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Wigner function is a “quasidistribution” that provides a representation of the state of a quantum mechanical
system in the phase space of position and momentum. In this paper we find a relation between the Wigner
function and appropriate measurements involving the system’s position and momentum which generalize the
von Neumann model of measurement. We introduce two probes coupled successively in time to projectors
associated with the system’s position and momentum. We show that one can relate the Wigner function to
the Kirkwood joint quasidistribution of position and momentum, the latter, in turn, being a particular case of
successive measurements. We first consider the case of a quantum mechanical system described in a continuous
Hilbert space and then turn to the case of a discrete, finite-dimensional Hilbert space.
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I. INTRODUCTION

The Wigner function was originally introduced to provide
a phase-space representation of the state of a quantum-
mechanical system described in a continuous Hilbert space [1].
The Wigner function is termed a “quasidistribution,” as it may
become negative in some portions of phase space [2,3]. Indeed,
as is well known, quantum mechanics (QM) precludes a proper
joint probability distribution of position q and momentum p.
However, in many respects the Wigner function plays a role
similar to the phase-space distribution function in classical
statistical mechanics [2–4]; therefore, we find it natural to
inquire whether one can relate it to appropriate measurements
involving the position and momentum of the system.

The idea we develop is to introduce the first stage of the
measurement, or “pre-measurement,” explicitly in the QM
description, by coupling, successively in time, the system
observables we wish to study to auxiliary degrees of freedom,
or “probes,” and detect the probes, not the system itself. This
procedure represents a generalization of von Neumann’s model
of measurement [5–7]. Specifically, we couple projectors
associated with the system’s position and momentum to two
independent probes, at times t1 and t2, respectively. It turns
out that one can relate the Wigner function to correlations
of observables—each belonging to one of the two probes—
which, being distinct degrees of freedom and external to
the system, are compatible and admit a joint probability
distribution. These probe correlations are thus experimentally
accessible.

We first relate the Wigner function to the so-called
Kirkwood joint quasiprobability distribution of position and
momentum [8,9] which is, in general, a complex quantity. It is
then Kirkwood’s distribution which can be expressed in terms
of the abovementioned probe correlations, in the limit in which
the coupling becomes very weak.

In a historical context, it is interesting to mention that
Kirkwood introduced the joint quasiprobability distribution
in phase space that bears his name a year later than Wigner in-
troduced his, and with similar motivations related to statistical
mechanics applications. In the next decade Dirac introduced
essentially the same joint quasiprobability distribution for

noncommuting observables, with the aim of “discussing
trajectories for the motion of a particle in QM.”

We should remark that in the field of quantum optics,
the Wigner function has been related to a set of measurable
quantities different from the ones considered in the present
paper, namely, quadrature distributions which are experimen-
tally available, a method that constitutes an application to QM
of the computer-aided tomography scan [2–4].

Other quasidistributions have been proposed in the liter-
ature: e.g., Ref. [10] presents a family of quasidistribution
functions, of which Wigner function—which is the distribution
considered herewith—is a special case. As for the relation
between Wigner’s function and Kirkwood’s quasidistribution,
we also refer the reader to Refs. [11–13].

The paper is organized as follows. In the next section
we develop the scheme we just outlined, for a quantum-
mechanical system described in a continuous Hilbert space. In
Sec. 3 we then turn to studying a discrete, finite-dimensional
Hilbert space. The notion of Wigner function for a discrete
Hilbert space is a topic which has been widely studied in
the literature (a selection of these contributions is represented
by Refs. [14–27]). Here, we adopt an alternative definition—
which will be of interest in a geometrical context to be
described elsewhere—as the starting point to develop the
scheme presented above. We see that the discrete case is free
from a number of divergences that are encountered in the
continuous case. Various specific algebraic calculations have
been carried out in the appendices in order not to interrupt the
main presentation. We finally conclude in Sec. IV.

II. WIGNER FUNCTION AND KIRKWOOD
QUASIDISTRIBUTION FOR A CONTINUOUS

HILBERT SPACE

A. The Wigner transform of an operator defined
in a continuous Hilbert space

The Wigner transform (WT) of an operator Â is a mapping
from Hilbert space to phase space [1]. It can be expressed as
the inverse Fourier transform of the characteristic function of
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the operator. Using units in which q and p are dimensionless,
and � = 1, we have the definition [2–4]

WÂ(q,p) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
W̃Â(u,v)ei(uq+vp)dudv, (2.1a)

W̃Â(u,v) = Tr[Âe−i(uq̂+vp̂)]. (2.1b)

When the operator Â is the density operator ρ̂, we speak
of its WT as the Wigner function (WF) of the state. The
definition (2.1) is equivalent to the standard one, presented,
for convenience, in Eq. (A4).

The WT of an operator Â can also be expressed as

WÂ(q,p) = Tr[ÂP̂ (q,p)], (2.2)

P̂ (q,p) being a Hermitian operator. Using the definition of
WT given in Eq. (A4), P̂ (q,p) can be written as

P̂ (q,p) =
∫ ∞

−∞
e−ipy

∣∣∣q − y

2

〉 〈
q + y

2

∣∣∣ dy. (2.3)

We can also use the mutually unbiased bases [4] (MUB) states
|x ′,θ〉, eigenstates of the operator X̂θ = q̂ cos θ + p̂ sin θ—
and hence eigenstates of the exponential operator appearing in
Eq. (2.1b)—which satisfy the eigenvalue equation X̂θ |x ′,θ〉 =
x ′|x ′,θ〉, to express the operator P̂ (q,p) as

P̂ (q,p) = 1

2π

∫ π

0
dθ

∫ ∞

−∞
dx ′

∫ ∞

0
dt

× |t |e−it(x ′−q cos θ−p sin θ)|x ′; θ〉〈x ′; θ |,
(2.4a)

= − 1

π
P

∫ π

0
dθ

∫ ∞

−∞
dx ′

∂
∂x ′ |x ′; θ〉〈x ′; θ |

x ′ − (q cos θ + p sin θ )

(2.4b)

[cf. Ref. [4], Eq. (A6) (where ρ(x,y) is to be identified with
Wρ̂(q,p) and ρθ (x ′) with 〈x ′,θ |ρ̂|x ′,θ〉), and Eq. (23)].

