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Multimode strong-coupling quantum optomechanics

H. Seok,* L. F. Buchmann, E. M. Wright, and P. Meystre
B2 Institute, Department of Physics and College of Optical Sciences The University of Arizona, Tucson, Arizona 85721, USA

(Received 27 September 2013; published 30 December 2013)

We study theoretically the dynamics of multiple mechanical oscillators coupled to a single cavity field mode
via linear or quadratic optomechanical interactions. We focus specifically on the strong-coupling regime where
the cavity decays much faster than the mechanical modes, and the optomechanical coupling is comparable to or
larger than the mechanical frequency, so that both the optical and mechanical systems operate in the deep quantum
regime. Using the examples of one and two mechanical oscillators, we show that the system can classically exhibit
bistability and bifurcations, and we explore how these manifest themselves in interference, entanglement, and
correlation in the quantum theory, while revealing the impact of decoherence of the mechanical system due to
cavity fluctuations and coherent driving.
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I. INTRODUCTION

Cavity optomechanics has undergone tremendous growth
owing to recent advances of nano- and microfabrication,
culminating in the cooling of macroscopic mechanical objects
to near the ground state [1–4]. Further developments promise
a variety of applications, for example, precision measure-
ments of feeble forces, masses, and displacements [5–7],
coherent control of quantum states for quantum information
science [8–10], and fundamental tests of quantum mechanics
with macroscopic objects [11–13], to mention just a few.

The linear optomechanical coupling of a cavity field to
the position of a mechanical mode is typically modeled using
a Fabry-Pérot cavity with a moving end mirror and allows
one to elucidate such effects as optical bistability, optical
spring effects, and radiation-induced cooling of the mechanical
oscillators [14–20]. Alternative experimental setups such as
the membrane-in-the-middle geometry [21–23], cold atoms in
a cavity [24–27], and photonic crystal structures [3,4] facilitate
the investigation of quadratic or higher-order optomechanical
interactions [28,29] and open up the exploration of multimode
optomechanics [30–37], including the possibility of entangle-
ment between the mechanical modes [38–41].

Most experiments to date are carried out in a regime where
the optomechanical coupling is weak compared to the me-
chanical frequency and the cavity linewidth and can be treated
as a perturbation. When the cavity is driven by a classical
field, the optomechanical coupling in this regime can be
linearized, resulting in effects such as beam-splitter swapping
and parametric amplification. This linearized optomechanical
interaction also accounts, e.g., for radiation-induced cooling
or amplification [15–20], normal-mode splitting [42], and
optomechanically induced transparency [43–45].

However, the linearized treatment needs to be revisited if the
optomechanical interaction frequency becomes comparable
to the frequency of the harmonic trapping potential of the
mechanics, in which case its intrinsic nonlinearity becomes of
crucial importance even for cavity fields that contain only a
very few photons [46]. Here the role of quantum fluctuations
can become of central importance. The so-realized nonlinear
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optomechanics promises the generation of non-Gaussian
states [47], a nonclassical mechanical steady state [48], and
quantum-state control and optical switching at a single-photon
level [49]. Such a strong-coupling regime has not been realized
in nanofabricated optomechanical systems, but optomechan-
ical systems involving ultracold atomic clouds [24–27] can
currently operate in this regime.

In this paper, we study theoretically optomechanical inter-
actions in the single-photon strong-coupling regime in which
the optomechanical coupling is comparable to or stronger
than the harmonic trapping potential of the mechanics and
cavity dissipation is the dominant source of damping. We first
investigate the classical effective potential of the mechanical
oscillators coupled to a single-mode cavity field via a strong
linear or quadratic coupling. The classical theory is used to
elucidate selected examples that are then explored in the quan-
tum theory. A quantum master equation is solved numerically
to explore the dynamics of the mechanical oscillators and the
effects of cavity fluctuations on the mechanics for the cases
of one or two mechanical oscillators. We demonstrate that
for linear coupling a single mechanical oscillator in the deep
quantum regime does not exhibit the bistability that exists in
the classical regime, a result that parallels the situation familiar
from cavity QED [50,51]. In the quadratic coupling case the
cavity fields lead to splitting and recombination dynamics
of the spatial wave functions of the oscillators, realizing a
quantum interferometer. We also demonstrate the contribution
of cavity fluctuations on the coherence of the mechanical
system and propose a way to increase the lifetime of that
coherence.

The remainder of this paper is organized as follows.
Section II presents our basic model, introducing both linear
and quadratic coupling of multimode mechanical systems
to a single-mode optical field. Section III reviews how the
adiabatic elimination of the optical field results in effective
nonlinear dynamics for the mechanics and discusses its most
important properties in the classical limit, concentrating on
the form of the effective potential governing this dynamics
for both linear and quadratic optomechanical couplings and
in the single-mode and two-mode cases. Section IV addresses
the extension of the treatment to the quantum regime and
discusses the additional multiplicative quantum noise resulting
from the elimination of the optical field. Section V then
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presents a number of examples for one and two mechanical
oscillators and explores how quantum fluctuations manifest
themselves in interference, entanglement, and correlations in
the quantum theory, while revealing the impact of decoherence
of the mechanical system due to cavity fluctuations. Finally,
Sec. VI is a summary and outlook.

