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Information-theoretic metric as a tool to investigate nonclassical correlations
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In this paper we study an application of an information-theoretic distance between two measurements to
investigate nonclassical correlations. We postulate the triangle principle, which states that any information-
theoretic distance is valid for any sets of measurements, regardless if they can be jointly measured or not. As a
consequence, the triangle inequality for this distance is obeyed for any three measurements. This simple principle
is valid in any classical realistic theory, however, it may not hold in quantum theory. It leads to the derivation of
certain inequalities whose violations are an indicator of nonclassicality. Some of these inequalities formally look
the same as those found in the literature on local realism and noncontextuality, but we also derive completely
different inequalities. We also show that our geometrical approach naturally implies monogamy of nonclassical
correlations.
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I. INTRODUCTION

Since the seminal papers by Bell [1] and Kochen-Specker
[2] we know that quantum mechanics is incompatible with the
assumptions of local realism (LR) and noncontextuality (NC).
The NC-LR hypothesis states that all measurable properties
of a physical system do not depend on the context in which
they are measured. More precisely, suppose a given physical
system has properties A,B, and C that yield outcomes a,
b, and c with some probability distributions p(a), p(b), and
p(c). Suppose that the property A can be comeasured with the
property B giving a probability distribution p(a,b) or that it
can be comeasured with the property C giving a probability
distribution p(a,c). We say that A can be measured in the
context of B or C. The NC-LR hypothesis states that there
exists a joint probability distribution p(a,b,c) such that p(a,b)
and p(a,c) are recovered as marginals.

Note that it might be impossible to measure p(a,b,c) for
some reason. For instance, in quantum theory if B and C

are two orthogonal components of spin one cannot measure
them jointly. The NC-LR hypothesis can be extended to more
properties A,B,C,D, . . . and it is equivalent to the existence
of a joint probability distribution (JPD) for all the properties
p(a,b,c,d, . . . ) [3–6].

The NC-LR hypothesis is very plausible based on our
everyday experience. The color of your car, defined by its
spectral profile, would be the same regardless if you looked
at it together with Kochen or Specker. All relativistic classical
theories of matter are compatible with NC-LR. The NC-LR
hypothesis has been so far the only tool to investigate the
borderline between classical and nonclassical correlations. In
this paper we offer an alternative.

In NC-LR tests, a context can be established in two different
ways. The most common one, which we call the Bell scenario,
is to assume that A is measured in Alice’s laboratory whereas B

and C, who provide context for A, are measured in the spatially
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separated Bob’s laboratory. We guarantee the lack of mutual
influence between measurements in different laboratories by
invoking the fact that information cannot propagate faster than
light. The less common but more general scenario, which we
call the Kochen-Specker one, is where there is no division
into subsystems and all observables are measured on the same
system. The context for A is provided by B and C whose lack
of influence on A is imposed by the so-called no-disturbance
assumption first mentioned by Gleason [7]. It is therefore clear
that LR is a special case of NC and no-signaling is a special
case of no-disturbance.

No-disturbance has not been justified by any general
principle such as the finite speed of information’s propagation
but it can be tested experimentally. Simply measure A alone
and then measure A followed by a measurement of B. Repeat
the whole procedure in the reverse order. Do the same for
A and C. If the obtained statistics for A, i.e., the probability
distribution p(a), is the same in all scenarios then you conclude
that no-disturbance holds. This way we can verify that quantum
mechanics is a no-disturbance theory. All relativistic and
nonrelativistic classical theories of matter are, by their very
foundations, no-disturbance theories as well.

It was Bell who showed that LR can be tested experi-
mentally in a Bell scenario [1]. Experiments followed [8],
clearly demonstrating that quantum mechanics violates LR.
The Kochen and Specker [2] proof that indivisible quantum
mechanical systems violate noncontextuality seemed to be im-
possible to test experimentally in a Kochen-Specker scenario
until the paper by Klyachko-Can-Biniciouglu-Schumovsky
(KCBS) [6] whose KCBS inequality was tested experimentally
[9,10]. It is interesting from the sociological point of view that
it took 50 years to experimentally test the Kochen-Specker
theorem whereas Bell scenarios were tested within 20 years of
their formulation.