The operator P̂ (q,p) and the WT of an (arbitrary) operator
Â possess the following attributes.

(1) The matrix elements of the operator P̂ (q,p) of Eq. (2.3)
in the coordinate basis are given by

〈q|P̂ (q ′,p′)|q̄〉 = eip′(q−q̄)δ(q + q̄ − 2q ′). (2.5)

(2) The WT of a Hermitian operator Â is real, which
follows immediately from the hermiticity of P̂ (q,p).

(3) The operators P̂ (q,p) fulfill the following orthogonal-
ity and closure relations:

1

2π
Tr[P̂ (q,p)P̂ (q ′,p′)] = δ(q − q ′)δ(p − p′), (2.6a)

1

2π

∫ ∞

−∞

∫ ∞

−∞
P̂ (q,p)dqdp = I, (2.6b)

I being the unit operator.

(4) The WT of the operators Â and B̂ satisfy the “product
formula,” or “overlap formula” [see, e.g., Ref. [2], Eq. (3.20),
and Ref. [3], Eq. (3.5)]:

∫ ∞

−∞

∫ ∞

−∞
WÂ(q,p)WB̂(q,p)

dqdp

2π
= Tr(ÂB̂). (2.7)

(5) The WF for the state ρ̂ satisfies the marginality relation

Tr
(
ρ̂P̂

θ

x ′
)

= 〈x ′,θ |ρ̂|x ′,θ〉

=
∫ ∞

−∞

∫ ∞

−∞
Wρ̂(q,p)δ(x ′ − (q cos θ + p sin θ ))

dqdp

2π
,

(2.8)

[see Ref. [4], Eq. (22)] which states that, if the system is in
state ρ̂, the probability to find it in the pure state |x ′,θ〉 is given
by the integral of the WF along the line q cos θ + p sin θ = x ′
in phase space. In particular, the marginal probability of q and
that for p take the standard form. Expression (2.8) is referred to
as the Radon transform [2–4] of the Wigner function Wρ̂(q,p).

(6) The WF is normalized as∫ ∞

−∞

∫ ∞

−∞
Wρ̂(q,p)

dqdp

2π
= 1. (2.9)

B. Relation between the Wigner function and the Kirkwood
quasidistribution for a continuous Hilbert space

As shown in Appendix A, one can express the WF in terms
of Kirkwood’s quasidistribution as

Wρ̂(q,p) = 2
∫∫

dq ′dp′e2i(q−q ′)(p−p′)K(p′,q ′). (2.10)

Here, the quantity

K(p,q) = Tr(ρ̂ P̂pP̂q), (2.11a)

with the definition

P̂q = |q〉〈q|, (2.11b)

P̂p = |q〉〈p|, (2.11c)

is Kirkwood’s joint quasidistribution [8,9] of q and p, which
is, in general, complex. Similar results can be found in
Refs. [11–13].

The operators P̂q and P̂p are not proper position and
momentum projectors, since they are not idempotent. In order
to use the formalism developed in Ref. [7] we use, instead,
the operators P̂qn

and P̂pm
defined in Appendix B. For this

purpose, we write Eq. (2.10) as

Wρ̂(q,p) = 2
∞∑

n,m=−∞

∫ qn+δ/2

qn−δ/2
dq ′

×
∫ pm+δ/2

pm−δ/2
dp′e2i(q−q ′)(p−p′)Trs(ρ̂s P̂p′ P̂q ′ )

(2.12a)
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≈ 2
∞∑

n,m=−∞
e2i(q−qn)(p−pm)Trs

×
(

ρ̂s

∫ pm+δ/2

pm−δ/2
dp′ P̂p′

∫ qn+δ/2

qn−δ/2
dq ′ P̂q ′

)
(2.12b)

= 2
∞∑

n,m=−∞
e2i(q−qn)(p−pm)Trs

(
ρ̂sP̂pm

P̂qn

)
(2.12c)

= 2
∞∑

n,m=−∞
e2i(q−qn)(p−pm)K(pm,qn), (2.12d)

where K(pm,qn) is Kirkwood’s joint quasiprobability distri-
bution of pm and qn defined in Eq. (B8). The discretization
involved in going from Eq. (2.12a) to Eq. (2.12b) is an
approximation. We expect that approximation to be justified if
the interval δ is small enough that the factor e2i(q−q ′)(p−p′) does
not vary appreciably for q ′ and p′ inside that interval. Alterna-
tively, it could be justified using a “mean-value theorem” [28].
An argument where the approximation appears at the level of
c-number functions can be found in Appendix B, right below
Eq. (B3).

According to Eq. (B9), Kirkwood’s distribution, in turn, can
be expressed in terms of the position-position correlation of the
two probes and their momentum-position correlation: these are
compatible variables, detected in measurements described by
von Neumman’s model with very weak coupling; specifically,
in this model the observables coupled in succession to the two
probes are the projectors for the position and momentum of the
system proper. Substituting the result of Eq. (B9) in Eq. (2.12)
we thus find

Wρ̂(q,p) = 2
∞∑

n,m=−∞
e2i(q−qn)(p−pm)

×
{

limε1→0
1

ε1ε2

[
〈Q̂1Q̂2〉(P̂pm ←P̂qn )

+ i

2σ 2
P1

〈P̂1Q̂2〉(P̂pm ←P̂qn )

]}
. (2.13)

This result states that the Wigner function, which is defined in
the system phase space, can be related to a set of measurable
quantities, consisting of the two-probe correlations detected
in the experimental setup described above, and thereby
reconstructed therefrom.