II. BASIC MODEL

In this section we introduce the quantized Hamiltonian
for our system and evaluate the corresponding Heisenberg-
Langevin equations of motion. We consider an optomechanical
system composed of N identical mechanical oscillators, with
effective mass m and frequency ωm, that are coupled via
optomechanical interactions to a single cavity mode. The
Hamiltonian describing the system is

H = Hopt + Hm + Hom + Hloss, (1)

where the cavity field Hamiltonian

Hopt = �ωcâ
†â + i�(ηe−iωLt â† − η∗eiωLt â) (2)

describes the cavity mode of frequency ωc driven by an external
field of frequency ωL with pumping parameter η and

Hm = �ωm

2

N∑
k=1

(
p̂2

k + x̂2
k

)
(3)

is the mechanical Hamiltonian for the N identical modes, with
x̂k and p̂k being the dimensionless position and momentum op-
erators for the kth mirror, respectively. Here the dimensionless
position and momentum operators can be obtained as their
dimensional counterparts in units of

x0 =
√

�/(mωm), p0 =
√

m�ωm, (4)

so that

[x̂j ,p̂k] = iδjk. (5)

Linear optomechanical interactions are described by the
Hamiltonian

Hom = −�â†â
N∑
k

g0,kx̂k, (6)

whereas quadratic optomechanical interactions are accounted
for using

Hom = �â†â
N∑
k

g
(2)
0,kx̂

2
k , (7)

where g0,k and g
(2)
0,k are the linear and quadratic single-photon

coupling coefficients, respectively. Finally, Hloss describes the
interaction of the cavity field and the mechanical modes with
their respective reservoirs and accounts for dissipation.

For both linear and quadratic optomechanical interactions
the Heisenberg-Langevin equations of motion for the cavity
and mechanical modes may be evaluated using the standard
input-output formalism [52], and we adopt a frame rotating
with the laser frequency ωL. For the case of linear interactions
described by the Hamiltonian (6) the operator Heisenberg-

Langevin equations are

˙̂xj = ωmp̂j , (8)

˙̂pj = −ωmx̂j + g0,j â
†â − γ

2
p̂j + ξ̂ , (9)

˙̂a = i

[
�c +

N∑
k

g0,kx̂k

]
â − κ

2
â + η + √

κâin, (10)

where �c = ωL − ωc is the detuning between the pump
and cavity frequencies and κ(γ ) and âin(ξ̂ ) are the cavity
(mechanics) decay rate and corresponding noise operator. In a
similar manner for the case of quadratic interactions described
by the Hamiltonian (7) the Heisenberg-Langevin equations are
given by

˙̂xj = ωmp̂j , (11)

˙̂pj = −(
ωm + 2g

(2)
0,j â

†â
)
x̂j − γ

2
p̂j + ξ̂ , (12)

˙̂a = i

[
�c −

N∑
k

g
(2)
0,kx̂

2
k

]
â − κ

2
â + η + √

κâin. (13)

This completes the description of our basic model.

III. CLASSICAL THEORY

We first outline aspects of the classical theory that will be
useful to frame the results of the quantum theory discussed in
the next sections. We specifically consider the regime in which
the cavity decay rate is much larger than all other system rates,
including the mechanical frequency and decay rate and the
single-photon optomechanical coupling coefficients. In this
regime we derive effective potentials for the mechanics for the
cases of both linear and quadratic interactions. These allow us
to identify interesting operating conditions for each case.

A. Linear interactions

The classical theory applies when the cavity field and me-
chanical modes are sufficiently highly excited that fluctuations
around their mean-field values may be neglected. In this limit
the quantum operators may be replaced by their c-number
expectation values, â → α,x̂j → xj ,p̂j → pj . For the case
of linear interactions this leads to the mean-field equations

ẋj = ωmpj , (14)

ṗj = −ωmxj + g0,j |α|2 − γ

2
pj , (15)

α̇ = i

[
�c +

N∑
k

g0,kxk

]
α − κ

2
α + η. (16)

If the cavity decay rate κ is much larger than the decay rate
of the mechanical modes and the coupling strengths, κ �
{γ,g0,j }, the cavity field may be adiabatically eliminated on
time scales greater than 1/κ to yield

α(t) ≈ η

−i
[
�c + ∑N

k g0,kxk(t)
] + κ/2

. (17)
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Substituting Eq. (17) into Eq. (15) then gives

ṗj = −ωmxj + g0,j |η|2[
�c + ∑N

k g0,kxk

]2
+ κ2

4

− γ

2
pj , (18)

where the first term on the right-hand side is the harmonic
restoring force for the mechanics, the second term describes
the radiation pressure force due to the linear optomechanical
coupling, and the last term is the mechanical damping force.
Note that the mechanical modes are coupled through the
radiation pressure force from the shared optical field.

Solving Eq. (18) with ṗj = 0 yields a set of N coupled
equations for the mechanical mode positions xj,s in steady
state,⎡

⎣(
�c +

N∑
k

g0,kxk,s

)2

+ κ2

4

⎤
⎦ xj,s = g0,j |η|2

ωm

. (19)

For the case where the coupling coefficients are identical,
g0,k ≡ g0, the steady-state positions of the mechanical modes
must also be identical, xj,s = xs , since the quantity in the
brackets in Eq. (19) has the same value for all mechanical
modes, as does the right-hand side of the equation. Here xs

satisfies the cubic polynomial equation

g2
0N 2x3

s + 2�cg0Nx2
s +

[
�2

c + κ2

4

]
xs − g0|η|2

ωm

= 0. (20)

The number of physical solutions for the steady-state position
xs depends on the discriminant of Eq. (20). For a positive
discriminant there can be three solutions, with possible multi-
stability, whereas a single solution results for a negative
discriminant. Since the formula for the discriminant is rather
long and complicated, we make use of an alternative procedure
to assess the number of the physical solutions: A necessary
condition for the discriminant in Eq. (20) to be positive is that
the first derivative of the equation with respect to xs should
have two distinct roots, yielding the condition

|�c|
κ

>

√
3

2
. (21)

When this condition is satisfied, the mechanics can exhibit
three steady-state solutions for appropriate values of the cavity
pumping rate |η|.