More formally, the Bell and Kochen-Specker scenarios
can be tested via violations of noncontextuality inequalities.
Many such inequalities have been derived for both scenarios.
All derivations start from assuming that there is a JPD
for all observables used to test a given system. One then
manipulates this hypothetical JPD to obtain expressions that
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involve only measurable marginal probability distributions.
Next, one derives upper and lower bounds for these expressions
resulting from the assumption about the existence of a JPD.

However, inequalities that test LR and NC can be for-
mulated in many ways. For example, the Clauser-Horne-
Shimony-Holt (CHSH) inequality [11] uses probabilities of
two comeasureable events from which one construct correla-
tion functions between four pairs of measurements. The same
measurement scenario leads to an equivalent inequality by
Clauser and Horne (CH) [12], where, in addition to probabil-
ities used in the CHSH case, one also uses probabilities of
single local events. Yet another inequality involving entropies
of these measurements can be derived [13–15]. Each of these
inequalities requires a different approach to the JPD problem.
This is because one has to use different mathematical methods
to derive classical bounds for these inequalities. It is therefore
natural to ask whether there exists a different approach to
draw the line between classical and nonclassical correlations.
In this paper, we modify and expand an idea of Schumacher
[14] that properties of classical correlations can be expressed
in geometrical terms.

We postulate the triangle principle that allows us to derive a
large class of inequalities that must be obeyed by all classical
correlations and show that they can be violated by quantum
correlations. Some of these inequalities formally look like the
known Bell-Kochen-Specker ones. Moreover, we show that
the tradeoffs between their violations, known in the literature
as monogamy relations, are a straightforward consequence of
the properties of information-theoretic distance measures.

II. DISTANCES AND TRIANGLES

In this section we postulate a new principle that we call the
triangle principle. It allows us to derive a large class of in-
equalities separating classical from nonclassical correlations.
The inequalities we obtain have a simple geometrical meaning.

A. Shortest distance from A to B

We start with an abstract metric space with a distance
function d(X,Y ) between any two points X and Y . Consider
an arbitrary discrete subset of points X1, X2, . . . that belongs
to this space. It can be easily shown that the distance d(X1,X2)
between X1 and X2 is shorter than or equal to any other
path from X1 to X2 that goes through N − 2 other points
in this subset X1 → XN → XN−1 → · · · → X3 → X2. More
formally,

d(X1,X2) �
N−1∑

i=2

d(Xi,Xi+1) + d(XN,X1). (1)

To prove this one simply starts with a triangle inequality

d(X1,X2) � d(X2,XN ) + d(XN,X1). (2)

Since d(X2,XN ) does not appear in Eq. (1), one uses another
triangle inequality to bound this element from above

d(X2,XN ) � d(XN−1,XN ) + d(X2,XN−1), (3)

which after substitution to (2) gives

d(X1,X2) � d(X2,XN−1) + d(XN−1,Xn) + d(XN,X1). (4)

A

B

C

D

E

FIG. 1. (Color online) In a metric space the shortest distance
from A to B is always d(A,B) (red line). This can be shown via
multiple applications of the triangle inequality. Dashed lines represent
distances that do not occur in an alternative path from A to B (solid
black lines), but are used to show that the length of this path is never
shorter than d(A,B).

The above procedure, wgich utilizes triangle inequality, is
applied until all elements from (1) are obtained. A schematic
picture corresponding to the case of five points is presented
in Fig. 1.

B. Information-theoretic distance

Let us consider an experiment where we measure some
properties of a physical system denoted as A,B,C, . . . . Each
property X yields an outcome x with probability p(x). We
further assume that only certain pairs of properties can be
jointly measured. For instance, it is possible to obtain the
probability distribution p(a,b) for A and B but not for A and
C, and so on. We are not interested in probability distributions
involving more than two properties although they might be
measurable in the experiment.

We introduce an information-theoretic distance measure
d(X,Y ) between two probability distributions p(x) and p(y)
having a joint probability distribution p(x,y). This function
must be (1) nonnegative and d(X,Y ) = 0 if and only if
X = Y , (2) symmetric d(X,Y ) = d(Y,X), and (3) obey the
triangle inequality d(X,Y ) + d(Y,Z) � d(X,Z) for arbitrary
probability distributions p(x,y), p(y,z), and p(x,z).

