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Cavity-assisted dynamical spin-orbit coupling in cold atoms
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We consider ultracold atoms subjected to a cavity-assisted two-photon Raman transition. The Raman coupling
gives rise to effective spin-orbit interaction which couples the atom’s center-of-mass motion to its pseudospin
degrees of freedom. Meanwhile, the cavity photon field is dynamically affected by the atom. This feedback
between the atom and photons leads to a dramatic modification of the atomic dispersion relation, and further
leads to dynamical instability of the system. We propose to detect the change in the cavity photon number as a

direct way to demonstrate dynamical instability.
DOI: 10.1103/PhysRevA.89.011602

Introduction. When an atom interacts with a quantized light
field supported by an optical cavity, the atom and the light
field mutually affect each other. A self-consistent solution for
the light field and the atom is thus required. This has been
a major theme in cavity quantum electrodynamics (CQED)
[1]. In traditional CQED settings, only the internal dynamics
of the atom is relevant. In recent years, ultracold atoms have
been put inside optical cavities and in such a situation, one
can no longer neglect the center-of-mass (COM) motion of the
atom. A variety of phenomena in this “ultracold atom 4 cavity”
system, which is an example of an optomechanical system, has
been explored experimentally [2-8] and theoretically [9,10].

Another recent breakthrough in cold-atom research is the
realization of spin-orbit coupling (SOC) in ultracold atoms,
in both bosonic [11] and fermionic systems [12,13] (refer to
[14] for reviews). Realization of SOC in cold atoms involves
a two-photon Raman transition between two hyperfine ground
states as schematically shown in Fig. 1(b). The Raman-induced
transition between the two atomic levels and the associated
momentum transfer due to photon recoil give rise to an effec-
tive coupling between the COM motion and the internal states
of the atom. This SOC underlies numerous novel phenomena,
ranging from spin Hall effects to topological insulators.

In the experiments of spin-orbit coupled quantum gases,
the Raman beams that generate the SOC are provided by two
classical laser fields, which are not affected by the atoms.
Here we consider a situation where one of the Raman beams
is replaced by a quantized light field supported by an optical
cavity, as schematically shown in Fig. 1(a). In this scheme,
akin to other ultracold atom + cavity systems, there will be a
backaction from the atom to the light. Therefore the SOC
in the atom is generated by a quantized light field which
itself is affected by the atomic dynamics. In this sense, the
cavity-assisted SOC becomes dynamic [15,16]. Furthermore,
in previous experimental studies of cold-atom-based cavity
optomechanical systems [2—-8], only the COM motion of the
atom is included. The inclusion of the internal spin degrees
of freedom and the resulting SOC opens up a new avenue of
research in cavity optomechanical systems. We will show that
this dynamic SOC dramatically modifies the atomic dispersion
relation and the stability of the system.

Model and formalism. We consider a single atom (or, a
noninteracting Bose-Einstein condensate) with two relevant

1050-2947/2014/89(1)/011602(5)

011602-1

PACS number(s): 03.75.Hh, 37.30.+i, 03.75.Ss, 05.30.Fk

internal states (denoted as |71) and ||)) confined inside a
unidirectional optical ring cavity, depicted schematically in
Fig. 1. The cavity is pumped by a coherent laser field with
frequency w, and pumping rate &,. It supports a single
mode traveling wave and has an intrinsic angular frequency
.. An additional coherent laser beam with frequency wg
shines on the atom, which together with the cavity field
provides the Raman transition between |1) and || ) states.
During the Raman transition, a recoil momentum of +2hg, 2
is transferred to the atom. We treat the leakage of cavity photon
phenomenologically by introducing a cavity decay rate «. The
model Hamiltonian is thus written as (we take 4 = 1)
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where W, (r) (o =1, ) is the atomic annihilation operator,
€2 is the corresponding bare atomic energy, and ¢ represents
the photon annihilation operator. €2 describes the atom-photon
coupling strength. However, the true Raman coupling strength
also includes the cavity photon amplitude of ¢ or & which is
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FIG. 1. (Color online) (a) Schematic diagram of the cavity-
assisted spin-orbit coupled system. (b) Level diagram of atom and
light field configuration.
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coupled to the atomic operators. It is this coupling that renders
the resulting SOC dynamic.

