρ

∂t
+ ∇ · (vρ) = 0, (18)

where

ρ = R2 (19)

and

v = ∇S. (20)

Usually, the Bohm method is not regarded as a semiclassical
theory, simply because R is not expanded in a power of the
Planck constant as in the WKB theory.

As is widely recognized everything interesting and draw-
backs as well are found in the quantum potential − �

2

2m
∇2R
R

,
in which the quantum effects are all concentrated. On the
other hand, this potential can be singular at points R = 0 and
nonlocal. Moreover, the “quantum path solutions” are driven
by the potential that is to be constructed with the solution of
the Schrödinger equation itself. In this sense, the equation is
essentially nonlinear. This is in marked contrast to the ADF
equation of motion

In this conjunction, it is instructive to note that stochastic
quantization by Nelson is also nonlinear [63]. He establishes
a forward and backward stochastic Newtonian-type equation
that contains a drift term. This is transformed to a Fokker-
Planck equation, which is further rewritten to the Schrödinger
equation in the end. However, the drift term involved in
the stochastic equation can be evaluated only in terms of the
knowledge of the distribution function (corresponding to the
wave function), and the stochastic path should be determined
consistently with this distribution. On the other hand, the distri-
bution function in turn is to be determined by the ensemble of
the paths. Therefore, the stochastic paths and their distribution
are to be determined only in a nonlinear manner. By contrast,
ADF dynamics is of a linear type in that it does not require
the knowledge of distribution beforehand. The ADF implicitly
contains a stochastic process driven by the imaginary diffusion
constant, which will be studied in paper II [45].

III. TRADITIONAL SEMICLASSICAL THEORY IN EULER
PICTURE WITH USE OF THE STABILITY MATRIX

A. WKB-like solution

The semiclassical equation of motion for the function
F (q,t) looks as

∂F

∂ t
+ p · ∇F = −1

2
(∇ · p)F, (21)

where p(t) = ∂ S2(q,p0,t)/∂q is the classical momentum.
We here use S2 as an action function, which starts from a

momentum and ends with a configuration space. Equation (21)
is integrated as follows. We start from the following observa-
tion:

∂F 2

∂ t
+ ∇ · (pF 2) = 0. (22)

Note that F 2 rather than |F |2 is considered in this “equation of
continuity” (notice that F 2 can be complex). F 2 can be readily
integrated locally along classical paths in terms of a Jacobian
determinant ∂qt /∂q0 which is also a minor determinant of
the so-called stability matrix. It is not difficult to derive the
equation

∂

∂ t

(
∂qt

∂q0

)−1

+ ∇ ·
[

p
(

∂qt

∂q0

)−1]
= 0 (23)

from the Hamilton-Jacobi equation for S2(qt ,p0,t). Further-
more, one has the initial condition (∂qt /∂q0)−1 = 1 since
qt = q0 at t = 0. Thus, (∂qt /∂q0)−1 can be regarded as a
local representation of the Green’s function for the propagator
of Eq. (22). On comparing Eqs. (22) and (23), together with
the initial conditions above, one immediately has [46,64]

F (qt ,t) = F (q0,0)

(
∂qt

∂q0

)− 1
2

= F (q0,0)

∣∣∣∣ ∂qt

∂q0

∣∣∣∣
− 1

2

exp

[
− iπM(q0,qt )

2

]
, (24)

where the derivative ∂qt /∂q0 is taken under the fixed initial
momentum p0, and M(q0,qt ) is the Maslov index in this
representation that counts the number of zeros of ∂qt /∂q0

up to the degeneracy. Thus, the local solution, denoted by
�

p0
local(qt ,t), is evolved in time on an action surface, which is in

turn to be propagated in terms of trajectories of a fixed initial
momentum p0. The final expression for the wave function is
then written in the form of IVR as

�p0 (q,t) =
∫

δ(q−qt )�
p0
local(qt ,t)dqt

=
∫

δ[q−qt (q0,p0)]F (q0,0)

∣∣∣∣ ∂qt

∂p0

∣∣∣∣
1
2

× exp

[
i

�
S2(qt ,p0,t) − iπM(q0,qt )

2

]
dq0, (25)

and therefore no divergence in the integrand.
Upon comparing this expression with the IVR of the

WKB-like semiclassical kernel, which is

�(q,t) = (2π�)−N/2
∫

δ[q−qt (q0,p0)]�(q0,0)

∣∣∣∣ ∂qt

∂p0

∣∣∣∣
1
2

× exp

[
i

�
S(qt ,q0,t) − iπλ(q0,qt )

2

]
dq0dp0, (26)

we immediately realize that the semiclassical ADF is de-
composed into each sheet of the momentum space specified
by the initial momentum p0. This property may be used to
reduce the dimension of phase-space integration dramatically
as suggested by the difference between dq0 in Eq. (25) and
dq0dp0 in Eq. (26) [64–73].
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B. Conservation relation in half-density-like representation

The above results can be represented in a more compact
form. Define “square root” of the volume element in semiclas-
sical integrals for an arbitrary function f (qt ,t), which is to be
carried by the classical flow in such a way that

I =
∫

f (qt ,t)dqt =
∫

f (qt ,t)dq1/2
t dq1/2∗

t (27)

and

dq1/2
t ≡ exp

[
iπM(q0,qt )

2

]
|dqt |1/2, (28)

with dq1/2∗
t being the complex conjugate to dq1/2

t . Then,
Eq. (24) is rewritten in a symmetric form as

F (qt ,t)dq1/2
t = F (q0,0)dq1/2

0 , (29)

which expresses the “conservation rule” up to the phase [64].

IV. SEMICLASSICS IN THE LAGRANGE PICTURE
WITHOUT THE STABILITY MATRIX

We resume the study of ADF semiclassical equation in
the Lagrange picture, that is, Eq. (13). The largest difference
of this equation from Eq. (21) is that only the momentum
gradient term, − 1

2 (∇ · p)F, should be explicitly evaluated
without regard to the term of p · ∇F . This brings about great
simplicity and theoretical advantage as shown in the following.

A. Analysis of the momentum gradient leading
to the deviation determinant

Define the Hessian matrix of the action function S as

S′′ = M
[

∂2S

∂qI ∂qJ

]
, (30)

where {qI |I = 1, . . . ,N} is a set of independent variables
in configuration space around a path point under study. The
momentum gradient is a trace of this Hessian∑

J

∂pJ

∂qJ

= TrS′′, (31)

and therefore it is invariant with respect to the rotation of the
coordinate system.