The stability of the steady-state position of the mechanics
can be investigated by linearizing the equations of motion (14)
and (18) for small mechanical fluctuations. Here we employ
the alternative approach of examining the effective potential
Ueff for the mechanics in terms of which Eq. (18) can be written
as ṗj = − 1

�

∂Ueff
∂xj

in the absence of dissipation, where

Ueff = �ωm

2

N∑
k

x2
k − 2�|η|2

κ
arctan

[
�c + ∑N

k g0k
xk

κ/2

]
.

(22)

We next present two examples of the effective potential to
highlight interesting features of the classical model with linear
interactions, with a view to exploring these further in the
quantum theory.

As a first example Fig. 1 shows the effective potential
Ueff(x) as a function of the dimensionless mechanical position

FIG. 1. (Color online) Effective potential Ueff (x), in units of �κ ,
vs the dimensional position x for a single mechanical oscillator
linearly coupled to a cavity mode and for several values of the
normalized cavity pumping rate: |η|/κ = 0.14 (red dotted line),
|η|/κ = 0.18 (orange dot-dashed line), |η|/κ = 0.24 (green dashed
line), |η|/κ = 0.34 (blue solid line). The potential with |η|/κ = 0.18
exhibits two local minima corresponding to stable solutions and
one local maximum corresponding to an unstable solution. Here
ωm/κ = 0.01,g0,1/κ = 0.3,�c/κ = −1.5.

x for a single mode, N = 1, and for a variety of values of
the normalized cavity pumping rate |η|/κ , with κ being the
field decay rate. The ratio of the cavity detuning to the decay
rate is chosen as �c/κ = −1.5, meaning that the condition
in Eq. (21) is satisfied and multiple solutions are possible,
with other fixed parameters being given in the figure caption.
Here and in all the following figures, we use dimensionless
positions.

What Fig. 1 illustrates is that for the lower values of
the cavity pumping rate the effective potential has a single
stable minimum, the dimensionless position x of the minimum
increasing monotonically from zero with increasing pumping
rate. For large enough pumping rates, however, a double-
well effective potential arises with two stable minima and
one unstable maximum (see the orange dot-dashed curve
for |η|/κ = 0.18), indicating bistability in the mechanical
response. For still larger pump rates the effective potential
again exhibits a single stable minimum position displaced from
the origin. Thus, as is well known, even for a single mechanical
mode and linear interactions a bistable mechanical response
can arise [21,53]. We return to this example in Sec. V A to
discuss the impact of quantum fluctuations on that behavior.

As a second example we consider the case of two mechani-
cal modes with linear interactions and with equal values of the
coupling strengths, g0,1 = g0,2. Figure 2 shows the effective
potential Ueff(x1,x2) versus the dimensionless positions x1 and
x2 of the two modes for the parameters given in the figure
caption. What is interesting about this case is that there are
two stable minima of equal depth, situated on the line x1 = x2

by virtue of the equal coupling constants. We shall explore the
possibility that in the quantum regime this effective potential
can lead to entangled quantum states in Sec. V A.

B. Quadratic interactions

Following the same procedure of replacing the quantum
operators with their c-number expectation values to realize the
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x2

x1

0.0

0.4

FIG. 2. (Color online) Effective potential Ueff (x1,x2), in units of
�κ , as a function of the dimensionless positions x1 and x2 for two
mechanical oscillators linearly coupled to the cavity mode. Here
ωm/κ = 0.01,g0,1/κ = g0,2/κ = 0.3,�c/κ = −1.5,|η|/κ = 0.16.

classical theory, we find the following mean-field equations of
motion for the case of quadratic interactions:

ẋj = ωmpj , (23)

ṗj = −(
ωm + 2g

(2)
0,j |α|2)xj − γ

2
pj , (24)

α̇ = i

[
�c −

N∑
k

g
(2)
0,kx

2
k

]
α − κ

2
α + η. (25)

Then upon adiabatically eliminating the cavity mode field as
before we obtain the equations of motion for the mechanical
modes:

ṗj = −ωmxj − 2g
(2)
0,j |η|2[

�c − ∑N
k=1 g

(2)
0,kx

2
k

]2 + κ2

4

xj − γ

2
pj .

(26)
In contrast to the case of linear interactions the radiation
pressure force due to the quadratic interactions does not
displace the mechanical oscillators, but rather shifts their
mechanical frequencies, as is well known.

Solving Eq. (26) with ṗj = 0 yields for the steady-state
displacements xj,s of the mechanical modes[

ωm + 2g
(2)
0,j |η|2(

�c − ∑N
k g

(2)
0,kx

2
k,s

)2 + κ2

4

]
xj,s = 0. (27)

In case all mechanical oscillators are located at local minima
of the intracavity intensity, we have g

(2)
0,j > 0, and the term in

the square brackets in Eq. (27) is always positive. In that case,
the only solution has zero displacement for all the mechanical
modes. However, if the mechanical oscillators are located at
local maxima of the intracavity intensity, we have g

(2)
0,j < 0,

and for certain parameter regimes Eq. (27) allows nonzero
displacements. For the case of identical coupling coefficients

g
(2)
0,k = g

(2)
0 the nonzero displacements obey the equation

N∑
k

x2
k,s = 1∣∣g(2)

0

∣∣
⎡
⎣−�c ±

√
2
∣∣g(2)

0

∣∣|η|2
ωm

− κ2

4

⎤
⎦ . (28)

The stability of the steady-state positions can also be investi-
gated via a qualitative analysis on the effective potential of the
mechanics. For quadratic interactions the effective potential
obtained from Eq. (26) in the absence of dissipation is

Ueff = �ωm

2

N∑
k

x2
k − 2�|η|2

κ
arctan

[
�c − ∑N

k g
(2)
0,kx

2
k

κ/2

]
.

(29)

Next, we present three examples of the effective potential
that highlight interesting features of the classical model with
quadratic interactions, with a view to exploring the quantum
version of the examples.