It is convenient to work in a frame rotating at pump laser fre-
quency ), by transforming the photon operator to ¢ = &e'“".
This is equivalent to performing a unitary transformation
U = et@¢'® o the Hamiltonian (1), by H' = UHU ' +
i % U~!. From H', we perform another unitary transformation
U= ei‘sR’(W*%’wl%W, with 8g = w, — wg, to obtain the
Hamiltonian H"”. Finally, after a gauge transformation to
atomic operators ¥, = Wye % and ¢, = W et wearrive
at the following effective Hamiltonian Hg:

K+ 20q.k, -
Her =Y / dr [wim <% + aa) %(r)]

+ 7 / dr[w%(r)wi(r)c + C“ﬁ{(l‘)lh(l‘)]

+ iep(cT —c)— SCCTC — l'KCTC, 2)

where § = 8g/2 + (] — €) represents the two-photon Ra-
man detuning, 6. = @, — w, is the cavity-pump detuning, and
a = *x1 foro =1, |, respectively.

Dispersion relation. From the Hamiltonian (2), one can
easily obtain the following equations of motion (EOM):
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where ¥ (r) = [Y4(r), ¢ L(r)]T. To proceed further, we adopt
a mean-field approximation by replacing the operators
by their respective expectation values: ¢ — (c¢), Y, (r) —>
(¥ (r)) = @, (1), which is valid for small quantum fluctuations
of both operators ¢ and ¥, (r). Assuming a homogeneous
atomic density distribution, we take the plane-wave ansatz
for the atomic modes ¢, (r) = ¢'*T¢, with the normalization
condition |4 RIS N |> = 1. The steady-state solution for the
photon field is given by

e, — LQo*
(c) = Pz—m. (5)
K — i
Substituting Eq. (5) into Eq. (4), we have
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For a given atomic quasimomentum k, we define energy
levels as the solution of the time-independent version of Egs.
(6) and (7), obtained by replacing i (0/0d¢) with the eigenenergy
€(k). After some calculation, we find that €(k) obeys a quartic
equation:

4e* + Be* + Ce* + De + E =0, (8)

where the detailed derivation and the expressions of coeffi-
cients are given in the Supplemental Material [17]. This quartic
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FIG. 2. Eigenenergy € as a function of quasimomentum. We set
§ =0ande, = k. Fornonzero §,, a loop structure forms when Q" <
Q < Q. For §. = i, Q" = 4¢, and QP = 44/2¢,,. Throughout
our calculation, we take x and +/2m« to be the units for energy and
momentum, respectively. A typical value for « is 27 x 1 MHz, and
we choose ¢, = 0.22 in our units.

equation can be solved analytically, but the expressions are
cumbersome. We plot the typical behavior of the dispersion
relation e(k.) vs k. for § = 0 in Fig. 2. Note that we always
take k, = k, = 0, as the SOC only occurs along the z axis.
A maximum of four real roots are allowed by Eq. (8). As we
will show, in such regimes, a loop structure develops in the
dispersion curve.

As shown in Fig. 2, for 6. =0 (i.e., the pump field is
resonant with the cavity), we always have two dispersion
branches. The two branches are gapped when the atom-photon
coupling strength 2 is small and touch each other at k, = 0
when €2 exceeds a critical value. For §. # 0, we again have
two gapped branches at small €2. As €2 is increased beyond a
critical value, a loop appears near k, = 0 in either the upper
or the lower branch depending on the sign of §.. The loop
increases in size as €2 increases and finally touches the other
branch and dissolves when €2 reaches a second critical value.
Note that such a dispersion relation is markedly different from
that without the cavity, in which case one always obtains
two gapped branches. The dispersion curves for finite § are
qualitatively similar, but in that case the curves are no longer
symmetric about k, = 0 and the loop emerges at finite k, (see
Fig. 4 below).