Let us integrate the momentum gradient of the J th compo-
nent for a short-time interval [t,t + �t] along a phase space
flow {q0

J (t),p0
J (t)|J = 1, . . . ,N}. In the Lagrange picture, this

integral is approximated as∫ t+�t

t

dt
∂pJ

∂qJ

�
∫ t+�t

t

dt
pJ − p0

J

qJ − q0
J

=
∫

dt
1

qJ − q0
J

d

dt

(
qJ − q0

J

)
(mJ = 1)

= ln
qJ (t + �t) − q0

J (t + �t)

qJ (t) − q0
J (t)

. (32)

We should note that the value of the relative momentum
pJ − p0

J should be taken in the direction of the relative
displacement qJ − q0

J , and (qJ ,pJ ) must be close to (q0
J ,p0

J ).

Then, we continue as

exp

[∫ t+�t

t

dt
∑

J

∂2S

∂qJ ∂qJ

]

=
∏
J

(
qJ (t + �t) − q0

J (t + �t)

qJ (t) − q0
J (t)

)
(33)

= det σ (t + �t)

det σ (t)
, (34)

where the deviation determinant σ (t) is defined as

σ (t) =
∏
J

∧ [
qJ (t) − q0

J (t)
]
eJ

=
∏
J

∧ σJ (t)eJ , (35)

with eJ being the unit vector in the J th direction and
σJ (t) ≡ qJ (t) − q0

J (t).

B. Momentum gradient approximated
with nearby classical paths

The above straightforward evaluation of the momentum
gradient can be performed only when the action function S

is available as a function of independent variables. However,
this is not the case in practice. Therefore, we need to extract
the essential information of σ (t) from the actual dynamics of
classical trajectories.

1. Preliminary transformation

Let

[q0(t),p0(t)] (36)

be a reference path for which the momentum gradient is
considered. To represent the deviation determinant explicitly
with classical trajectories, we consider N paths running nearby
the reference path

[qi(t),pi(t)], i = 1, . . . ,N (37)

which are supposed to satisfy appropriate initial conditions
and running on the prespecified action plane S. First, define
deviation vectors

�qi(t) = qi(t) − q0(t). (38)

Orthogonalize these deviation vectors with, for instance, the
Gram-Schmidt method and attain a transformation matrix C

such that

�QK (t) =
∑

i

CKi�qi(t) =
∑

i

CKi[qi(t) − q0(t)] (39)

and

�QK (t) · �QL(t) = 0 if K 
= L. (40)

The transformation matrix C is parametrically dependent on
time, but not a dynamical quantity. It is regarded as a constant
at each time of this mathematical operation. Let us define a
unit vector eK in the direction of the �QK (t) for each K . Then,
we extract the scalar part from �QK (t) such that

�QK (t) = �QK (t)eK. (41)
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Next, with this transformation matrix, we create associated
momentum vectors as

�PK (t) =
∑

i

CKi�pi(t) =
∑

i

CKi

d

dt
[qi(t) − q0(t)]. (42)

However, �PK (t) is not parallel to �QK (t) in general. Hence,
we extract the parallel component by defining

�P K
‖ (t) = �PK (t) · eK. (43)

With these quantities, we can evaluate the momentum
gradient approximately as

∂pk

∂qk

� �P K
‖ (t)

�QK (t)
. (44)

We then formally borrow the formula of Eq. (32):∫ t+�t

t

dt
�P K

‖ (t)

�QK (t)
=

∫
dt

1

�QK (t)

d

dt
[�QK (t)]

= ln
�QK (t + �t)

�QK (t)
, (45)

where we have used again the mass-scaled coordinates.
Therefore, we have

exp

[
−1

2

∫ t+�t

t

dt
∑

k

∂pk

∂qk

]
=

[
N∏

k=1

�QK (t)

�QK (t + �t)

]1/2

.

(46)

Thus, σ (t) is approximately represented as

σ (t) =
N∏

K=1

�QK (t) =
N∏

k=1

∧ [�QK (t)eK ],

which is an orientable volume of the N -dimensional cuboid-
like manifold formed around q0(t). It is obvious from the prop-
erty of the wedge product that σ (t) can be rewritten in terms
of the original nearby trajectories before the orthogonalization
such that

σ (t) =
N∏

i=1

∧ [qi(t) − q0(t)]. (47)

We call qi(t) − q0(t) the ith deviation vector.

2. Deviation matrix

Since σ (t) is invariant with respect to the choice of
coordinates in configuration space, one may write it as follows.

Let

qi(t) = [
xi

1(t),xi
2(t), . . . ,xi

N (t)
]

(48)

be a configuration-space point of a nearby path of a reference
trajectory

q0(t) = [
x0

1 (t),x0
2 (t), . . . ,x0

N (t)
]
. (49)

Consider small deviation vectors measured from the reference
trajectory at t = 0, which are denoted as

qi(0) − q0(0)

= [
x0

1 (0),x0
2 (0), . . . ,x0

i (0) + �xi(0), . . . ,x0
N (0)

]
with i = 1,2, . . . ,N . The deviations are all supposed to be
very small, and the volume of a box made of these vectors is
simply

σ (0) =
N∏

i=1

�xi(0).

These deviation vectors are evolved in time along the classical
flows (with a given initial condition) such that

qi(t) − q0(t) = [
x0

1 (t) + �x
(i)
1 (t), . . . ,x0

i (t)

+�x
(i)
i (t), . . . ,x0

N (t) + �x
(i)
N (t)

]
.

We can then express σ (t) in terms of a determinant

σ (t) =
N∏

i=1

∧ [qi(t) − q0(t)]

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�x
(1)
1 (t) . . . �x

(j )
1 (t) . . . �x

(N)
1 (t)

...
...

...

�x
(1)
i (t) . . . �x

(j )
i (t) . . . �x

(N)
i (t)

...
...

...

�x
(1)
N (t) . . . �x

(j )
N (t) . . . �x

(N)
N (t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (50)

σ (t) is thus called deviation determinant, the matrix of which
is accordingly called deviation matrix.

Incidentally, the minor determinant of the stability matrix
[∂qt /∂q0] is similarly represented as

[∂qt /∂q0] = lim
�x1(0) → 0

...

�xN (0) → 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�x
(1)
1 (t)

/
�x1(0) . . . �x

(j )
1 (t)

/
�xj (0) . . . �x

(N)
1 (t)

/
�xN (0)

...
...

...

�x
(1)
i (t)

/
�x1(0) . . . �x

(j )
i (t)

/
�xj (0) . . . �x

(N)
i (t)

/
�xN (0)

...
...

...