III. WIGNER FUNCTION AND KIRKWOOD
QUASIDISTRIBUTION FOR A DISCRETE,
FINITE-DIMENSIONAL HILBERT SPACE

The analysis performed in the previous section for a
continuous Hilbert space is now extended with a similar
philosophy to a discrete, finite-dimensional Hilbert space.

A. The Wigner transform for a discrete, finite-dimensional
Hilbert space

The possibility of defining a WT for a Hilbert space
of finite dimensionality has been studied extensively in the

literature [14–27]. Here we propose, for the WT of an operator
Â defined in a Hilbert space of dimensionality N , the definition

WÂ(q,p) = 1

N

{
N−1∑
b=0

N−1∑
k=1

W̃Â(k,b)ei 2π
N

k(−p+bq)

+
N−1∑
l=0

W̃Â(l)ei 2π
N

lq

}
, (3.1a)

W̃Â(k,b) = Tr{Â[(X̂Ẑb)k]†}, (3.1b)

W̃Â(l) = Tr[Â(Ẑl)†]. (3.1c)

The variables q,p = 0,1, . . . ,N − 1 denote the coordinate
and momentum in our discrete phase space, which thus
consists of an N × N set of points. The quantities Ẑ and X̂

appearing in Eqs. (3.1) are the Schwinger operators, defined,
for convenience, in Appendix C. Definition (3.1) is, for the
discrete case, analogous to that of Eqs. (2.1) for the continuous
case. The N (N − 1) operators (X̂Ẑb)k (b = 0,1, . . . ,N −
1; k = 1, . . . ,N − 1) appearing in Eq. (3.1b), together with
the N operators Ẑl (l = 0, . . . ,N − 1) appearing in Eq. (3.1c),
form a complete set of N2 operators [see Eqs. (C7)].

We take the dimensionality N to be a prime number larger
than 2, as in this case the integers 0,1, . . . ,N − 1 constitute a
mathematical field, with addition, subtraction, multiplication,
and division defined ModN (see, e.g., Refs. [17,27,30]). This
field plays a role similar to that of the real numbers in the
continuous case studied in the previous section. The quantity
ω = exp(2πi/N), one of the N th roots of 1, appears frequently
in our analysis; we agree that the numerical exponents of ω

to be considered in what follows always belong to the ModN

algebra. When the dimensionality N is a prime number, we
also know that the problem admits exactly N + 1 mutually
unbiased bases (MUB) (see, e.g., Refs. [27,29]). The operators
X̂Ẑb, b = 0, . . . N − 1 define N of the N + 1 MUB, [see
Eq. (C8)], while the operator Ẑ defines the so-called “reference
basis,” or “computational basis.”

It is shown in Appendix D that the definition (3.1) can be
written in terms of MUB as

WÂ(q,p) = 1

N

N−1∑
b=0̈

N−1∑
k=0

N−1∑
m=0

e
2πi
N

k[Mq,p(b)−m]

× 〈m; b|Â|m; b〉 − Tr(Â), (3.2a)

where the reference basis has been denoted, for convenience,
as 0̈. We have defined the quantity

Mq,p(b) =
{

(−p + bq) Mod[N ], for b = 0, . . . ,N − 1,

q, for b = 0̈.

(3.2b)

For a given pair of variables, q and p, Eq. (3.2b) states
that, for b = 0̈, Mq,p(0̈) = q; for b = 0, Mq,p(0) =
−p Mod[N ] = N − p; and for subsequent values of b,
Mq,p(b) = (−p + bq) mod[N ]. Thus, Mq,p(b) may be
viewed as specifying “points” in a b-m plane: b is along
the x axis and takes the values b = 0̈,0,1, . . . ,N − 1, which
denote the N + 1 bases; m is along the y axis and takes the
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q

FIG. 1. Illustration of the function m = Mq,p(b) in the b-m plane,
for N = 5 and the particular pair of “phase-space” values q = 2 and
p = 1.

values m = 0,1, . . . ,N − 1, which denote the N states for
each basis. This aggregate of points, for fixed q and p, may
be described as a “line” in the b-m plane. This is illustrated,
for a particular case, in Fig. 1.

Further study, based on such a view, is in progress. We thus
refer to Mq,p(b) as a line, and its corresponding operator, P̂q,p,
Eq. (3.4c) below, as a line operator; it is similar to the “phase-
point” operator introduced in Secs. V and VI of Ref. [17].

In Eq. (3.2a) we can do the sum over k, using the result

1

N

N−1∑
k=0

e
2πi
N

k[Mq,p(b)−m] = δm, Mq,p(b), (3.3)

where the arguments of the Kronecker δ are understood to be
Mod[N ]; in other words, for given q and p, the sum (3.3)
vanishes unless m equals (−p + bq) Mod[N ] when b 	= 0̈ or
q when b = 0̈. Equation (3.2a) can then be given the alternative
forms

WÂ(q,p) =
N−1∑
b=0̈

〈Mq,p(b); b|Â|Mq,p(b); b〉 − Tr(Â), (3.4a)

= Tr(ÂP̂q,p), (3.4b)

where we have defined the Hermitian operator

P̂q,p =
N−1∑
b=0̈

|Mq,p(b); b〉〈Mq,p(b); b| − Î, (3.4c)

Î being the unit operator. From Eq. (3.2a), the line operator
P̂q,p can also be written more explicitly as

P̂q,p = 1

N

N−1∑
b=0

N−1∑
k=1

N−1∑
m=0

e
2πi
N

k(−p+bq−m)|m; b〉〈m; b|

+ 1

N

N−1∑
k=0

N−1∑
n=0

e
2πi
N

k(q−n)|n〉〈n|. (3.5)

Equations (3.5) and (3.4c) are analogous to Eqs. (2.4a)
and (2.4b), which correspond to the continuous case. The
integrals over θ , x ′, and |t | of the continuous case correspond
to the sums over b, m, and k of the discrete one.