The photon number distributions corresponding to the right
column of Fig. 2 are plotted in Fig. 3. As seen in Fig. 3(c),
for sufficiently large €2, the cavity photon number decreases
dramatically. Correspondingly, the effective Raman coupling
becomes negligibly small, and the atomic dispersion curve
becomes quadratic as in the absence of laser fields (see the
bottom row of Fig. 2). This is analogous to the photon blockade
phenomenon [18] in which the strong atom-photon coupling
keeps pump photons from entering the cavity.

We can gain some insight about the general structure of
the dispersion curve, and particularly the appearance and
disappearance of the loop, by examining the quartic equation
(8) for k, = 0 and § = 0. Under these conditions, Eq. (8) is
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FIG. 3. Photon number distribution as a function of the atom’s
quasimomentum. The parameters are the same as in the right column
of Fig. 2, where 6, =k, &, =k, and Q/k =3, 5, and 7 from (a)
to (c).

simplified to
€2(4€* — 2we + V> —4u>H) =0, )

with the constraint that the root € = Ois only valid for 2 > 4e,
[19]. Here the coefficients w, u, and v are defined in [17].
Simple analysis shows that there are three regimes. First, when
Q < 4e, = QWY, Eq. (9) has two real roots—one positive and
one negative. This corresponds to the two gapped branches
for small Q in the top row of Fig. 2. Second, when QI <
Q <dep/1+ 6. /x) = 9(62), Eq. (9) has four real roots—
two degenerate roots at ¢ = 0 and two additional roots with the
same sign. This corresponds to the looped regime in the middle
row of Fig. 2. Finally when © > QE,Z), only the two degenerate
roots at € = 0 exist, which correspond to the gapless regime
represented by the bottom row in Fig. 2. Note that for 6, = 0,
we have Q) = Q? = 4¢,, and the loop never develops.

The emergence of the loop structure is a distinctive
nonlinear feature of the system. We remark that similar loop
structures or the associated hysteretic phenomena have been
found in other nonlinear systems [17]. The nonlinearity may
originate from the mean-field density-density interaction [20]
or from the cavity-induced feedback between atoms and
photons [21]. The case studied here corresponds to the latter
situation. However, in previous studies of ultracold atom +
cavity systems [21], the interaction between the cavity photons
and atoms is dispersive, and so it does not induce SOC directly.
As we will show below, the system studied here possesses very
different dynamical and stability properties.

Stability and dynamical analysis. Nonlinear systems usu-
ally possess intriguing stability properties. To examine the
stability of the eigenstates obtained above, we introduce
conjugate variables p = |(,o¢|2 - |§0T|2 and 0 = angle(p,) —
angle(g,), which correspond to the spin magnetization and
the relative phase between the two atomic spin states. The
EOM for p and 6 can be easily derived from Egs. (6)
and (7) [17], from which we can readily obtain the fixed
points (p*,0%) by setting p = 6 = 0, which correspond to the
eigenstates obtained earlier. To check the stability, we linearize
the equations around the fixed points by taking p = p* + dp,
6 = 0* 4 86, and arrive at

d (5p fi f\(r) _ 8p
i) = (0 &) G0)=m(r). o

where matrix elements of M are given in the Supplemental
Material [17]. If any of the eigenvalues of M has a positive
real part, the fluctuation terms §p and 56 grow exponentially
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in time and therefore the system is dynamically unstable [22].
For unstable states, we denote the largest real part as y, which
can be regarded as the decay rate of the unstable states.

A typical result of the stability analysis is shown in Fig. 4,
where we plot the dispersion curves and indicate the stability
of the states using colored triangles. One can observe the
following: (1) in the regime without the loop, one branch
is stable and the other branch is unstable; (2) in the regime
with the loop, there may exist one or two stable branches
and correspondingly three or two unstable branches. This
means that the cavity feedback completely alters the system’s
stability. Nevertheless, for a relatively large cavity pumping
rate as shown in Figs. 4(a)-4(c), y is small and the unstable
branches are more robust compared with the case represented
in Figs. 4(d)-4(f) where a smaller ¢, is used. This can be
understood as follows: As the cavity pump rate ¢, is increased,
the cavity photon number increases and the backaction from
the atom to the photon becomes less important. Therefore
we expect (and have confirmed from our calculation) that
in the strong pump limit, the cavity system would not be
very different from the conventional system without a cavity
[11-13].