�x
(1)
N (t)

/
�x1(0) . . . �x

(j )
N (t)

/
�xj (0) . . . �x

(N)
N (t)

/
�xN (0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (51)
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On the other, the momentum gradient is simply given as

exp

[
−1

2

∫ t

0
dt

∑
k

∂pk

∂qk

]
= σ (t)−1/2

σ (0)−1/2
. (52)

It therefore follows that∑
k

∂pk

∂qk

= σ̇ (t)

σ (t)
= d

dt
ln σ (t), (53)

which is a useful identity that holds when all the deviation
vectors collectively approach zero.

Thus, ADF propagated by the momentum gradient alone is
given as

F (q − q(t + �t),t + �t)|q=q(t+�t)

= exp

[
−1

2

∫ t+�t

t

dt
∑

k

∂pk

∂qk

]
F (q − q(t),t)

=
(

σ (t)

σ (t + �t)

)1/2

F (q − q(t),t)|q=q(t). (54)

This relation is rewritten in a form of “norm conservation up
to phase” such that

σ (t + �t)1/2F (q − q(t + �t),t + �t)|q=q(t+�t)

= σ (t)1/2F (q − q(t),t)|q=q(t), (55)

which should be compared with Eq. (29).

3. Maslov phase arising from the deviation determinant

A divergence is expected at a point where σ (t) = 0 and a
new phase arises in Eq. (55) when the deviation determinant
passes across zero and the sign changes as σ (t + �t)σ (t) < 0.
It is obvious in comparing Eqs. (51) and (52) that the points of
the change of the Maslov index are the same. Therefore, the
Maslov index in the Euler and Lagrange pictures is exactly the
same as they should be (recall that both the Euler and Lagrange
pictures should give the same results as they start from exactly
the same differential equation). Indeed, we have made use of
the deviation determinant to calculate the Maslov index before
in a semiclassical ADF in the Euler picture [74]. Incidentally,
a comparison between Eqs. (50) and (51) gives an idea that the
stability matrix can be approximated in terms of nearby orbits
as in the calculation of the momentum gradient. In fact, such
a method has been suggested [75] and proposed before [43].

C. Rescaling the deviation determinant of σ (t)

Advantages of the deviation matrix over the stability matrix
are as follows: (i) There is no need to integrate 2N × 2N

ordinary differential equations along each reference path. (ii)
No Hessian matrix of the potential function with respect to
the coordinates is required, direct computation of which are
time consuming and tedious for ab initio PES (see [32] to
improve the related difficulty). On the other hand, we need N

of nearby paths to calculate a deviation matrix for a single
path, so that it scales to N . However, it should be noted
that those nearby orbits are also surrounded by other nearby
orbits, and hence a nearby orbit can be regarded as a reference
path that is surrounded by other nearby paths. Therefore,

computational time should depend on how efficiently the
relevant computational algorithm is designed.

On the other hand, nearby orbits with which to calculate
the deviation matrix can deviate from a reference path as time
passes. The situation is expected to be worse as chaoticity
of underlying dynamics becomes harder. (Computation of the
stability matrix also faces severe difficulty.) Such a property of
the deviation determinant can become a serious disadvantage.
In such a case, the difference approximation in Eq. (44) loses
the mathematical sense, and therefore we should rescale the
deviation vector [qi(t) − q0(t),pi(t) − p0(t)] in such a manner
that the momentum gradient is to be conserved. This procedure
can be achieved as follows: Consider an approximation to the
momentum gradient before neighboring paths deviate much in
such a way that a factor A is multiplied without changing the
approximate expression of the momentum gradient as

|pi(t) − p0(t)|
|qi(t) − q0(t)| = |pi(t) − p0(t)| × A

|qi(t) − q0(t)| × A
. (56)

Then, a new phase-space point [qi,new(t),pi,new(t)] is attained,
which is closer to the reference path, as

qi,new(t) = q0(t) + [qi(t) − q0(t)] × A (57)

and

pi,new(t) = p0(t) + [pi(t) − p0(t)] × A. (58)

This procedure is somewhat analogous to the method figured
out by Benettin et al. [76] for the calculation of the Liapunov
exponents to measure the stability of classical trajectories.

Recalling Eq. (54), we notice that the deviation vectors
around a reference trajectory in a time interval [t,t + �t] can
be different from those of [t + �t,t + 2�t] as long as we
resort to the Trotter decomposition, that is,

F (q − q(t + 2�t),t + 2�t)mg

= exp

[ ∫ t+2�t

t+�t

(
−1

2
∇ · p

)]

× exp

[ ∫ t+�t

t

(
−1

2
∇ · p

)]
F (q − q(t),t). (59)

Thus, we have

F (q − q(t + 2�t),t + 2�t)mg

= σ (t + �t)−1/2

σ (t + 2�t)−1/2

σ (t)−1/2

σ (t + �t)−1/2
F (q − q(t),t) (60)

and σ (t + �t) is canceled. However, the deviation vectors to
be used in [t,t + �t] and [t + �t,t + 2�t] may be different
under a certain condition. The rescaling technique developed
above is one of them. In this well-defined context, we may
write

F (q − q(t + 2�t),t + 2�t)mg

= σ re(t + �t)−1/2

σ re(t + 2�t)−1/2

σ (t)−1/2

σ (t + �t)−1/2
F (q − q(t),t), (61)

where σ re(t + �t) and σ re(t + 2�t) are given in a rescaled
vector. Taking the ratio appropriately in each time interval is
essential in this calculation.
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D. On the initial conditions: Caustics or turning points

In applications of semiclassical mechanics, the choice of
initial conditions needs a special care since different choice
of initial wave packet leads to divergence at different points.
It is a standard practice to choose a coherent-type Gaussian
wave function, which is of the form in one-dimensional
example as

ψc(x,0) = π−1/4 exp

[
−1

2
(x − x0)2 + i

�
p0(x − x0)

]
. (62)

We set the exponent to 1
2 . This function is like the minimum

uncertainty coherent wave packet, except that the width
parameter is fixed. For this initial wave packet, nearby
trajectories should be placed close to x0 with the same initial
momentum p0 as that of the reference path. As is well
known, the resultant divergence is found at the so-called
caustic points of each reference. Yet, other choices are
equally possible. For instance, let us consider the following
form:

ψt (x,0) = π−1/4 exp

[
−1

2
(x − x0)2 + i

�
p0(x − x0)

+ i

�

1

2

∂p

∂x

∣∣∣∣
0

(x − x0)2

]
, (63)

in which the second-order derivative of the initial action
function is assumed to take a nonzero value [(1/2)∂p/∂x|0 =
(1/2)∂2S/∂x2|0]. Here again, � is absent in the Gaussian width.
This initial wave packet brings about divergence in ADF at the
so-called turning points.