For a first example we consider a single mechanical mode
with quadratic coupling to the cavity mode. The steady-state
solutions xk,s = xs for this case are determined by Eq. (28)
with N = 1, which yields a fifth-order polynomial equation
with up to five solutions (xs = 0 is always a solution). In
contrast to the case of linear coupling, the necessary condition
for the mechanical oscillator to have multiple equilibrium
positions is simply that the single-photon coupling coefficient
be negative, that is, that the mirror be trapped at a maximum of
the intracavity intensity. With a negative coupling coefficient
the cavity pumping rate |η| determines the number of physical
solutions for xs . More specifically, below the first critical
pumping rate

|η1| =
√

ωmκ2

8
∣∣g(2)

0,1

∣∣ (30)

the mechanical oscillator experiences a flattened harmonic-like
effective potential and has only one stable equilibrium position
at x = 0. If the cavity pumping rate is increased such that

|η1| < |η| < |η2|, (31)

where the second critical pumping rate |η2| is given by

|η2| =
√

ωm

2
∣∣g(2)

0,1

∣∣
[
�2

c + κ2

4

]
, (32)

the oscillator experiences a potential with five extrema,
three stable equilibrium positions, including x = 0, and two
unstable equilibrium positions. For still stronger pumping rates
larger than |η2|, the zero displacement becomes unstable, and
the mechanical mode experiences a symmetric double-well
potential with only two stable equilibrium positions. Figure 3
illustrates these features and shows the effective potential
Ueff(x) versus dimensionless position x for a single mechanical
oscillator quadratically coupled to the cavity mode at a
maximum of the intracavity intensity. For our parameters
the critical cavity pumping rates are |η1|/κ = 0.07905 and
|η2|/κ = 0.07912.

An alternative view of these results is shown in Fig. 4,
where we plot the allowed steady-state dimensionless positions
xs as a function of the normalized cavity pumping rate for
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FIG. 3. (Color online) Effective potential Ueff (x), in units of �κ ,
vs dimensionless position x for a single mechanical oscillator
quadratically coupled to the cavity mode for |η|/κ = 0.05 (red
dotted line), |η|/κ = 0.11 (orange dot-dashed line), |η|/κ = 0.17
(green dashed line), and |η|/κ = 0.20 (blue solid line). Here ωm/κ =
0.01,g

(2)
0,1/κ = −0.2,�c/κ = −0.02.

the parameters of Fig. 3. The inset shows an expanded view
of the plot around the critical cavity pumping rates. What
these results show is that around the critical pumping rates the
system undergoes a subcritical bifurcation. For larger cavity
pumping rates the system displays two stable and energetically
degenerate solutions. In any given realization of the system we
expect that one or the other of the two solutions will arise with
equal probability if the system is initialized from noise. We
explore the quantum dynamics in that regime in Sec. V B.

For our second and third examples we consider two
mechanical modes quadratically coupled to the cavity mode,
either with both mechanical oscillators located at maxima of
the intracavity intensity, in which case the coupling constants
are both negative,

g
(2)
0,1 = g

(2)
0,2 ≡ −∣∣g(2)

0

∣∣, (33)

FIG. 4. (Color online) Steady-state dimensionless positions xs

for a single mechanical oscillator with quadratic coupling as a
function of the normalized cavity pumping rate |η|/κ . The stable
and unstable solutions are denoted by the solid blue and dashed
red lines, respectively. The inset shows a zoomed-in region around
the bifurcation point. Here ωm/κ = 0.01,g

(2)
0,1/κ = −0.2,�c/κ =

−0.02.

x1

x2

Ueff

κ

FIG. 5. (Color online) Effective potential Ueff (x1,x2), in units of
�κ , vs the dimensionless positions x1 and x2 for equal and nega-
tive quadratic optomechanical coupling coefficients. Here ωm/κ =
0.01,g

(2)
0 /κ = −0.2,�c/κ = −0.02,|η|/κ = 0.3.

or with one oscillator located at a maximum and the other at
a minimum, so that the coupling coefficients have opposite
signs,

g
(2)
0,1 = −g

(2)
0,2 ≡ ∣∣g(2)

0

∣∣. (34)

The effective potential Ueff(x1,x2) versus the dimensionless
positions x1 and x2 of the mechanical oscillators can be
obtained from Eq. (29). An example of the first case, g

(2)
0,1 =

g
(2)
0,2, is shown in Fig. 5. The key feature is that for large enough

cavity pumping rates, the effective potential for the mechanical
oscillators changes from a harmonic shape into a sombrero or
Higgs potential, where the potential minimum is realized on a
circle with radius

R =

√√√√√ 1∣∣g(2)
0

∣∣
⎡
⎣−�c ±

√
2
∣∣g(2)

0

∣∣|η|2
ωm

− κ2

4

⎤
⎦. (35)

Finally, Fig. 6 illustrates the effective potential Ueff(x1,x2)
for the case in which one of the mechanical oscillators is
located at a local minimum and the other oscillator is located
at a local maximum of the intracavity intensity, g

(2)
0,1 = −g

(2)
0,2,

with the cavity pumping rate chosen to be large enough
to change the harmonic trapping potential to a double-well
potential for x2 and to stiffen the harmonic trapping potential
for x1. We shall explore quantum features of the two-mode
double-well potential in Sec. V B.

IV. QUANTUM EFFECTS

We have so far investigated mean-field solutions of the
mechanical modes, neglecting the effects of cavity field
fluctuations on the mechanics. This analysis is valid when
the cavity is sufficiently strongly pumped, and the cavity
photon number is large enough that the displacement of
the mechanical oscillator is large compared to the natural
harmonic oscillator length. However, this need not be the
case in the single-photon strong-coupling regime, where small
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x1

x2

Ueff

κ

FIG. 6. (Color online) Effective potential Ueff (x1,x2), in units of
�κ , vs the dimensionless positions x1 and x2 for quadratic interactions
of opposite signs, g

(2)
0,1/κ = −g

(2)
0,2/κ = 0.2,ωm/κ = 0.01,�c/κ =

−0.02,|η|/κ = 0.22.

photon numbers can still lead to optomechanical couplings
comparable to the mechanical frequency and both cavity and
mechanical systems can be in the deep quantum regime. In this
case quantum fluctuations become significant and can enter the
quantum dynamics of the mechanics in interesting ways.