It is instructive to give a few examples of such distances.
Covariance distance [14]. It is defined for binary random

variables (x = ±1) as C(X,Y ) = 1 − ∑
x,y=±1 xyp(x,y) =

1 − 〈XY 〉.
Entropic distance [16]. Definition is as follows: E(X,Y ) =

H (X|Y ) + H (Y |X) where H (X|Y ) = H (XY ) − H (Y ) is the
Shannon conditional entropy, therefore E(X,Y ) = 2H (XY ) −
H (X) − H (Y ). Interestingly, it is also a distance measure if
one replaces the Shannon entropy by algorithmic entropy [16]
or Tsallis entropy [17,18].

Kolmogorov distance. It reads K(X,Y ) = P (x0) + P (y0) −
2P (x0,y0) where x0,y0 denote some particular events (not
random variables as in the previous definitions), for instance,
for binary variables we could have x0 = −1,y0 = 1. It is
a simple exercise in Venn diagrams to prove that K is a
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proper distance measure [19]. For binary variables there
is a one-to-one correspondence between the Kolmogorov
distance and the covariant distance C(X,Y ) = 2K(X = +1,

Y = +1) = 2K(X = −1,Y = −1) = 2 − 2K(X = +1,Y =
−1) = 2 − 2K(X = −1,Y = +1).

C. Triangle principle

We are now ready to formulate the triangle principle.
Any information-theoretic distance d(X,Y ) is valid for

any sets of measurements, regardless if they can be jointly
measured or not.

The formulation of the triangle principle is based on
weaker assumptions than LR-NC. In particular JPD for
three measurements X1,X2,X3 imply that the distances
d(X1,X2),d(X1,X3),d(X2,X3) obey the triangle inequality.
On the other hand, if the triangle inequality for these three
distances is obeyed, a JPD may not exist. Here is a simple
example

p(X1 = +1,X2 = −1) = p(X1 = −1,X2 = +1) = 1/2,

p(X2 = +1,X3 = +1) = p(X2 = −1,X3 = −1) = 1/2,

p(X1 = +1,X3 = +1) = p(X1 = −1,X3 = −1) = 1/2,

(5)

with all the unlisted probabilities equal to zero. It is straight-
forward to see that this probability distribution does not have
a JPD and it does not violate the triangle inequality for the
entropic distance. This example is revisited in more detail in
the next section, but it already shows that the triangle principle
is more general than the LR-NC hypothesis.

III. APPLICATIONS

To illustrate how this principle works we consider N binary
measurements X1, . . . ,XN (each Xi takes only two values) that
are cyclically compatible, i.e., measurement Xi can be jointly
measured with Xi+1 (modulo N ) [20]. First, we explicitly
present the cases of N = 3,4,5 followed by an arbitrary N .

A. N = 3

The case N = 3 is particularly interesting since if X1 is
comeasurable with X2, X2 with X3, and X3 with X1, one
may think that all three observables are jointly measurable.
This is true in quantum mechanics, however, one can consider
generalized probabilistic theories (GPT) in which pairwise
compatible measurements are not jointly compatible [5].

A special version of this problem was studied by Specker,
who considered Xi to be three exclusive events [21]. We use
notation Xi = 1 to denote that Xi occurred, and Xi = −1 to
denote that it did not occur. Due to exclusivity the following
holds:

p(X1 = 1) + p(X2 = 1) + p(X3 = 1) � 1. (6)

We refer to this inequality as the Specker inequality or the
Specker principle. It is obeyed in classical and quantum theory
but it can be violated in GPT [5,22].

Let us consider three binary measurements Xi = ±1 and
invoke the triangle principle, i.e., assume that there exists

an information distance between all three measurements.
Therefore, the inequality (1) gives

d(X1,X2) � d(X2,X3) + d(X3,X1). (7)

We show that this distance inequality yields a correlation
inequality, an entropic inequality, or a probability inequality
(Specker’s inequality), if one chooses a proper distance
function. Although these three inequalities are satisfied in
quantum theory, we show that they can be violated in general
probabilistic theories (GPT). Therefore, GPT do not obey the
triangle principle.