To see the difference of the above functions, let us visualize
the phase-space geometry for them in terms of the Wigner

phase-space distribution function, which is defined as [9]

W (x,p) = 1

2π�

∫
ψ∗(x + r/2)ψ(x − r/2)eipr/�dr. (64)

The functions ψc(x,0) and ψt (x,0) of Eqs. (62) and (63),
respectively, are mapped onto phase space with the forms of

Wc(x,p) = 2 exp[−(x − x0)2] exp

[
− 1

�2
(p − p0)2

]
, (65)

Wt (x,p) = 2 exp[−(x − x0)2]

× exp

[
− 1

�2

(
(p − p0) − ∂p

∂x

∣∣∣∣
0

(x − x0)

)2]
.

(66)

In Fig. 1, contour plots are drawn in phase space for the
functions of Eqs. (65) and (66) with selected magnitudes of the
Planck constant �. We simply consider the dynamics of these
phase-space distributions for a harmonic oscillator, without
loss of generality, for which phase-space trajectories can be
always rescaled to concentric circles.

As confirmed in the figure [Figs. 1(a)–1(c) and 1(A)–1(C)],
the phase-space distributions become thinner to a straight-line
segment as the Planck constant becomes smaller. Furthermore,
the straight segment for the initial wave function (62) is parallel
to the x axis, while that of Eq. (63) lies tangential to the relevant
circle. Note that in Eq. (63) the coefficient 1

2 multiplied to
∂p/∂x has naturally vanished in transforming to the Wigner
representation.

Then, we track semiclassical time propagation of the
distributions in the small limit of �. As time passes, the
orientations of those line segments change continuously, and
they come to two points during one circuit, at which the

-4          -2            0            2            4-4

-2

0

2

4

p

x

-4          -2            0           2           4
x

-4

-2

0

2

4

p

(a) (b) (c)

(A) (B) (C)

(d)

(D)

FIG. 1. Contours for the Wigner phase-space representations of the initial wave functions ψc (upper panels) and ψt (lower panels). Values
of the Planck constant � are 1.0 for (a) and (A), 0.1 for (b) and (B), and 0.01 for (c) and (C). Filled squares in panels (c) and (d) are the caustics,
while those in (C) and (D) are turning points. In (d) and (D), the line segments are in the singular configurations.
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segments become perpendicular to the x axis. It is at these
points that the projection of these manifolds becomes singular
geometrically or, equivalently, the gradient ∂p/∂x becomes
divergent analytically. The singular points for the initial wave
function of Eq. (62) are called caustics [Fig. 1(d)]. On the
other hand, we observe the singularity for Eq. (63) at the
so-called turning points, at which the kinetic energy is zero
[Fig. 1(D)]. Thus, the turning points play a characteristic role
not only in stationary-state semiclassical theory, but even in
the “time-dependent” semiclassics. Likewise, one may expect
divergence in ∂x/∂p when projecting from phase space onto
momentum space.

Finally, it should be confirmed that these singular behaviors
are resolved in phase-space quantum mechanics, in which
no projection from phase space to configuration space is
demanded. Moreover, the smoothed manifolds with a larger
Planck constant, as in Figs. 1(a) and 1(A), never face such
singularity. Incidentally, the idea of Gaussian wave packet
with its phase-space representation not being aligned with x

and p axes has been already been proposed by Heller in the
contexts of both time-dependent [77] and stationary [78] wave
functions.

V. NUMERICAL TESTS

Here in this section, some numerical results are presented to
test the accuracy of semiclassical ADF in the Lagrange picture
and the validity of rescaling procedure of the deviation vectors.
The validity range of the semiclassical ADF is also examined.

A. One- and two-dimensional examples of propagation
of wave packets

First of all, one-dimensional Morse oscillator is used to
generate a global wave function at a time, the potential of
which is

V (s) = De[1 − e−α(s−se)]2, (67)

with the parameters m = 1.165 × 105, De = 0.05717,
se = 5.039, α = 0.9830 in atomic units [79,80]. The values
of wave function given by ADF with the momentum gradient
are directly compared with those of the fully quantum (FQ)
counterpart. The latter is obtained with numerical integration
of the Schrödinger equation with the symplectic integrator
fast Fourier transform (FFT) method [81]. A coherent-state
wave packet with an initial phase-space point p0 = 0, q0 =
4.535, E0 = 0.02342 (in a.u.), and � = 1.0 is adopted. The
initial condition is chosen to be the coherent-type Gaussian
function of Eq. (62). The values of ADF at each (q,t) are
computed accordingly, that is, trajectories with the same p0

are prepared at t = 0 on the equally spaced grid points, each of
which is classically propagated carrying a delta-function-like
F (q − q(t),t) on it. The whole ADF wave function is con-
structed by taking a superposition of contributions in each bin
at any time. Figure 2 shows a snapshot after ≈3.5 oscillations.
The number of trajectories used is as many as 10 000 for this
pointwise comparison.

As seen in Fig. 2, the wave function is oscillatory enough
and serves as a stringent test. The ADF undergoes divergence
at caustic points, as is expected from the above mathematical

FIG. 2. (Color) Comparison of the real part of wave packets after
≈3.5 oscillations as a function of the coordinate x (in atomic units).
(Red, dashed curve) Fully quantum wave packet. (Green, solid curve)
Semiclassical ADF wave packet obtained with only the momentum
gradient operation. Both are in good agreement except for some points
where sampled trajectories happen to encounter singular points.

consideration. Note that it shows nevertheless quite a good
performance except for these specific points. It is seen that
ADF wave packet reproduces the oscillatory behavior of FQ
wave packet on this potential.

Next, as a two-dimensional test, the following modified
Hénon-Heiles Hamiltonian is used:

H (x,y,px,py) = p2
x

2m
+ p2

y

2m
+ x2 + y2

2
+ x2(0.6y2 + y)

+ 1

3
y3(0.2y − 1) + 0.1x. (68)

In this test, we examine a wave-packet component carried on a
single classical trajectory. Suppose we have a two-dimensional
coherent-state-like Gaussian wave packet at t = 0:

F (q − q(0),0) =
(

1

π�

)1/2

× exp

[
−(q − q0) · M · (q − q0)T + i

�
p0 · (q − q0)

]
,

(69)

M =
(

1
2�×w

0

0 1
2�×w

)
, (70)

where q − q0 = (x − x0,y − y0)T and p0 = (px0 ,py0 ). In the
FQ dynamics, this wave packet is propagated based on the
time-dependent Schrödinger equation. On the other hand, a
value of ADF at each space-time point is supposed to be
carried by ADF along a classical trajectory, and therefore in
this test F (q − q(t),t) initially located at (q0,p0) is tracked.
Since we would like to follow the wave-packet component in
the semiclassical limit, the Planck constant is set to � = 0.001.
Note that the Gaussian width is tuned with an adjustment
parameter w, which is set to be w = 5 here.
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FIG. 3. (Color) Semiclassical ADF wave-packet height
|F (q − q(t),t)| calculated along the central classical trajectory with
(q0,p0) (green solid curve) is compared with the FQ counterpart
on the same trajectory (red dashed curve). Except for the divergent
behaviors in the neighborhood of classical singular points (caustics),
agreement between the two is very good.