The remainder of this article presents numerical results
that illustrate the dynamics of one or two mechanical modes
coupled to the single cavity mode via either linear or
quadratic optomechanical interactions in the single-photon
strong-coupling regime g0,j � ωm > γ . We concentrate on
the prevalent case where the cavity decay rate κ is much
larger than the single-photon coupling coefficient, so that
κ � g0,j � ωm � γ . In this regime, the cavity field follows
the dynamics of the mechanical mode, and nonlinear quantum
effects can be observed at a single-photon level. This regime
can be realized in optomechanical systems involving ultracold
atoms [24–27] but has not yet been reached in current state-
of-the-art micromechanical systems. For concreteness in our
quantum simulations we adopt representative parameters from
the experiment in Ref. [25], namely, the cavity decay rate κ =
2π × 2.6MHz, mechanical frequency ωm = 2π × 15.2kHz,
and effective single-photon coupling coefficient g0,1 = 2π ×
0.5MHz. In units such that κ = 1, these are equivalent to
ωm = 0.6 × 10−2, g0,1 = 1.9 × 10−1. We concentrate on the
case where the laser is red detuned with respect to the cavity
resonance.

Before presenting results based on a direct numerical
integration of the master equation for the oscillator-light
system, that is, without adiabatic elimination of the optical
field, we discuss briefly the Heisenberg-Langevin equations
of motion for the mechanical oscillators in order to capture
more intuitively perhaps the effects of cavity fluctuations on
the dynamics of the mechanical mode.

A. Heisenberg-Langevin equations

Starting from the quantum-mechanical Heisenberg-
Langevin equations for the cavity and mechanical modes

of Sec. II, in the regime where the cavity decay is the
dominant rate we may adiabatically eliminate the cavity mode
while retaining the quantum noise terms. For the case of
linear coupling this yields the effective Heisenberg-Langevin
equations of motion for the mechanical oscillator:

˙̂xj = ωmp̂j , (36)

˙̂pj = −ωmx̂j + g0,j |η|2(
�c + ∑N

k g0,kx̂k

)2 + κ2/4

+
[

g0,j η
∗ζ̂

i
(
�c + ∑N

k g0,kx̂k

) + κ/2
+ H.c.

]

+ g0,j ζ̂
†ζ̂ − γ

2
p̂j + ξ̂ , (37)

where the cavity noise operator ζ̂ involving the cavity input
noise âin is

ζ̂ (t) ≈ √
κ

∫ t

0
dτe(i�c−κ/2)(t−τ )âin(τ ). (38)

Following the same procedure for the case of quadratic
coupling yields the effective Heisenberg-Langevin equations:

˙̂xj = ωmp̂j , (39)

˙̂pj = −ωmx̂j − 2g
(2)
0,j |η|2(

�c − ∑N
k g

(2)
0,kx̂

2
k

)2 + κ2/4
x̂j

−
[

2g
(2)
0,j η

∗ζ̂

i
(
�c − ∑N

k g
(2)
0,kx̂

2
k

) + κ/2
+ H.c.

]
x̂j

− 2g
(2)
0,j ζ̂

†ζ̂ x̂j − γ

2
p̂j + ξ̂ . (40)

For both linear and quadratic interactions the second term on
the right-hand side of the equations of motion (37) and (40) for
the mechanical momenta is independent of the cavity noise and
derives from the effective potential. In contrast, the third and
fourth terms explicitly involve the additional random forces
due to the quantum fluctuations of the optical field. These are
in addition to the intrinsic random forces associated with their
direct coupling to a heat bath. Importantly, in the case of both
linear and quadratic coupling the additional noise experienced
by the mechanical modes is multiplicative, with consequences
that will be discussed in the next section.

B. Master equation

The master equation describing the evolution of the total
density operator prior to adiabatic elimination of the cavity
field is [54]

d

dt
ρ̂ = − i

�
[Ĥ ,ρ̂] + κ

2
D[â]ρ̂ + γ

2

N∑
k=1

D[b̂k]ρ̂, (41)

where b̂k is the annihilation operator for the kth mechanical
mode and we have assumed that the cavity and mechanical
modes are both coupled to reservoirs at zero temperature for
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simplicity, so that

D[ô]ρ = (2ôρô† − ô†ôρ − ρô†ô). (42)

For small enough numbers of photons and phonons and a
small number of mechanical modes the size of the relevant
Hilbert space remains manageably small, and it is possible
to solve that master equation directly by brute force, without
resorting to the adiabatic elimination of the cavity field. We
proceed by expanding the density matrix in the Fock states
basis {na,nb1 ,..,nbN } as

ρ̂ =
∑

ρna,ma,nb1 ,mb1 ,...

∣∣na,nb1 , . . . ,nbN

〉〈
ma,mb1 , . . . ,mbN

∣∣
and verify that the Hilbert space is large enough to avoid
boundary issues and that the norm of the density operator is
preserved at all times.