The WT of Eq. (3.1) and the line operator of Eq. (3.4c)
have the following properties, analogous to the ones for the
continuous case.

(1) As shown in Appendix E, the matrix elements of the
line operator with respect to the states of the reference basis
are given by

〈q|P̂q ′,p′ |q̄〉 = δqq ′δq̄q ′ − δqq̄ δ2q, 2q ′+1 + δq+q̄, 2q ′+1 e
2πi
N

p′(q−q̄).

(3.6)

(2) The WT of a Hermitian operator Â is real, i.e.,

WÂ(q,p) = W


Â
(q,p), for A† = A. (3.7)

This follows immediately from the hermiticity of the line
operators P̂q,p.

(3) The line operators P̂q,p, N2 in number, form a complete
orthonormal set of operators, in the following sense:

(i) It is shown in Appendix F that they fulfill the
orthogonality relation

1

N
Tr[P̂q,p P̂q ′,p′ ] = δq,q ′δp,p′ , (3.8)

which is the discrete version of Eq. (2.6a).
(ii) From expression (3.5), or from Eq. (3.4c), one finds,

directly, that they satisfy the closure relation

1

N

N−1∑
q,p=0

P̂q,p = I, (3.9)

which is the discrete version of Eq. (2.6b).
(iii) An N × N matrix Â can thus be written as a linear

combination of the P̂q,p’s, i.e.,

Â = 1

N

N−1∑
q,p=0

Tr(ÂP̂q,p)P̂q,p (3.10a)

= 1

N

N−1∑
q,p=0

WÂ(q,p)P̂q,p. (3.10b)

(4) The WTs of the operators Â and B̂ fulfill the so-called
“product formula” [see also Ref. [17], Eq. (15)]

1

N

N−1∑
q,p=0

WÂ(q,p)WB̂ (q,p) = Tr(ÂB̂), (3.11)

in analogy with Eq. (2.7) for the continuous case. This can be
proved as follows. From Eq. (3.10b) applied to the operators
Â and B̂, and using the orthogonality relation (3.8), we have

Tr(ÂB̂) = 1

N2

N−1∑
q,p=0

N−1∑
q ′,p′=0

WÂ(q,p)WB̂(q ′,p′)Tr[P̂q,p P̂q ′,p′ ]

(3.12a)

= 1

N

N−1∑
q,p=0

WÂ(q,p)WB̂ (q,p). (3.12b)
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(5) The WF Wρ̂(q,p) satisfies the marginality property,
written in terms of the projector P̂mb = |m,b〉〈m,b|,

Tr(ρ̂ P̂mb) = 〈m,b|ρ̂|m,b〉 = 1

N

N−1∑
q,p=0

Wρ̂(q,p)δMq,p(b),m,

(3.13)

where we recall that Mq,p(b) is defined in Eq. (3.2b).
Equation (3.13), analogous to Eq. (2.8) for the continuous
case, states that the probability to find the system in the state
m of the basis b (of our set of N + 1 MUBs) is 1/N times the
sum of the WF over the points in the phase-space plane q,p

that satisfy Mq,p(b) = m. The marginality relation, Eq. (3.13),
is obtained from the product formula (3.12b) for Â = ρ̂ and
B = P̂mb, the WT of the latter being, from Eq. (3.4b),

WP̂mb
(q,p) = Tr(P̂mbP̂q,p) (3.14a)

= Tr

⎧⎨
⎩|m; b〉〈m; b|

⎡
⎣N−1∑

b′=0̈

|Mq,p(b′); b′〉

× 〈Mq,p(b′); b′| − Î

⎤
⎦

⎫⎬
⎭ (3.14b)

= |〈m; b|Mq,p(b); b〉|2

+
N−1∑

b′=0̈,(	=b)

|〈m; b|Mq,p(b′); b′〉|2 − 1 (3.14c)

= δMq,p(b),m + N
1

N
− 1 (3.14d)

= δMq,p(b),m. (3.14e)

We comment in passing that the right-hand side of Eq. (3.13)
can be considered as defining the Radon transform of the WF
Wρ̂(q,p) (see, e.g., Refs. [2–4,27]).
Two particular cases of the above marginality property are as
follows: (i) for b = 0̈, m is a coordinate, which we may call q0,
and the resulting summation in phase space [i.e., the right-hand
side of Eq. (3.13); see Eq. (3.2b)] is over the line in the (q,p)
plane containing all p’s for that q0; i.e.,

b = 0̈ : Tr
(
ρ̂P̂q0,0̈

) = 〈q0|ρ̂|q0〉

= 1

N

∑
q,p

Wρ̂(q,p)δq,q0 = 1

N

∑
p

Wρ̂(q0,p); (3.15)

(ii) for b = 0, we identify m = N − p0 [see Eq. (C9c)], and
the resulting summation in phase space [i.e., the right-hand
side of Eq. (3.13); see Eq. (3.2b): Mq,p(0) = N − p] is over
the line in the (q,p) plane containing all q’s for that p0; i.e.,

b = 0 : Tr
(
ρ̂P̂N−p0,0

) = 1

N

∑
q,p

Wρ̂(q,p)δN−p,N−p0 ,

(3.16a)

i.e., 〈p0|ρ̂|p0〉 = 1

N

∑
q

Wρ̂(q,p0). (3.16b)

These are the standard marginality relations, which can also be
obtained trivially from the form (3.4) for the WF, without using
the product formula. For the case b = 1, . . . ,N , Eq. (3.13)
states that

〈m,b|ρ̂|m,b〉 = 1

N

∑
q,p

Wρ̂(q,p)δ−p+bq,m, (3.17)

the sum on the right-hand side being over the points on the
line in phase space (q,p) defined by −p + bq = mMod[N ],
for fixed m,b.