Although F (q − q(t),t) has information about both height
and phase, only the wave-packet height is compared because
the small value of � makes the real and imaginary parts too
oscillatory to compare visually. The energy chosen in Fig. 3 is
E � 0.135. This figure shows that divergent behavior begins
to be noticeable in time regions when the classical trajectory
approaches caustics. However, again it is clear that except
for those points, the height of the wave packet is very well
reproduced by ADF.

B. Validity of the rescaling of the nearby trajectories

Next, we numerically examine whether the rescaling proce-
dure for the deviation vector [Eq. (56)] is indeed valid. We have
applied the rescaling procedure several times to the dynamics
shown in Fig. 2, the resultant wave function being displayed in
Fig. 4. In this figure, semiclassical ADF with rescaling (blue
curve), semiclassical ADF without rescaling (green curve),
and the full quantum counterpart are superposed. In the inset
of the figure, σ (t) (actually the length of the deviation vector)
without rescaling is drawn in a green curve. σ (t) is rescaled and
nearby trajectories are correspondingly renewed to be closer
to the reference when σ (t) exceeds a predetermined threshold
value ζ . In Fig. 4, the threshold value is set to ζ = 2 × σ (0).
It is seen that σ (t) becomes larger as time passes, which
eventually makes ADF very small, except for the singular
points. In this inset, the occasions at which we applied the
rescaling are marked with arrows. Due to the rescaling, σ (t)
is kept as small as in the initial level. In spite of the fact that
σ (t) is thus largely modulated, the resultant semiclassical wave
functions (blue and green curves in Fig. 4) happen to be close to
each other in this example. This suggests that the amplitude
of the semiclassical ADF may be rather insensitive to the
variation of σ (t), provided that it remains in a tolerable range.
This also implies that ADF should not be very sensitive to
the choice of σ (0), the initial deviation determinant. (More
careful inspection over the figure suggests, however, that far

FIG. 4. (Color) Effect of the rescaling on the spatial distributions
of wave functions after about 3.5 oscillations, with the dynamics
being the same as that of Fig. 2. (Red, dashed curve) Real part of fully
quantum wave packet. (Green, solid curve) Semiclassical ADF wave
packet without rescaling. (Blue, dotted curve) Semiclassical ADF
wave packet with rescaling. The difference between the wave-packet
behaviors with and without the rescaling happens not to be large
in this example, although the former has improved the latter. In the
inset are shown the time evolutions of σ (t). Without rescaling, σ (t)
evolves with its absolute value getting larger and larger, while passing
through zeros at the caustics (green dashed curve). Rescaling has been
performed at times indicated by arrows when σ (t) gets larger than
ζ = 2 × σ (0) (blue solid curve).

longer continuation without rescaling should result in a bad
wave function.) We have also successfully tested the method in
two-dimensional cases. Thus, the rescaling procedure should
be a powerful tool for the ADF wave-packet dynamics even
in chaotic systems, in which nearby orbits quickly leave from
their reference path. This aspect will be reported elsewhere.

C. Feasibility in many-dimensional semiclassical calculations

Finally, a result of 100-dimensional calculation is shown in
Fig. 5, just to show that it is indeed tractable. A Hamiltonian
in this test is

H =
N∑
j

p2
j

2m
+

N∑
j

ωj

2
(qj − R0j )2

−
N−1∑

j

Dj (qj+1 − qj ) exp[−ζj (qj+1 − qj )], (71)

where N = 100, m = 1, R0j = 2.0 × j , and ωj = ω0 ×
(1.013)j with ω0 = 1.0 (ω100 � 3.6387). Couplings are con-
sidered only between the neighboring oscillators. Dj = 1.0
and ζj = 0.2 are the same for all the couplings. The purpose
of this test is primarily to show how tractably the semiclassical
ADF works for higher-dimensional systems. We follow the
ADF in the same way as in the two-dimensional case. That is,
the height is tracked along a classical trajectory with the initial
condition (q0,p0), which is randomly picked under a physically
appropriate condition. In this system where the individual
oscillators have similar frequencies, all the trajectories begin
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FIG. 5. Semiclassical ADF height [log10 |F (q − q(t),t)|] is plot-
ted. The inset is a closeup around the first caustic point encountered.
Spikes indicate that F (q − q(t),t) is divergent, although all the peak
heights are finite due to a discrete time step (�t has been set to 10−5).
Note that in this test the initial wave-packet height is set to unity.

to collectively approach their own caustics, which are close to
one another, and hence σ (t) soon falls to a very small value re-
sulting in a very rapid increase of the height up to t = 1.0. Note
that not |F (q − q(t),t)| but log10 |F (q − q(t),t)| is shown in
the figure. In the inset, a closeup of that region is shown, which
displays many spikes on top of the globally mountainlike
feature. Although all these spikes happen to be of finite height
in this graph, each is in fact associated with divergence. This
is because our chosen time interval (actually �t = 10−5) did
not make the exact timing at which σ (t) = 0 is realized.

Although the calculation shown in Fig. 5 is performed for a
shorter time than one period of the first vibrational mode,
the present example demonstrates that the computation of
σ (t) itself is rather easy. We carry over this system to the
companion paper [45] to highlight that such gigantic values of
the semiclassical ADF, actually full of singularities, are indeed
suppressed and smoothed by quantum diffusion.

VI. CONCLUDING REMARKS

We have studied the properties of the action decomposed
function towards many-dimensional applications to quantum
dynamics of heavy particles as in chemical reactions. The
equation of motion for the complex-valued amplitude of ADF
represents the coupling between the internal diffusive motion
and dynamics of the group velocity in a hierarchical manner
ascending from classical to purely quantum mechanics via
semiclassical dynamics. It therefore suggests a practical use
of mixed quantum-semiclassical-classical representation.