The master equation of Eqs. (41) and (42) is of the standard
form familiar from quantum optics. However, given the strong-
coupling regime considered here, one may inquire whether it
would be more appropriate to use a master equation formulated
in the dressed-state basis that incorporates the coherent mixing
between the photon and phonon modes [55]. In particular,
in the strong-coupling regime the mixing between photons
and phonons that characterizes the dressed states, obtained
in the limit of zero dissipation, is significant. If the cavity and
mechanical decay rates were small compared to the mechanical
frequency and single-photon coupling coefficient, the dressed-
state approach would be the way to proceed as they would
display a reasonable robustness against dissipation. However,
here it is assumed from the outset that the cavity decay rate κ is
much larger than both the mechanical frequency and the single-
photon coupling coefficient. In that case the dressed states are
not robust against cavity dissipation and quickly decay, and
the more appropriate master equation has the standard form of
Eqs. (41) and (42), which does not reflect the coherent mixing.
We remark that in obtaining this master equation a Markovian
approximation was employed, implying that the cavity noise
and oscillator noise are broadband. In the event that the noise
was narrow band, the master equation would also need to be
revisited.

V. RESULTS

A. Linear interactions

1. Single-mode mechanics

This section considers the case of a single mechanical
mode linearly coupled to the optical field, using the same
parameters as in Fig. 1, and addresses how quantum fluc-
tuations, in particular the multiplicative noise of Eq. (37),
impact the mean-field bistable behavior. It is known that deep
in the quantum regime quantum fluctuations eradicate the
possibility that the system dwells in one or the other of the
two classically allowed states [50]. This was demonstrated
experimentally at the single-atom and single-photon level in
cavity QED experiments with ultracold atomic beams [51,56].
Not surprisingly, a similar situation occurs here for the center
of mass of the mechanics. This is illustrated in Fig. 7, which
shows the quantum expectation value 〈x〉 of the dimensionless
position operator for the mechanical oscillator in steady state
versus the normalized cavity pumping rate |η|/κ (solid blue

FIG. 7. (Color online) Expectation value 〈x̂〉 vs normalized cav-
ity pumping rate |η|/κ (solid blue line) for a single mechanical
oscillator and linear optomechanical interaction. Here ωm/κ =
0.01,g0,1/κ = 0.3,�c/κ = −1.5,γ /κ = 0.002. The red dashed
curve shows the corresponding classical bistable solution.

line), along with the classically allowed positions (red dashed
line). Recall that the negative slope region of the classical
solution is unstable.

To further clarify the washing out of the mechanical
bistability the solid blue lines in Fig. 8 show the steady-state
position probability distribution

P (x) ≡ P (x,t → ∞) = 〈x|ρ̂m(t → ∞)|x〉, (43)

where ρ̂m(t → ∞) is the reduced density matrix for the
mechanical subsystem in the steady state and |x〉 is the
eigenstate of the dimensionless position operator x̂ for several
values of the normalized cavity pumping rate |η|/κ , with the
dashed red lines being the corresponding effective classical
potential Ueff(x) in Eq. (22). As expected, Fig. 8(b) displays

(a) (b)

(c) (d)

FIG. 8. (Color online) Steady-state position probability distribu-
tion P (x) vs dimensionless position x (solid blue lines) of the
mechanical oscillator along with the effective potential Ueff (x) (red
dashed lines), in units of �κ , for the normalized cavity pumping
rates |η|/κ of (a) 0.14, (b) 0.18, (c) 0.24, and (d) 0.34 for a single
mechanical oscillator and linear optomechanical interaction. Here
ωm/κ = 0.01,g0,1/κ = 0.3,�c/κ = −1.5, and γ /κ = 0.002.

063850-7



H. SEOK, L. F. BUCHMANN, E. M. WRIGHT, AND P. MEYSTRE PHYSICAL REVIEW A 88, 063850 (2013)

x1

x2

ψ0

FIG. 9. (Color online) Ground-state wave function ψ0(x1,x2) as
a function of the dimensionless positions x1 and x2. Parameters are
the same as in Fig. 2.

a bimodal probability density for a cavity pumping rate
for which the classical theory predicts bistability. We note,
however, that the absolute peak of the P (x) distribution does
not correspond to the absolute minimum of the classical
potential, as would be expected on the basis of additive noise.
This can be intuited by realizing that, for a single mechanical
mode, the cavity noise operator ζ̂ in the third term of Eq. (37)
appears in conjunction with a cavity resonant denominator
involving the mode position operator, meaning that this noise
source is multiplicative. The (classical) lower branch of the
bistability curve therefore corresponds to lower intracavity
fields than the upper branch and therefore less quantum noise.
For this reason, the shallower minimum of the potential
is rendered more stable than the deeper minimum against
quantum noise. As such, this behavior is a direct consequence
of the multiplicative nature of the noise.

2. Two-mode mechanics

We now turn to the case of two mechanical modes of equal
frequency ωm and equal linear optomechanical coupling to
the optical field mode. To set the stage we first ignore cavity
field fluctuations and determine the quantum-mechanical
ground-state wave function ψ0(x1,x2) of the effective potential
Ueff(x1,x2), given by

−�ωm

2

[
d2

dx2
1

+ d2

dx2
2

]
ψ0 + Ueff(x1,x2)ψ0 = E0ψ0, (44)

where E0 is the energy eigenvalue, using the imaginary-time
propagation method. The ground-state wave function, assumed
to be real and positive, is plotted in Fig. 9. As expected from
the effective potential, it has two peaks localized at the local
minima of Ueff(x1,x2).