Covariance distance. The inequality (7) becomes

1 − 〈X1X2〉 � 1 − 〈X2X3〉 + 1 − 〈X3X1〉, (8)

which gives

−〈X1X2〉 + 〈X2X3〉 + 〈X3X1〉 � 1. (9)

The above inequality is clearly the correlation noncon-
textuality inequality discussed in Ref. [20]. Although it
is obeyed in quantum theory, it can be violated up to
3 in GPT by the following no-disturbance probability
distribution

p(X1 = +1,X2 = −1) = p(X1 = −1,X2 = +1) = 1/2,

p(X2 = +1,X3 = +1) = p(X2 = −1,X3 = −1) = 1/2,

p(X1 = +1,X3 = +1) = p(X1 = −1,X3 = −1) = 1/2,

(10)

with all the remaining probabilities equal to zero. In all further
examples we only list nonzero probabilities in any given
probability distribution.

Entropic distance. The entropic version of (7) gives

H (X1|X2) + H (X2|X1) � H (X3|X2) + H (X2|X3)

+H (X1|X3) + H (X3|X1). (11)

It is also obeyed in quantum theory, however, the GPT no-
disturbance distribution

p(X1 = +1,X2 = +1) = p(X1 = −1,X2 = −1) = 1/4,

p(X1 = +1,X2 = −1) = p(X1 = −1,X2 = +1) = 1/4,

p(X2 = +1,X3 = +1) = p(X2 = −1,X3 = −1) = 1/2,

p(X1 = +1,X3 = +1) = p(X1 = −1,X3 = −1) = 1/2.

(12)

leads to its violation, i.e., one gets a contradiction that 2 � 0.
Note that the distribution (12) violates the inequality (9),

but the distribution (10) does not violate (11). However, as was
shown by Chaves [23], distributions that violate correlation
inequalities can be mixed with some noncontextual distribu-
tions to give distributions that violate entropic inequalities. For
example, (12) can be obtained from an even mixture of (10)
and a noncontextual distribution that obeys both (9) and (11)

p(X1 = +1,X2 = +1) = p(X1 = −1,X2 = −1) = 1/2,

p(X2 = +1,X3 = +1) = p(X2 = −1,X3 = −1) = 1/2,

p(X1 = +1,X3 = +1) = p(X1 = −1,X3 = −1) = 1/2.

(13)
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Kolmogorov distance. We define three events A =
(X1 = 1,X2 = −1), B = (X2 = 1,X3 = 1), and C = (X3 =
−1,X1 = −1) with the previous notation that if A = 1 the
event occurs and if A = −1 it does not. The same holds for B

and C. Note that these events are pairwise exclusive.
Let us consider the following version of (7)

K(A = −1,B = −1) � K(B = −1,C = 1)

+K(C = 1,A = −1). (14)

Due to exclusivity K(X = −1,Y = −1) = p(X = 1) +
p(Y = 1), where we used the fact that p(X = −1,Y = −1) =
1 − p(X = 1) − p(Y = 1) and p(X = −1) + p(X = 1) = 1.
Also, K(X = 1,Y = −1) = p(Y = −1) − p(X = 1) because
p(X = 1) = p(X = 1,Y = −1). We get

p(A = 1) + p(B = 1) � p(B = −1) + p(A = −1)

−2p(C = 1), (15)

which after substitution of p(X = −1) = 1 − p(X = 1) and
division by 2 leads to the Specker’s inequality

p(A = 1) + p(B = 1) + p(C = 1) � 1. (16)

This inequality is violated up to 3/2 by the GPT distribution
(10).

B. N = 4

This case naturally describes a bipartite Bell scenario in
which Alice measures X1 and X3 while Bob measures X2 and
X4. The corresponding inequality (1) reads

d(X1,X2) � d(X1,X4) + d(X4,X3) + d(X3,X2). (17)

The distances d(X1,X3) and d(X2,X4) cannot be evaluated
due to the lack of comeasurability. However, we use the tri-
angle principle, which assumes that these distances, although
unaccessible, exist.