As a first step, we developed a semiclassical approximation
in the Lagrange picture. Changing from the Euler to Lagrange
picture, we have made a semiclassical formalism without use
of the stability matrix. This reformulation has been actually
made possible by estimating the semiclassical amplitude with
momentum gradient − 1

2 (∇ · p)F (q,t) alone. Practically, the
height and associated phase of the amplitude factor are
represented in terms of the deviation matrix and deviation

vectors. In terms of these quantities, a route for incorporating
quantum effects in many-dimensional applications has become
possible without resorting to the integration of the stability
matrix and the Hessian matrix of a potential function [45].
Another advantage of the deviation vectors is that they
can be rescaled keeping the magnitude of the momentum
gradient invariant, when nearby paths begin to deviate from a
reference path.

Numerical tests have shown that semiclassical ADF at
each configuration-space point and time along a classical path
excellently reproduces the exact wave functions. However,
semiclassical ADF is not free of the semiclassical singularity,
in other words, the wave function diverges at points where
the momentum gradient diverges. As is well known, this
divergence takes place at points where classical paths have
a focal point in configuration space. The similar situation can
happen in momentum space too, and therefore, this singularity
problem originates from a mathematical projection from a
larger space (phase space of 2N dimensions) to a smaller one
(an N -dimensional space like configuration space). Therefore,
it is in the process of smoothing the singularities that one of the
very essential characteristics of quantum mechanics is hidden.

Our next goal is therefore to reveal how quantum mechanics
smooths the singularity of semiclassical ADF. Nevertheless,
we here conclude this paper up to this stage since this is a
branching point in that there can exist several ways to cope
with quantum smoothing. We will propose an approach as such
in the next paper [45], using the deviation matrix rather than the
stability matrix, and show the mathematical mechanism of how
quantum mechanics can remove the semiclassical singularity.
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APPENDIX: ADF IN CLASSICAL ELECTROMAGNETIC
VECTOR FIELDS

The ADF formalism can be applied to particle dynamics
under a (classical) vector potential (see also Ref. [47]). We
formulate it to see below how it looks. We begin with the
following nonrelativistic Schrödinger equation:

i�
∂

∂t
�(q,t) =

[
1

2

∑
k

1

mk

(
p̂k − Zke

c
Ak(q)

)2

+ V (q)

]

×�(q,t), (A1)

where p̂k is the quantum momentum operator

p̂k = �

i

∂

∂qk

(A2)

and should be distinguished from its classical counterpart
pk . Here again, we resort to the mass-weighted coordinates,
rescaling all the masses to

mk = 1. (A3)
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The momentum of a particle is correlated with its momentum
in such a way that

vk = 1

mk

(
pk − Zke

c
Ak(q)

)
. (A4)

The classical counterpart of this dynamics is represented in
the following Hamilton-Jacobi equation:

∂

∂t
S(q,t) + 1

2

∑
k

(
1

mk

∂S(q,t)

∂qk

− Zke

c
Ak(q)

)2

+ V (q) = 0,

(A5)
where the momentum is generated through the action integral
as

pk = ∂S(q,t)

∂qk

. (A6)

It is convenient to summarize the classical relations as(
∂S(q,t)

∂qk

− Zke

c
Ak(q)

)
= vk = pk − Zke

c
Ak(q).

As before, we set a total wave function in the form

�(q,t) = exp

(
i

�
S(q,t)

)
F (q,t). (A7)

The left-hand side of the Schrödinger equation is

i�
∂�(q,t)

∂t
= exp

(
i

�
S(q,t)

)

×
(

−∂S(q,t)

∂t
F (q,t) + i�

∂F (q,t)

∂t

)
. (A8)

Next, we evaluate the right-hand side. Since the kinetic energy
parts are the origin of confusion, we should treat them with
some care. First,(

p̂k − Zke

c
Ak(q)

)
exp

(
i

�
S(q,t)

)

= exp

(
i

�
S(q,t)

)(
pk − Zke

c
Ak(q)

)
(A9)

and

1

2

(
p̂k − Zke

c
Ak(q)

)2

exp

(
i

�
S(q,t)

)

= 1

2
exp

(
i

�
S(q,t)

)[(
pk − Zke

c
Ak(q)

)2

+p̂k

(
pk − Zke

c
Ak(q)

)]
. (A10)

Then, the following straightforward formulation goes as[
1

2

∑
k

(
p̂k − Zke

c
Ak(q)

)2

+ V (q)

]
exp

(
i

�
S(q,t)

)
F (q,t)

= exp

(
i

�
S(q,t)

)[
1

2

(
pk − Zke

c
Ak(q)

)2

+ 1

2
p̂k

(
pk − Zke

c
Ak(q)

)]

+ exp

(
i

�
S(q,t)

)
1

2

∑
k

p̂2
kF (q,t)

+ exp

(
i

�
S(q,t)

) ∑
k

(
pk − Zke

c
Ak(q)

)
[p̂kF (q,t)],

(A11)

where we have used the long-wavelength approximation

p̂kAk(q) = 0 (A12)

and

p̂kAk(q)f = Ak(q)p̂kf (A13)

for an arbitrary function f . Combining Eqs. (A8) and (A11),

−∂S(q,t)

∂t
F (q,t) + i�

∂F (q,t)

∂t

=
∑

k

[
1

2

(
pk − Zke

c
Ak(q)

)2

+ 1

2
p̂k

(
pk − Zke

c
Ak(q)

)]

+ 1

2

∑
k

p̂2
kF (q,t) +

∑
k

(
pk − Zke

c
Ak(q)

)
[p̂kF (q,t)].

With the help of the Hamilton-Jacobi equation (A5), we have

i�
∂F (q,t)

∂t
=

∑
k

(
�

2i
∇kvk − �

2

2
∇2

k + �

i
vk∇k

)
F (q,t),

which is rewritten as

∂F (q,t)

∂t
=

[
−v · ∇−1

2
∇ · v + i

2
�∇2

]
F (q,t). (A14)

Note that this ADF equation is exactly the same as that for
field-free systems.
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W. H. Miller, J. Chem. Phys. 114, 2562 (2001).
[81] K. Takahashi and K. Ikeda, J. Chem. Phys. 99, 8680 (1993).