(6) The WF is normalized as

1

N

N−1∑
p,q=0

Wρ̂(q,p) = 1, (3.18)

just as in Eq. (2.9) for the continuous case.
Notice that the various properties mentioned in the previous

section for the continuous case can be translated to the discrete
case with the correspondence 1/2π ⇒ 1/N .

B. Relation between the Wigner function and the Kirkwood
quasidistribution for a discrete, finite-dimensional Hilbert space

Going back to our program of relating the WF to the
Kirkwood quasidistribution, we show in Appendix G the
relation

Wρ̂(q,p) =
N−1∑

q ′,p′=0

e
2πi
N

2(q−q ′+ N+1
2 )(p−p′)Kp′q ′ + 〈q|ρ̂|q〉

− 〈q + (N + 1)/2|ρ̂|q + (N + 1)/2〉. (3.19)

Notice that in this equation the labels occurring in bras and
kets must be understood Mod[N ]. It can be checked directly
that the result (3.19) fulfills the normalization condition (3.18).

The result of Eq. (3.19) is analogous to that of Eqs. (2.10)
and (2.12) for the continuous case. The Kirkwood distribution
K(p,q) is defined as in Eqs. (2.11) for the continuous case,
except that the states |q〉 and |p〉 are to be defined as in
Eqs. (C1a) and (C5a).

Just as in the previous section, we notice from Eq. (B9) that
Kirkwood’s distribution can be related to the correlations of
two probes, in a very weak-coupling measurement designed
to premeasure in succession the projectors for the position
and momentum of the system. For the present discrete case,
(p,q = 0, . . . ,N − 1), we write relation (B9) as

K(p,q) = limε1→0
1

ε1ε2

[
〈Q̂1Q̂2〉(Pp←Pq )

+ i

2σ 2
P1

〈P̂1Q̂2〉(Pp←Pq )

]
. (3.20)

Substituting this relation in Eq. (3.19) we thus find

Wρ̂(q,p) =
N−1∑

q ′,p′=0

e
2πi
N

2(q−q ′+(N+1)/2)(p−p′)
{

limε1→0
1

ε1ε2

×
[
〈Q̂1Q̂2〉(Pp′←Pq′ ) + i

2σ 2
P1

〈P̂1Q̂2〉(Pp′←Pq′ )
]}

+1

ε
〈Q̂〉(Pq ) − 1

ε
〈Q̂〉(Pq+(N+1)/2). (3.21)
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The last two terms in Eq. (3.21) are the expectation values
of the probe position in a single measurement designed to
premeasure the projectors Pq and Pq+(N+1)/2, respectively.

Result (3.21) is the discrete Hilbert-space counterpart of the
duly discretized continuous case that was given in Eq. (2.13)
of the previous section.

As a result, the Wigner function, which is defined in
the system discrete phase space, can be related to a set
of measurable quantities, consisting of the two-probe and
single-probe expectation values obtained in the experimental
setup described above, and reconstructed therefrom.

IV. CONCLUSIONS

In this paper we posed the question whether it is possible to
find appropriate measurements involving the system’s position
and momentum that would allow the reconstruction of the
Wigner function of the system state. We were able to give an
affirmative answer to this question. The type of measurements
needed are generalizations of the model envisaged by von
Neumann in his model of QM measurement. They involve
successive couplings of two probes with projectors associated
with the system’s position and momentum. In this model, what
one detects are the correlation functions of the two probes,
which are compatible dynamical variables, not the system
itself.

We first considered the case in which the system is described
in a continuous Hilbert space, and then we turned to the study
of a description in a discrete, finite-dimensional Hilbert space.

The Wigner function for this latter case of a discrete,
finite-dimensional Hilbert space, has been widely studied
in the literature. Here we proposed an alternative version,
formulated, in this paper, within a standard algebraic approach;
however, as it turns out, this version can be reformulated
entirely in terms of “finite-geometry” concepts, an approach
that associates states and operators in Hilbert space with
lines and points of the geometry [27]. This latter approach
is conceptually very attractive, and its development will be
postponed to a future publication.
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APPENDIX A: DERIVATION OF THE RELATION EQ. (2.10)
BETWEEN WF AND KIRKWOOD QUASIDISTRIBUTION

FOR THE CONTINUOUS CASE

The Wigner function is defined in Eq. (2.1). Using the
Baker-Campbell-Hausdorff identity (Ref. [31], p. 323)

eÂ+B̂ = eÂeB̂e− 1
2 [Â,B̂], (A1)

valid when Â and B̂ commute with their commutator, and
expressing the operators e−ivp̂ and e−iuq̂ in their spectral

representation, we can write W̃ρ̂(u,v) as

W̃ρ̂(u,v) = e− i
2 uv

∫ ∞

−∞

∫ ∞

−∞
dq ′dp′e−i(uq ′+vp′)K(p′,q ′), (A2)

where K(q,p) is Kirkwood’s quasidistribution [8,9] of
Eq. (2.11a). Introducing Eq. (A2) in Eq. (2.1a) and using the
result

1

4π

∫ ∞

−∞

∫ ∞

−∞
e

i
2 (ξu+ηv−uv)dudv = e

i
2 ξη, (A3)

we find Eq. (2.10).
An alternative derivation of this result is based on the

standard definition of the WT of an operator Â (see, e.g.,
Refs. [1–4])

WÂ(q,p) =
∫ ∞

−∞
e−ipy

〈
q + y

2

∣∣∣ Â ∣∣∣q − y

2

〉
dy. (A4)