We next make use of the Schmidt decomposition of
ψ0(x1,x2) in order to determine whether the two mechanical
oscillators in the ground state can be separated or not. It is
known that subsystems are entangled if their Schmidt number,
or the number of nonzero Schmidt coefficients, is greater than

FIG. 10. (Color online) Position representation of the Schmidt
basis states 〈x|1m1 〉 (red solid line) and 〈x|2m1〉 (blue dashed line)
for the two mechanical oscillators in the ground state ψ0(x1,x2).
Parameters are the same as in Fig. 2.

unity [57]. Decomposing ψ0(x1,x2) as

|ψ0〉 =
∑

i

λi

∣∣im1

〉∣∣im2

〉
, (45)

where λi are the Schmidt coefficients with respect to the basis
|im1〉|im2〉, with m1 and m2 labeling the two mechanical oscil-
lators, we find for the case at hand that the nonzero Schmidt
coefficients λ1 = 0.96,λ2 = 0.29,λ3 = 0.02, and λ4 = 0.02 in
descending order. Since the Schmidt number is greater than
unity, the ground state of the two oscillators is entangled, with
the state dominated by the first two Schmidt states |1m1〉|1m2〉
and |2m1〉|2m2〉. Their position representation is illustrated in
Fig. 10.

So far we have neglected the effects of cavity mode
fluctuations. In order to ascertain the contribution of cavity
fluctuations and decoherence on the dynamics of the mechan-
ical system, we finally determine the evolution of the initial
state ψ0(x1,x2) including cavity and mechanical damping and
quantify the correlations between the mechanical oscillators
through their quantum mutual information,

I (ρ̂m) = S
(
ρ̂m1

) + S
(
ρ̂m2

) − S(ρ̂m). (46)

Here S(ρ̂m) is the quantum joint entropy, or simply entropy,
of the composite mechanical system, and S(ρ̂m1 ) and S(ρ̂m2 )
are the von Neumann entropies of the individual mechanical
oscillators, with

S(ρ̂) = −Tr[ρ̂ ln ρ̂]. (47)

Figure 11 shows the time evolution of the entropy of the
individual mechanical oscillators (green dotted line), which
is the same for both oscillators, their joint quantum entropy
(red dashed lines), and their quantum mutual information (blue
solid line). The initial ground-state entanglement between the
two mechanical oscillators is apparent from the fact that the
quantum entropies of the mechanical subsystems are nonzero
while their joint entropy vanishes [57]. Both the joint entropy
and the entropy of the individual oscillators tend to increase
with time due to both the random radiation pressure variations
arising from cavity intensity fluctuations and mechanical
damping. We also note that the quantum mutual information
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FIG. 11. (Color online) Von Neumann entropies and quantum
mutual information of the mechanical system as a function of
normalized time κt . Green dotted line: entropies of the individual
mechanical oscillators; red dashed line: their quantum joint entropy;
blue solid line: quantum mutual information of the composite system.
Here γ1 = γ2 = 2 × 10−3κ , and other parameters are as in Fig. 2.

between the two oscillators (blue solid line) is maintained
in the long-time limit, indicative of the correlations between
the two mechanical subsystems resulting from their optically
mediated interaction via a common cavity mode.

B. Quadratic interactions

1. Single-mode mechanics

As in Sec. III we first consider a single mechanical
mode with a negative single-photon optomechanical coupling
coefficient. We determined (see Fig. 3) that, classically, the
system undergoes a subcritical bifurcation for a sufficiently
large cavity pumping rate. Here we investigate the impact of
quantum fluctuations on the associated dynamics.

Figure 12 shows the normalized time (κt) evolution of the
oscillator spatial probability distribution P (x,t) for a variety
of cavity pumping rates, obtained by direct numerical solution
of the master equation for the oscillator-field system. In this
example the mechanical mode is initially in its ground state,
the optical field is in the vacuum, and the cavity pumping
rate is switched on suddenly at t = 0 to a constant value η.
The successive panels show the effect of increased |η|/κ .
For pumping below the bifurcation point, which occurs at
|η|/κ � 0.08 for the parameters of the figure [see Figs. 12(a)
and 12(b)], the variance in position of the mechanics increases
as a consequence of the flattening of the effective potential as
the bifurcation point is approached from below (see Fig. 3).

For cavity pumping rates past the bifurcation point [see
Figs. 12(c)–12(f)], Ueff is a double-well potential with the
zero-displacement point x = 0 being unstable and with two
stable and degenerate minima. From a classical perspective,
above that point we expect fluctuations to drive the system into
one or the other of these two minima. Figures 12(d)–12(f) show
that, quantum mechanically, the mechanical mode, initially
localized around x = 0, undergoes oscillations involving both
potential minima. Taking Fig. 12(f) as an example, we see that
the initial quantum wave packet splits symmetrically between
both wells and reverses at the turning point of the double-well
potential at κt ≈ 200, and the split wave-packet components
recombine at κt ≈ 400. Bifurcation-induced wave-packet

FIG. 12. (Color online) Normalized time (κt) evolution of the
spatial probability P (x,t) for a mechanical mode initially in its ground
state and for the optical pumping rates |η|/κ of (a) 0.05, (b) 0.08,
(c) 0.11, (d) 0.14, (e) 0.17, and (f) 0.20. In each panel the vertical
axis is the dimensionless position x, and P (x,t) is color-coded. See
the potential Ueff of Figs. 3 and 4, which are for the same set of
parameters, for reference. Here γ = 10−3κ .

splitting and subsequent recombination require the cavity
pumping rate to be sufficiently above the bifurcation point so
that the split wave-packet components become well separated
spatially: This conforms to the usual notion that a quantum
phase transition will be smoothed out close to the bifurcation
point, in comparison to a classical bifurcation that occurs
discretely. This basic process can repeat several times but with
diminishing contrast due to the combined action of optical and
mechanical decoherence [see Figs. 12(e) and 12(f)].