012108-13

http://dx.doi.org/10.1103/PhysRevLett.61.503
http://dx.doi.org/10.1103/PhysRevLett.61.503
http://dx.doi.org/10.1103/PhysRevLett.61.503
http://dx.doi.org/10.1103/PhysRevLett.61.503
http://dx.doi.org/10.1103/PhysRevA.45.4326
http://dx.doi.org/10.1103/PhysRevA.45.4326
http://dx.doi.org/10.1103/PhysRevA.45.4326
http://dx.doi.org/10.1103/PhysRevA.45.4326
http://dx.doi.org/10.1063/1.442382
http://dx.doi.org/10.1063/1.442382
http://dx.doi.org/10.1063/1.442382
http://dx.doi.org/10.1063/1.442382
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1016/0301-0104(84)80039-7
http://dx.doi.org/10.1063/1.450142
http://dx.doi.org/10.1063/1.450142
http://dx.doi.org/10.1063/1.450142
http://dx.doi.org/10.1063/1.450142
http://dx.doi.org/10.1063/1.466320
http://dx.doi.org/10.1063/1.466320
http://dx.doi.org/10.1063/1.466320
http://dx.doi.org/10.1063/1.466320
http://dx.doi.org/10.1021/jp003712k
http://dx.doi.org/10.1021/jp003712k
http://dx.doi.org/10.1021/jp003712k
http://dx.doi.org/10.1021/jp003712k
http://dx.doi.org/10.1063/1.1562158
http://dx.doi.org/10.1063/1.1562158
http://dx.doi.org/10.1063/1.1562158
http://dx.doi.org/10.1063/1.1562158
http://dx.doi.org/10.1063/1.1589477
http://dx.doi.org/10.1063/1.1589477
http://dx.doi.org/10.1063/1.1589477
http://dx.doi.org/10.1063/1.1589477
http://dx.doi.org/10.1063/1.3155062
http://dx.doi.org/10.1063/1.3155062
http://dx.doi.org/10.1063/1.3155062
http://dx.doi.org/10.1063/1.3155062
http://dx.doi.org/10.1063/1.1772361
http://dx.doi.org/10.1063/1.1772361
http://dx.doi.org/10.1063/1.1772361
http://dx.doi.org/10.1063/1.1772361
http://dx.doi.org/10.1063/1.3074100
http://dx.doi.org/10.1063/1.3074100
http://dx.doi.org/10.1063/1.3074100
http://dx.doi.org/10.1063/1.3074100
http://dx.doi.org/10.1063/1.476447
http://dx.doi.org/10.1063/1.476447
http://dx.doi.org/10.1063/1.476447
http://dx.doi.org/10.1063/1.476447
http://dx.doi.org/10.1063/1.1517044
http://dx.doi.org/10.1063/1.1517044
http://dx.doi.org/10.1063/1.1517044
http://dx.doi.org/10.1063/1.1517044
http://dx.doi.org/10.1063/1.2774990
http://dx.doi.org/10.1063/1.2774990
http://dx.doi.org/10.1063/1.2774990
http://dx.doi.org/10.1063/1.2774990
http://dx.doi.org/10.1063/1.3132224
http://dx.doi.org/10.1063/1.3132224
http://dx.doi.org/10.1063/1.3132224
http://dx.doi.org/10.1063/1.3132224
http://dx.doi.org/10.1063/1.3573566
http://dx.doi.org/10.1063/1.3573566
http://dx.doi.org/10.1063/1.3573566
http://dx.doi.org/10.1063/1.3573566
http://dx.doi.org/10.1063/1.4789759
http://dx.doi.org/10.1063/1.4789759
http://dx.doi.org/10.1063/1.4789759
http://dx.doi.org/10.1063/1.4789759
http://dx.doi.org/10.1063/1.1458924
http://dx.doi.org/10.1063/1.1458924
http://dx.doi.org/10.1063/1.1458924
http://dx.doi.org/10.1063/1.1458924
http://dx.doi.org/10.1021/jp030098e
http://dx.doi.org/10.1021/jp030098e
http://dx.doi.org/10.1021/jp030098e
http://dx.doi.org/10.1021/jp030098e
http://dx.doi.org/10.1063/1.1622931
http://dx.doi.org/10.1063/1.1622931
http://dx.doi.org/10.1063/1.1622931
http://dx.doi.org/10.1063/1.1622931
http://dx.doi.org/10.1103/PhysRevLett.91.190201
http://dx.doi.org/10.1103/PhysRevLett.91.190201
http://dx.doi.org/10.1103/PhysRevLett.91.190201
http://dx.doi.org/10.1103/PhysRevLett.91.190201
http://dx.doi.org/10.1103/PhysRevLett.93.140401
http://dx.doi.org/10.1103/PhysRevLett.93.140401
http://dx.doi.org/10.1103/PhysRevLett.93.140401
http://dx.doi.org/10.1103/PhysRevLett.93.140401
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141257
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141257
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141257
http://dx.doi.org/10.1146/annurev.physchem.56.092503.141257
http://dx.doi.org/10.1016/j.chemphys.2005.06.019
http://dx.doi.org/10.1016/j.chemphys.2005.06.019
http://dx.doi.org/10.1016/j.chemphys.2005.06.019
http://dx.doi.org/10.1016/j.chemphys.2005.06.019
http://dx.doi.org/10.1103/PhysRevA.73.064102
http://dx.doi.org/10.1103/PhysRevA.73.064102
http://dx.doi.org/10.1103/PhysRevA.73.064102
http://dx.doi.org/10.1103/PhysRevA.73.064102
http://dx.doi.org/10.1088/1751-8113/41/38/385303
http://dx.doi.org/10.1088/1751-8113/41/38/385303
http://dx.doi.org/10.1088/1751-8113/41/38/385303
http://dx.doi.org/10.1088/1751-8113/41/38/385303
http://dx.doi.org/10.1063/1.3079544
http://dx.doi.org/10.1063/1.3079544
http://dx.doi.org/10.1063/1.3079544
http://dx.doi.org/10.1063/1.3079544
http://dx.doi.org/10.1063/1.1321032
http://dx.doi.org/10.1063/1.1321032
http://dx.doi.org/10.1063/1.1321032
http://dx.doi.org/10.1063/1.1321032
http://dx.doi.org/10.1103/PhysRevA.89.012109
http://dx.doi.org/10.1103/PhysRevA.89.012109
http://dx.doi.org/10.1103/PhysRevA.89.012109
http://dx.doi.org/10.1103/PhysRevA.89.012109
http://dx.doi.org/10.1103/PhysRevLett.78.1404
http://dx.doi.org/10.1103/PhysRevLett.78.1404
http://dx.doi.org/10.1103/PhysRevLett.78.1404
http://dx.doi.org/10.1103/PhysRevLett.78.1404
http://dx.doi.org/10.1103/PhysRevA.59.3256