The Kirkwood distribution of Eq. (2.11a) can be written
in terms of Wigner functions using the product formula of
Eq. (2.7) as

K(p,q) =
∫∫

Wρ̂(q ′,p′)WP̂pP̂q
(q ′,p′)

dq ′dp′

2π
. (A5)

We have

WP̂pP̂q
(q ′,p′) =

∫
e−ip′y

〈
q ′ + y

2

∣∣∣ P̂pP̂q

∣∣∣q ′ − y

2

〉
dy (A6a)

= 1

π
e−2i(p−p′)(q−q ′). (A6b)

From Eq. (A5) we find

∫∫
K(p̄,q̄)e2i(p−p̄)(q−q̄)dq̄dp̄

=
∫∫∫∫

Wρ(q ′,p′)WPp̄Pq̄
(q ′,p′)e2i(p−p̄)(q−q̄)

× dq ′dp′

2π
dq̄dp̄, (A7a)

=
∫∫∫∫

Wρ(q ′,p′)
[

1

π
e−2i(p̄−p′)(q̄−q ′)

]
e2i(p̄−p)(q̄−q)

× dq ′dp′

2π
dq̄dp̄, (A7b)

= 1

2
Wρ(p,q), (A7c)

which is the result (2.10). From Eq. (A7a) to Eq. (A7b) we
have used the result (A6b). From Eq. (A7b) to Eq. (A7c) we
have used the identity∫∫

e−2i(p̄−p′)(q̄−q ′)e2i(p̄−p)(q̄−q)dq̄dp̄

= π2δ(p′ − p)δ(q ′ − q). (A8)

APPENDIX B: VON NEUMANN MODEL FOR POSITION
AND MOMENTUM

The operator P̂q = |q〉〈q| of Eq. (2.11b) is not a proper
position projector, since it is not idempotent. In order to use
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the formalism developed in Ref. [7], we define the operators
(with qn = nδ)

Pqn
=

∫ qn+δ/2

qn−δ/2
|q〉dq〈q|, (B1)

which have the properties

Pqn
Pqn′ = δnn′Pqn

, (B2a)
∞∑

n=−∞
Pqn

= 1. (B2b)

Similarly, for the momentum we define the operators

Ppm
=

∫ pm+δ/2

pm−δ/2
|p〉dp〈p|, (B3)

which have similar properties.
The approximation involved in going from Eq. (2.12a) to

Eq. (2.12b) in the text can be justified in terms of c-number
functions in the following way. For any two 〈φ| and |ψ〉,
consider the following integral and the approximations to it
given in the subsequent equations:

〈φ|
∫ δ/2

−δ/2
f (q ′)Pq ′dq ′|ψ〉 =

∫ δ/2

−δ/2
f (q ′)φ∗(q ′)ψ(q ′)dq ′

(B4a)

≈ f (q1)
∫ δ/2

−δ/2
φ∗(q ′)ψ(q ′)dq ′

(B4b)

= 〈φ|f (q1)Pq0 |ψ〉, (B4c)

for some suitable q1 ∈ [−δ/2,δ/2]. In Eq. (B4c) we have
used the notation of Eq. (B1). With this argument we thus
approximate the operator inside the first matrix element in
Eq. (B4a) by the one in Eq. (B4c).

Reference [7] studies the extension to two probes of von
Neumman’s measurement model (vNM),

Ĥ (t) = ε1δ(t − t1)P̂qn
P̂1 + ε2δ(t − t2)P̂pm

P̂2, 0 < t1 < t2,

(B5)

in which P̂qn
plays the role of the observable to be premeasured

first andPpm
plays the role of the observable to be premeasured

later.
The position-position and momentum-position correlations

of the two probes are found to be

1

ε1ε2
〈Q̂1Q̂2〉(P̂pm ←P̂qn ) = ReW

(P̂pm ←P̂qn )
11 (ε1), (B6a)

1

ε1ε2
〈P̂1Q̂2〉(P̂pm ←P̂qn ) = 2σ 2

P1
ImW

(P̂pm ←P̂qn )
11 (ε1), (B6b)

where

W
(P̂pm ←P̂qn )
11 (ε1) =

∑
n′

Gn′n(ε1)Trs
(
ρ̂sP̂qn′ P̂pm

P̂qn

)
, (B7a)

Gn′n(ε1) = δnn′ + e
− 1

2 σ 2
P1

ε2
1 (1 − δnn′ ). (B7b)

A Gaussian distribution for the original state of the probes
is assumed, and σ 2

P1
denotes the momentum variance of probe

1. In the limit ε1 → 0, the above expression (B7a) becomes

W
(P̂pm ←P̂qn )
11 (0) = Trs

(
ρ̂sP̂pm

P̂qn

) ≡ K(pm,qn), (B8)

which is Kirkwood’s joint quasiprobability distribution [8,9]
for the variables pm and qn, in the original state of the
system ρ̂s .

Using Eqs. (B6), Kirkwood’s joint quasidistribution can
thus be expressed in terms of measurements performed on the
probes as

K(pm,qn) = limε1→0
1

ε1ε2

[
〈Q̂1Q̂2〉(P̂pm ←P̂qn )

+ i

2σ 2
P1

〈P̂1Q̂2〉(P̂pm ←P̂qn )

]
. (B9)

APPENDIX C: SCHWINGER OPERATORS AND MUB

We consider our N -dimensional Hilbert space to be spanned
by N distinct states |q〉, with q = 0,1, . . . ,(N − 1), which are
subject to the periodic condition |q + N〉 = |q〉. These states
are designated as the “reference basis,” or “computational
basis,” of the space. We shall follow Schwinger [32] and
introduce the unitary operators X̂ and Ẑ, defined by their action
on the states of the reference basis by the equations

Ẑ|q〉 = ωq |q〉, ω = e2πi/N , (C1a)

X̂|q〉 = |q + 1〉. (C1b)

The operators X̂ and Ẑ fulfill the periodic condition

X̂N = ẐN = Î, (C2)

Î being the unit operator. These definitions lead to the
commutation relation

ẐX̂ = ωX̂Ẑ. (C3)

The two operators Ẑ and X̂ form a complete algebraic set, in
that only a multiple of the identity commutes with both [32].
As a consequence, any operator defined in our N -dimensional
Hilbert space can be written as a function of Ẑ and X̂.