We show that depending on the distance function the
inequality (17) becomes the Clauser-Horne-Shimony-Holt
(CHSH) inequality [11], the Schumacher inequality [14], or
the Clauser-Horne (CH) inequality [12]. All three inequalities
can be violated in qunatum theory provided a quantum state
and measurement setups are properly chosen.

Covariance distance. For covariance distance the inequality
(17) becomes

1 − 〈X1X2〉 � 3 − 〈X1X4〉 − 〈X4X3〉 − 〈X3X2〉, (18)

which has the form of the CHSH inequality

〈X1X4〉 + 〈X4X3〉 + 〈X3X2〉 − 〈X1X2〉 � 2. (19)

This observation was already made by Schumacher [14].
Entropic distance. The application of the entropic distance

to (17) gives the Schumacher inequality

E(X1,X2) � E(X1,X4) + E(X4,X3) + E(X3,X2). (20)

It is also important to mention similar entropic inequalities
by Braunstein-Caves (BC) [13] and Cerf-Adami (CA) [15]. In
particular the latter inequality is similar to the inequality we
derive using the following distance

CA(X,Y ) = 1 − I (X : Y )

max(X,Y )
, (21)

where I (X : Y ) = H (X) + H (Y ) − H (X,Y ) is mutual infor-
mation between X,Y and max(X,Y ) = max[H (X),H (Y )]. We
get

I (X1 : X2)

max(X1,X2)
+ I (X2 : X3)

max(X2,X3)
+ I (X3 : X4)

max(X3,X4)

− I (X4 : X1)

max(X4,X1)
� 2. (22)

If all entropies H (Xi) = 1 we recover inequalities in Ref. [15].
Kolmogorov distance. We define four events X1 = 1,

X2 = 1, X3 = 1, and X4 = 1. The Kolmogorov distance and
the corresponding inequality (17) yield

K(X1 = 1,X2 = 1) � K(X2 = 1,X3 = 1)

+K(X3 = 1,X4 = 1)

+K(X4 = 1,X1 = 1), (23)

which, after the substitution of K(X = 1,Y = 1) = p(X =
1) + p(Y = 1) − 2P (X = 1,Y = 1) and division by 2, takes
the form of the CH inequality [12]

−p(X1 = 1,X2 = 1) + p(X2 = 1,X3 = 1)

+p(X3 = 1,X4 = 1) + p(X4 = 1,X1 = 1)

−p(X3 = 1) − p(X4 = 1) � 0. (24)

C. N = 5

The case of five cyclically compatible measurements is
often related to the noncontextuality tests because N = 5
is the smallest number of measurements that can reveal
contextuality in a three-level quantum system. Moreover, these
measurements cannot be naturally distributed between two
observers, therefore they are applied to a single indivisible
system.

This time there are ten possible distances with only five that
can be measured

d(X1,X2) � d(X1,X5) + d(X5,X4) + d(X4,X3) + d(X3,X2).

(25)

The remaining five distances cannot be measured, however,
the triangle principle assumes that they exist and that the
inequality (25) holds. We show that this inequality gives
rise to correlation and probability versions of the Klyachko-
Can-Binicioglu-Shumovsky (KCBS) inequalities [6] and to
the entropic inequality that is similar to the one studied in
Refs. [24,25].

Covariance distance. Plugging in the covariance distance
into (25) results in

1 − 〈X1X2〉 � 4 − 〈X1X5〉 − 〈X5X4〉 − 〈X4X3〉 − 〈X3X2〉,
(26)

which is equivalent to a form of the KCBS inequality [6,20]

〈X1X5〉+ 〈X5X4〉+ 〈X1X5〉+ 〈X5X4〉− 〈X1X2〉� 3. (27)

Entropic distance. For this distance one gets an inequality
that is a five-measurement version of the Schumacher in-
equality. This inequality resembles the inequality studied in
[24,25] where instead of E(X,Y ) one uses conditional entropy
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H (X|Y ). Moreover, the distance CA(X,Y ) (21) can also be
applied giving a completely new inequality.