http://dx.doi.org/10.1103/PhysRevA.59.3256
http://dx.doi.org/10.1103/PhysRevA.59.3256
http://dx.doi.org/10.1103/PhysRevA.59.3256
http://dx.doi.org/10.1063/1.3439396
http://dx.doi.org/10.1063/1.3439396
http://dx.doi.org/10.1063/1.3439396
http://dx.doi.org/10.1063/1.3439396
http://dx.doi.org/10.1103/PhysRevLett.82.5190
http://dx.doi.org/10.1103/PhysRevLett.82.5190
http://dx.doi.org/10.1103/PhysRevLett.82.5190
http://dx.doi.org/10.1103/PhysRevLett.82.5190
http://dx.doi.org/10.1021/jp056741
http://dx.doi.org/10.1021/jp056741
http://dx.doi.org/10.1021/jp056741
http://dx.doi.org/10.1021/jp056741
http://dx.doi.org/10.1063/1.2201739
http://dx.doi.org/10.1063/1.2201739
http://dx.doi.org/10.1063/1.2201739
http://dx.doi.org/10.1063/1.2201739
http://dx.doi.org/10.1063/1.2218335
http://dx.doi.org/10.1063/1.2218335
http://dx.doi.org/10.1063/1.2218335
http://dx.doi.org/10.1103/PhysRevB.61.7743
http://dx.doi.org/10.1103/PhysRevB.61.7743
http://dx.doi.org/10.1103/PhysRevB.61.7743
http://dx.doi.org/10.1103/PhysRevB.61.7743
http://dx.doi.org/10.1088/0953-8984/14/24/312
http://dx.doi.org/10.1088/0953-8984/14/24/312
http://dx.doi.org/10.1088/0953-8984/14/24/312
http://dx.doi.org/10.1088/0953-8984/14/24/312
http://dx.doi.org/10.1103/PhysRevB.69.115413
http://dx.doi.org/10.1103/PhysRevB.69.115413
http://dx.doi.org/10.1103/PhysRevB.69.115413
http://dx.doi.org/10.1103/PhysRevB.69.115413
http://dx.doi.org/10.1063/1.2400851
http://dx.doi.org/10.1063/1.2400851
http://dx.doi.org/10.1063/1.2400851
http://dx.doi.org/10.1063/1.2400851
http://dx.doi.org/10.1063/1.2794029
http://dx.doi.org/10.1063/1.2794029
http://dx.doi.org/10.1063/1.2794029
http://dx.doi.org/10.1063/1.2794029
http://dx.doi.org/10.1021/jp0732864
http://dx.doi.org/10.1021/jp0732864
http://dx.doi.org/10.1021/jp0732864
http://dx.doi.org/10.1021/jp0732864
http://dx.doi.org/10.1103/PhysRevA.83.012104
http://dx.doi.org/10.1103/PhysRevA.83.012104
http://dx.doi.org/10.1103/PhysRevA.83.012104
http://dx.doi.org/10.1103/PhysRevA.83.012104
http://dx.doi.org/10.1063/1.3364870
http://dx.doi.org/10.1063/1.3364870
http://dx.doi.org/10.1063/1.3364870
http://dx.doi.org/10.1063/1.3364870
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysRev.85.180
http://dx.doi.org/10.1103/PhysRev.85.180
http://dx.doi.org/10.1103/PhysRev.85.180
http://dx.doi.org/10.1103/PhysRev.150.1079
http://dx.doi.org/10.1103/PhysRev.150.1079
http://dx.doi.org/10.1103/PhysRev.150.1079
http://dx.doi.org/10.1103/PhysRev.150.1079
http://dx.doi.org/10.1103/PhysRevE.64.016224
http://dx.doi.org/10.1103/PhysRevE.64.016224
http://dx.doi.org/10.1103/PhysRevE.64.016224
http://dx.doi.org/10.1103/PhysRevE.64.016224
http://dx.doi.org/10.1088/0305-4470/36/17/306
http://dx.doi.org/10.1088/0305-4470/36/17/306
http://dx.doi.org/10.1088/0305-4470/36/17/306
http://dx.doi.org/10.1088/0305-4470/36/17/306
http://dx.doi.org/10.1103/PhysRevA.70.052103
http://dx.doi.org/10.1103/PhysRevA.70.052103
http://dx.doi.org/10.1103/PhysRevA.70.052103
http://dx.doi.org/10.1103/PhysRevA.70.052103
http://dx.doi.org/10.1063/1.2173997
http://dx.doi.org/10.1063/1.2173997
http://dx.doi.org/10.1063/1.2173997
http://dx.doi.org/10.1063/1.2173997
http://dx.doi.org/10.1063/1.2372759
http://dx.doi.org/10.1063/1.2372759
http://dx.doi.org/10.1063/1.2372759
http://dx.doi.org/10.1063/1.2372759
http://dx.doi.org/10.1063/1.1888580
http://dx.doi.org/10.1063/1.1888580
http://dx.doi.org/10.1063/1.1888580
http://dx.doi.org/10.1063/1.1888580
http://dx.doi.org/10.1143/PTPS.166.56
http://dx.doi.org/10.1143/PTPS.166.56
http://dx.doi.org/10.1143/PTPS.166.56
http://dx.doi.org/10.1143/PTPS.166.56
http://dx.doi.org/10.1063/1.2431178
http://dx.doi.org/10.1063/1.2431178
http://dx.doi.org/10.1063/1.2431178
http://dx.doi.org/10.1063/1.2431178
http://dx.doi.org/10.1063/1.2772274
http://dx.doi.org/10.1063/1.2772274
http://dx.doi.org/10.1063/1.2772274
http://dx.doi.org/10.1063/1.2772274
http://dx.doi.org/10.1103/PhysRevA.69.022110
http://dx.doi.org/10.1103/PhysRevA.69.022110
http://dx.doi.org/10.1103/PhysRevA.69.022110
http://dx.doi.org/10.1103/PhysRevA.69.022110
http://dx.doi.org/10.1063/1.432974
http://dx.doi.org/10.1063/1.432974
http://dx.doi.org/10.1063/1.432974
http://dx.doi.org/10.1063/1.432974
http://dx.doi.org/10.1103/PhysRevA.14.2338
http://dx.doi.org/10.1103/PhysRevA.14.2338
http://dx.doi.org/10.1103/PhysRevA.14.2338
http://dx.doi.org/10.1103/PhysRevA.14.2338
http://dx.doi.org/10.1063/1.438727
http://dx.doi.org/10.1063/1.438727
http://dx.doi.org/10.1063/1.438727
http://dx.doi.org/10.1063/1.438727
http://dx.doi.org/10.1063/1.472741
http://dx.doi.org/10.1063/1.472741
http://dx.doi.org/10.1063/1.472741
http://dx.doi.org/10.1063/1.472741
http://dx.doi.org/10.1063/1.1337802
http://dx.doi.org/10.1063/1.1337802
http://dx.doi.org/10.1063/1.1337802
http://dx.doi.org/10.1063/1.1337802
http://dx.doi.org/10.1063/1.465592
http://dx.doi.org/10.1063/1.465592
http://dx.doi.org/10.1063/1.465592
http://dx.doi.org/10.1063/1.465592