We introduce the Hermitian operators p̂ and q̂, which
play the role of “momentum” and “position,” through the
equations [29,33]

X̂ = ω−p̂ = e− 2πi
N

p̂, (C4a)

Ẑ = ωq̂ = e
2πi
N

q̂ . (C4b)

What we defined as the reference basis can thus be consid-
ered as the “position basis.” With Eq. (C3) and definitions (C4),
the commutator of q̂ and p̂ in the continuous limit [29,33] is
the standard one, [q̂,p̂] = i.

The “momentum basis” consists of the eigenstates of X̂,
which can be expanded in terms of the position basis as

|p〉 =
N−1∑
q=0

e
2πi
N

pq

√
N

|q〉 (C5a)
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and satisfy the eigenvalue equation [see Ref. [33], Eq. (12)]

X̂|p〉 = e− 2πi
N

p|p〉. (C5b)

The N2-dimensional matrix space is spanned by the
complete orthonormal N2 operators X̂mẐl , with m,l =
0,1, . . . ,(N − 1), so that any N × N matrix can be written as a
linear combination of these N2 operators. A familiar example
is a two-dimensional Hilbert space, where any 2 × 2 matrix can
be written as a linear combination of the three Pauli matrices
plus the unit matrix, which can also be written as σx , σz, σxσz,
and I .

For N = prime > 2, we find the following identities:

(X̂Ẑb)k = ω
k(k−1)

2 bX̂kẐkb (C6a)

= ω− k(k+1)
2 bẐkbX̂k, (C6b)

X̂kẐl = ω−klẐlX̂k, (C6c)

(X̂Ẑb)N = Î . (C6d)

Our complete orthonormal set of N2 operators can be
taken as

(X̂Ẑb)k, b = 0,1, . . . ,N − 1, (C7a)

k = 1, . . . ,N − 1,

Ẑl , l = 0,1, . . . ,N − 1. (C7b)

The operator X̂Ẑb possesses N eigenvectors, denoted by
|m,b〉 (see Eqs. (10) and (11) of Ref. [27]):

X̂Ẑb|m,b〉 = ωm|m; b〉, (C8a)

|m; b〉 = 1√
N

N−1∑
n=0

ω
b
2 n(n−1)−nm|n〉,

b,m = 0,1, . . . ,N − 1. (C8b)

Here, |n〉 (n = 0, . . . ,N − 1) denotes the N states of the
reference basis. We have, altogether, N + 1 MUB. The states
with b = 0, i.e.,

|m; 0〉 = 1√
N

N−1∑
n=0

e− 2πi
N

mq |q〉, (C9a)

= 1√
N

N−1∑
n=0

e
2πi
N

(N−m)q |q〉, (C9b)

are eigenstates of p̂ which, from Eq. (C5a), can be written as

|m; 0〉 = |p = −m = (N − m)Mod[N ]〉. (C9c)

APPENDIX D: DERIVATION OF EQS. (3.2) FOR
THE DISCRETE WIGNER FUNCTION

We can write the quantities W̃Â,B̂(k,b) and W̃Â,B̂(l) appear-
ing in Eqs. (3.1) in terms of the MUB basis |m,b〉 defined in
Eqs. (C8). The operator X̂Ẑb can be written in the spectral

representation as

X̂Ẑb =
N−1∑
m=0

|m,b〉ωm〈m,b|, (D1a)

[(X̂Ẑb)k]† =
N−1∑
m=0

|m,b〉ω−mk〈m,b|, (D1b)

so that

W̃Â(k,b) =
N−1∑
m=0

ω−mk〈m,b|Â|m,b〉. (D2)

Similarly,

Ẑ =
N−1∑
m=0

|n〉ωn〈n|, (D3a)

(Ẑl)† =
N−1∑
n=0

|n〉ω−nl〈n|, (D3b)

so that

W̃Â(l) =
N−1∑
n=0

ω−nl〈n|Â|n〉. (D4)

Substituting these results in Eqs. (3.1), we obtain Eqs. (3.2).

APPENDIX E: DERIVATION OF THE RELATION (3.6) FOR
THE MATRIX ELEMENTS OF THE LINE OPERATOR

In the definition (3.4c) of the line operator we single out
the first two terms to write

P̂q ′,p′ = |q ′〉〈q ′| + |N − p′; 0〉〈N − p′; 0|

+
N−1∑
b=1

| − p′ + bq ′; b〉〈−p′ + bq ′; b| − Î. (E1)

Recall, from Eqs. (C9), that |N − p′; 0〉 = |p′〉 and that −p′ +
bq ′ is understood ModN .