Kolmogorov distance. Application of the Kolmogorov
distance to the case N = 5 resembles the one of N = 3.
Consider five pairwise exclusive events A = (X1 = 1,X2 =
−1), B = (X2 = 1,X3 = −1), C = (X3 = 1,X4 = −1), D =
(X4 = 1,X5 = −1), and E = (X5 = 1,X1 = −1). As before,
p(X = 1,Y = 1) = 0 (for X,Y = A, . . . ,E) and as a conse-
quence P (X = 1,Y = −1) = P (X = 1).

We apply the Kolmogorov distance to (25) and follow
exactly the same steps as for N = 3. We arrive at

P (A = 1) + P (B = 1) + P (C = 1) + P (D = 1)

+P (E = 1) � 2, (28)

which is a version of the KCBS inequality expresed in terms
of probabilities [6].

D. General N

The discussion of cases N = 3,4,5 shows that the appli-
cation of the covariance and the entropic distances readily
generates correlation and entropic inequalities for general N .
The correlation inequalities that are generated are of the form

−〈X1X2〉 +
N∑

i=2

〈XiXi+1〉 � N − 2, (29)

where XN+1 ≡ X1. They exactly correspond to the inequalities
discussed in Ref. [20]. The entropic inequalities

E(X1,X2) �
N∑

i=2

E(Xi,Xi+1), (30)

are N element versions of Schumacher inequalities [14] and
resemble N -cycle conditional entropic inequalities studied
in Refs. [5,25]. In fact, these inequalities are symmetrized
versions of conditional entropic inequalities.

Note that our model also applies to a bipartite Bell scenario
if N is even and measurements X2i+1 are performed by
Alice whereas X2i are performed by Bob. In this case there
is an additional number of distances that can be evaluated
from the experimental data. Namely, every distance between
Alice’s and Bob’s measurements exists. In this Bell scenario
the inequalities (29) and (30) correspond to the chained
Bell inequalities [26] and to the symmetric version of the
multisetting BC inequalities [13], respectively.

On the other hand, the form of probability inequalities
that are generated via application of the Kolmogorov distance
depend on whether N is even or odd. For odd N one can
generate inequalities that involve N cyclically exclusive events
A1, . . . ,AN defined as Ai = (Xi = +1,Xi+1 = −1). Next,
one considers the Kolmogorov distance for A1 = −1, Ai = 1
for i = 3,5, . . . ,N and Ai = −1 for i = 2,4, . . . ,N − 1. The
following inequalities are obtained

N∑

i=1

p(A1 = 1) � N − 1

2
. (31)

They correspond to the inequalities studied in Ref. [22].
The case of even N has to be explored in more detail.

The inequalities involving N cyclicaly exclusive events can

be violated in quantum theory and in GPT only for odd N

[22]. We showed that for N = 4 one can obtain a different
type of inequality, namely the CH inequality. However, the
application of Kolmogorov distance to scenarios with N > 4
(even) remains to be explored.

IV. MONOGAMY RELATIONS

The monogamy relation between two inequalities is defined
as a tradeoff between the violations of these inequalities. The
more the first inequality is violated the less the second one is.
In the most interesting case, if one inequality is violated the
other one is satisfied and vice versa.

The monogamy relation can be studied either on a general
level of GPT [27–29], or within quantum theory [29–31].
Monogamies in GPT stem from general principles such as
no-signaling and no-disturbance. In quantum theory they
originate from properties of operators in the Hilbert space.

Here we focus on the GPT case. In particular, we show
that instead of referring directly to probabilities (no-signaling
and no-disturbance), one uses the triangle principle to derive
monogamy relations. The advantage of this approach is that
once a monogamy relation is derived for a general distance
measure, it automatically applies to every distance measure.
We show how to derive a monogamy relation between the Bell
inequality (N = 4) and the noncontextuality inequality (N =
5) [29]. We also derive a monogamy relation between two
bipartite Bell inequalities (N = 4) [30]. Finally, we speculate
that our method can be easily applied to more general cases.

A. Monogamy between nonlocality and contextuality

It was shown in Ref. [29] that there exists a monogamy
tradeoff between KCBS and CHSH inequalities (correspond-
ing to the covariance distance). Here we show that this result
can be generalized to an arbitrary distance measure d(X,Y ).