A direct way to detect dynamical instability experimentally
in this system is to count the sudden change in the cavity photon
number. As an example, we consider the following situation.
We start from a stable eigenstate represented in Fig. 4(a). From
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FIG. 4. (Color online) Stability analysis of the dispersion curve.
Colored triangles represent dynamically unstable states and black
solid dots represent dynamically stable ones. The color bar represents
y, the decay rate of the unstable states. In all figures, 2 = 1.1« and
8. = k. From (a) to (c) &, = 2« and § = 0.05, 0, and —0.05x; from
(d)to(f) e, =0.2«, and § = 0.05, 0, and —0.05«.
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FIG. 5. (Color online) Evolution of photon number. The initial
states are prepared using the same set of parameters as in Fig. 4(a).
In (a), we start from point P; with k, = —2¢g, and in (b) we start
from point P, with k, = 0, both indicated in Fig. 4(a). From# = 0 to
4000/« § is linearly tuned from 0.05« to —0.05« and remains fixed
afterwards. Red solid dots represent the photon number corresponding
to the instantaneous eigenstate, while blue solid lines represent the
dynamical evolution according to Egs. (3) and (4) after mean-field
approximation.

t = 0t0 4000/, the two-photon detuning § is changed linearly
from 0.05« to —0.05« and remains fixed at —0.05« afterwards.
We plot the evolution of the photon number in Fig. 5. In
Fig. 5(a) we start from the state referred to as P; in Fig. 4(a).
During the whole evolution, the photon number follows the
corresponding value of the instantaneous eigenstate as the
system remains dynamically stable. In Fig. 5(b) we start from
the state referred to as P, in Fig. 4(a). During the linear ramp
of &, the photon number follows the corresponding values
of the instantaneous eigenstate. However, at the end of the
ramp, the system evolves into a dynamically unstable state.
The dynamical instability sets in some time after the end of
the ramp and the photon number jumps to a different value
after a short transient time. The final state matches the stable
state P; with the same atomic quasimomentum as indicated
in Fig. 4(c) (note that the quasimomentum does not change
during the time evolution).

Conclusion and outlook. We have considered a system
consisting of a single atom (or a noninteracting condensate)
whose two hyperfine spin ground states are Raman coupled
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by two light fields, one of which is a quantized cavity field.
In this setting, the internal and external degrees of freedom
of the atom and the cavity field are dynamically coupled.
This coupling leads to a dynamic SOC for the atom. We
have calculated the atomic dispersion relation and examined
its stability and dynamic properties. In comparison to the
static SOC generated by two classical laser beams which
are not affected by the atomic dynamics, the cavity feedback
dramatically modifies the properties of the system. Besides
giving rise to new physics in the study of synthetic SOC in
cold atoms, our system also represents a new cold-atom-based
cavity optomechanical system. From a practical point of
view, all the ingredients proposed in this work have been
demonstrated in various labs. Hence our proposal can be
readily tested in experiment. In fact, recent work reported
in Refs. [4,5] investigated a BEC inside a ring cavity. A
straightforward modification can be used to study the physics
predicted in our work. In the future, it will be interesting to
extend the study to include interatomic interactions and to
the case where a system of fermions are Raman coupled via
cavity fields. Our current work on the single-particle physics
will serve as an important first step towards understanding the
many-body properties of the system. It will also be interesting
to go beyond the mean-field approximation adopted in our
current study [23]. This is particularly important for very small
cavity photon numbers.

Note added. Recently, we became aware of the work
reported in Ref. [24], where the authors considered cavity-
mediated SOC in a transversely pumped standing-wave cavity.
Nevertheless, our system is very different from theirs.
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