Using Eqs. (C8) for the states of the MUB, we write the
matrix element 〈q|P̂q ′,p′ |q̄〉 as

〈q|P̂q ′,p′ |q̄〉 = δqq ′δq̄q ′ + 1

N
e

2πi
N

p′(q−q̄) − δq,q̄

+ 1

N

N−1∑
b=1

e
2πi
N [ b

2 q(q−1)−q(−p′+bq ′)]

× e− 2πi
N [ b

2 q̄(q̄−1)−q̄(−p′+bq ′)] (E2a)

= δqq ′δq̄q ′ + 1

N
e

2πi
N

p′(q−q̄) − δq,q̄

+ 1

N
(α − 1)e

2πi
N

p′(q−q̄). (E2b)

The quantity α is defined as

α =
N−1∑
b=0

e
2πi
N

b[ 1
2 (q−q̄)(q+q̄−1−2q ′)] (E3)
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and is nonzero only when
1
2 (q − q̄)(q + q̄ − 1 − 2q ′) = 0 Mod[N ]. (E4)

That is,

α = N [δq, q̄ + δq+q̄, 1+2q ′ − δq, q̄δq+q̄, 1+2q ′ ], (E5)

where the arguments of the Kronecker δ’s are understood, as always, Mod[N ]. Substituting (E5) in Eq. (E2b), we find the
result (3.6).

APPENDIX F: PROOF OF THE ORTHOGONALITY RELATION, EQ. (3.8)

The definition of a “line,” Eq. (3.2b), implies that two distinct lines, i.e., such that their parameters q and/or p are not identical,
have one, and only one point, i.e., M(b), in common. We illustrate this in the case of two lines with common p but distinct q’s:
q 	= q ′. We have then that M(b) of the first equals M ′(b) of the second iff bq = bq ′, which implies, for q 	= q ′, that b = 0: i.e.,
the only common point is at b = 0, which is consistent with having a common p; there is no other common point for N a prime
number.

Of course, two lines with the same q and p have all their points, N + 1 in number, in common.
From Eq. (3.4c), the trace appearing on the left-hand side of Eq. (3.8) can be written as

Tr[P̂q,p P̂q ′,p′ ] =
∑

b

Tr [|Mq,p(b),b〉〈Mq,p(b),b|Mq ′,p′ (b),b〉〈Mq ′,p′ (b),b|]

+
∑
b 	=b′

Tr[|Mq,p(b),b〉〈Mq,p(b),b|Mq ′,p′ (b′),b′〉〈Mq ′,p′ (b′),b′|]

−
∑

b

Tr[|Mq,p(b),b〉〈Mq,p(b),b|] −
∑
b′

Tr[|Mq ′,p′ (b′),b′〉〈Mq ′,p′ (b′),b′|] + TrI

≡ A + B − C − C ′ + D. (F1)

That D = N and C = C ′ = N + 1 is obvious. For two distinct lines, thus having one point in common, A = 1. For two identical
lines, A = N + 1.

Now consider B. We have, for b 	= b′, |〈Mq,p(b),b|Mq ′,p′ (b′),b′〉|2 = 1/N , since the bra and ket belong to two MUB. Since
the summation in B contains (N + 1)N terms, we find B = N + 1.

Thus

Tr[P̂q,p P̂q ′,p′ ] =
{

1 + (N + 1) − 2(N + 1) + N = 0, for (q,p) 	= (q ′,p′)
(N + 1) + (N + 1) − 2(N + 1) + N = N, for (q,p) = (q ′,p′).

(F2)

The result of Eq. (3.8) then follows.

APPENDIX G: DERIVATION OF THE RELATION EQ. (3.19)
BETWEEN THE WF AND THE KIRKWOOD

QUASIDISTRIBUTION FOR THE DISCRETE CASE

Here we proceed in analogy with the derivation given in
Appendix A for the continuous case, starting from Eq. (A5).

Using the product formula, Eq. (3.11), the Kirkwood
distribution can be written as

Kp,q = Tr(ρ̂ PpPq) (G1a)

= 1

N

N−1∑
q ′,p′=0

Wρ(q ′,p′)WPpPq
(q ′,p′). (G1b)

For the second WT we have

WPpPq
(q ′,p′) = Tr(PpPqP̂q ′,p′ ) (G2a)

= 〈p|q〉〈q|P̂q ′,p′ |p〉 (G2b)

=
∑

q̄

〈p|q〉〈q|P̂q ′,p′ |q̄〉〈q̄|p〉, (G2c)

and substituting the result (3.6) for the matrix element of the
line operator, we find

WPpPq
(q ′,p′)

= 1

N
{δqq ′ − δ2q, 2q ′+1 + e− 2πi

N
(p−p′)[2(q−q ′)−1]}. (G2d)

From Eq. (G1b) we construct the combination∑
q̄p̄

Kp̄q̄e
2πi
N

2(q−q̄)(p−p̄)

= 1

N

∑
q ′p′q̄p̄

Wρ̂(q ′,p′)WPp̄Pq̄
(q ′,p′)e

2πi
N

2(q−q̄)(p−p̄). (G3a)

Inserting the result (G2d), we find

= 1

N2

∑
q ′p′

Wρ̂(q ′,p′)

∑
q̄p̄

{δq̄q ′ − δ2q̄, 2q ′+1 + e− 2πi
N

(p̄−p′)[2(q̄−q ′)−1]}

× e
2πi
N

2(q−q̄)(p−p̄). (G3b)
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Evaluating the various sums we obtain Kronecker δ’s, thus giving

= 1

N2

∑
q ′p′

Wρ̂(q ′,p′)[Nδqq ′ − Nδ2(q−q ′), 1 + N2δpp′δ2(q−q ′), 1]. (G3c)

Recalling that 1/2 = (N + 1)/2 Mod[N ],∑
q̄p̄

Kp̄q̄e
2πi
N

2(q−q̄)(p−p̄) = 1

N

∑
p′

Wρ̂(q,p′) − 1

N

∑
p′

Wρ̂(q − (N + 1)/2,p′) + Wρ̂(q − (N + 1)/2,p)

(G4)

or

Wρ̂(q,p) = 〈q|ρ̂|q〉 − 〈q + (N + 1)/2|ρ̂|q + (N + 1)/2〉 +
∑
q̄p̄

Kp̄q̄e
2πi
N

2(q−q̄+(N+1)/2)(p−p̄), (G5)

which is the desired relation (3.19).
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