Consider two parties Alice and Bob sharing a bipartite
system. Alice has five cyclically compatible measurements
on her subsystem {A1, . . . ,A5} and she randomly chooses to
perform Ai and Ai+1 (modulo 5). Bob can perform one of the
two measurements B1 or B2 on his subsystem.

Alice’s measurements can be used to test the following dis-
tance inequality (noncontextuality inequality if one assumes
JPD)

d(A1,A5) � d(A1,A2) + d(A2,A3) + d(A3,A4) + d(A4,A5).

(32)

On the other hand, Bob’s measurements and two incompatible
measurements of Alice (say A1 and A3) can be used to test an-
other distance inequality (Bell inequality if one assumes JPD)

d(A1,B1) � d(A1,B2) + d(B2,A3) + d(A3,B1). (33)

Next, we show that if one inequality is violated, the other
one is necessarily obeyed. In particular, it is enough to use the
fact that the triangle inequality is always obeyed for compatible
measurements to show that the following must hold

d(A1,A5) + d(A1,B1) � d(A1,A2) + d(A2,A3)

+ d(A3,A4) + d(A4,A5) + d(A1,B2)

+ d(B2,A3) + d(A3,B1). (34)
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We start with the triangle inequality

d(A1,A5) � d(A1,B2) + d(A5,B2), (35)

and then we expand the last term using another triangle
inequality

d(A1,A5) � d(A1,B2) + d(A4,A5) + d(A4,B2). (36)

We repeat this procedure one more time to obtain

d(A1,A5) � d(A1,B2) + d(A4,A5) + d(A3,A4) + d(A3,B2).

(37)

Next, we follow similar steps to obtain

d(A1,B1) � d(A1,A2) + d(A2,B1)

� d(A1,A2) + d(A2,A3) + d(A3,B1). (38)

Finaly, we sum (37) and (38) to get (34).

B. Monogamy between two Bell inequalities

Consider three parties Alice, Bob, and Charlie who share
a tripartite system. Each of them performs one of the two
measurements on their subsystems A1,2, B1,2, and C1,2. Note,
that due to space-like separation the measurements Ai , Bj , and
Ck (i,j,k = 1,2) are mutually compatible.

Next, consider two Bell inequalities

d(A1,B1) � d(A1,B2) + d(B2,A2) + d(A2,B1), (39)

d(A1,C1) � d(A1,C2) + d(C2,A2) + d(A2,C1). (40)

Using the same methods as in the previous example we can
show that

d(A1,B1) � d(A1,C2) + d(C2,A2) + d(A2,B1) (41)

and

d(A1,C1) � d(A1,B2) + d(B2,A2) + d(A2,C1). (42)

The sum of these two inequalities gives the monogamy relation

d(A1,B1) + d(A1,C1) � d(A1,B2) + d(B2,A2)

+ d(A2,B1) + d(A1,C2)

+d(C2,A2) + d(A2,C1). (43)

V. CONCLUSION

The triangle principle is an assumption about nature on
the same footing as the NC-LR assumption. Both assume
some mathematical properties of observed and unobserved
probability distributions in nature. The NC-LR hypothesis
assumes an existence of a hypothetical JPD that cannot be
obtained in an experiment. The triangle principle assumes
that any information-theoretic distance is valid for any sets
of measurements, regardless if they can be jointly measured
or not.

Mathematically speaking, the NC-LR hypothesis treats
measurements and outcomes as points in a space with a mea-
sure (probability). The triangle principle introduces a metric
on this space, which allows us to study the relation between
these points using a geometric intuition. As we showed, this
allows us to unify different types of non-contextuality and Bell
inequalities in a more general framework and to derive more
general monogamy relations.

We would like to highlight once more that the triangle
principle leads to distance inequalities that are mathematically
identical to known Bell and noncontextual inequalities, but
they are based on different assumptions. Simply speaking,
they imply that the assumption about the validity of the
triangle inequality for nonobserved probability distributions
is false.

This work leaves an important open problem. As shown,
there are probability distributions that do not have JPD, but
they satisfy the triangle inequality for some of the information
theoretic distances, violating it for other distances. Are there
probability distributions, perhaps signaling ones, that do not
have JPD but satisfy the triangle inequality for all information-
theoretic distances?
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