The wave-packet splitting and subsequent recombination
shown between κt = [0,400] in Fig. 12(f) is reminiscent of a
Mach-Zehnder interferometer. This suggests exploiting this
system for observing quantum interferences, provided that
decoherence remains manageable. To explore the relative
contributions of the optical and mechanical damping to
decoherence we now calculate the evolution of the mechanical
mode initially prepared in a coherent superposition of wave
packets localized at nonzero displacements ±β0 with different
relative phase φ0,

ψm(0) = 1√
2

(|β0〉 + eiφ0 | − β0〉), (48)

and for two different values of the mechanical damping. The
idea of this simulation is that the two components of the
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FIG. 13. (Color online) Normalized time (κt) evolution of the
position probability distribution P (x,t) for an oscillator initially in
the cat state (48) with β0 = 1.5 and the relative phases (a) φ0 = 0,
(b) φ0 = 0, (c) φ0 = π/2, (d) φ0 = π , and (e) φ0 = 3π/2. In each
panel the vertical axis is the dimensionless position x, and P (x,t)
is color-coded. Parameters are the same as in Fig. 3, with cavity
pumping rate |η|/κ = 0.17. The mechanical decay rate is γ = 10−3κ

in (a) and γ = 10−6κ in (b)–(e).

coherent superposition are representative of the wave-packet
components resulting from the bifurcation-induced splitting
at κt � 200 in Fig. 12(f). The subsequent time evolution of
the probability density P (x,t) for these “cat states” is plotted
in Fig. 13 for a cavity pumping rate beyond the bifurcation
point. Figure 13(a) is for γ = 10−3κ and φ0 = 0, while the
subsequent panels are for γ = 10−6κ and various values
of φ0.

The bottom four panels show that for the case of negligible
mechanical damping (on the time scale of the plots) the
probability near zero displacement depends on the initial
relative phase φ0, a clear signature of a quantum interference
effect. Interferences reappear periodically for longer times, but
with a slowly decreasing amplitude due to the decoherence
resulting from the quantum fluctuations of the optical field.
What is perhaps surprising is, however, that the interferences
subsist for remarkably long times, thousands of cavity decay
times κ−1. The fact that quantum coherence can persist on
such long time scales is attributed to the coherent pumping
of the cavity mode. It is known (see, e.g., Refs. [58,59])
that the coherent pumping of Schrödinger’s cats can result in
maintaining their coherence for arbitrarily long times. In the
specific case of coherently driven micromasers, for example,
it was shown that the onset of these superpositions resembles
a second-order phase transition, with the control parameter
being the ratio of the atomic injection rate to the cavity

FIG. 14. (Color online) Semilog plot of the position probability
distribution P (x = 0,t) − P (x = 0,t → ∞) as a function of normal-
ized time (κt) (blue solid curve). The red dashed straight line is a fit
to the long-time maxima of the distribution. Parameters are the same
as in Fig. 13(b).

damping rate. In contrast, Figs. 13(a) and 13(b) illustrate the
effect intuitively expected from mechanical dissipation. All
parameters are identical in these panels, except that γ = 10−3κ

in Fig. 13(a) and γ = 10−6κ in Fig. 13(b). As expected, the first
interference peak visible in Fig. 13(b) is already significantly
reduced in Fig. 13(a) after a time of about 0.2γ −1 and is all
but extinguished after a time γ −1.

Returning to the remarkably slow optically induced de-
coherence, Fig. 14 shows on a semilog scale P (x = 0,t) −
P (x = 0,t → ∞) versus normalized time κt for a case of
negligible mechanical damping, γ = 10−6κ , with the red
dashed straight line being a fit through the peak maxima
that illustrates an effective exponential decay rate about three
orders of magnitude slower than κ−1 for κt > 1000 but that
starts off faster and nonexponentially [60].

We attribute the initial decay to the multiplicative nature of
the noise due to cavity mode fluctuations appearing in the third
term on the right-hand side of Eq. (40). First, we observe that
this term gives rise to fluctuations in the frequency experienced
by the mechanical mode, and it is known that such frequency
fluctuations can translate into an effective decay [54]. Second,
it has a resonant denominator that assumes its smallest value,
and hence gives the largest loss, when the mechanical mode
has a position in the vicinity of the minima of the double-well
effective potential, whereas the loss will be relatively small
when the oscillator is in the vicinity of x = 0. With reference
to Fig. 13(b) we see that between the first and second peaks,
which occur at κt ≈ 190 and κt ≈ 540, the probability density
P (x,t) undergoes a transient and recurs close to the initial form
P (x,0), which is centered around the minima of the effective
potential. Thus there is sizable loss between the first two peaks.
However, between subsequent pairs of neighboring peaks there
is less of a recurrence, and the decay rate between peaks
decreases with increasing time. Eventually, P (x,t) approaches
a near steady state, and the loss rate becomes exponential.

We remark that optical decoherence can also be reduced
by using a pulsed rather than a continuous-wave laser to
excite the cavity, with pulsed optomechanics having been
previously studied in the context of the squeezing of the
position uncertainty of a mechanical oscillator [61]. Thus,
using the bifurcation-induced wave-packet splitting followed
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by evolution of the subsequent wave packet in the harmonic
potential of the mechanical mode offers a route to observing
quantum interference effects alluded to here over times much
longer than the optical decoherence time, although, of course,
shorter than the inverse mechanical decay rate. This suggests
that a single mode with quadratic optomechanical coupling,
coherent driving, and extremely slow mechanical damping is
a viable candidate for producing quantum interference effects
resulting from the bifurcation-induced splitting.

2. Two-mode mechanics

(a) Equal couplings. We finally turn to the case of two
mechanical modes with quadratic interactions, considering as
in Sec. III the cases of both equal negative coupling coefficients
and coupling coefficients of equal magnitude but opposite
sign. In the first case the classical dynamics of the mechanics
is captured by the effective potential Ueff(x1,x2) of Fig. 5,
which has the form of a sombrero (or Higgs) potential for a
sufficiently large cavity pumping rate. To exploit its rotational
symmetry we introduce the angular momentum in the (x1,x2)
plane

L̂φ = x̂1p̂2 − x̂2p̂1, (49)

with the Heisenberg-Langevin equation of motion

˙̂Lφ = −γ

2
L̂φ + ξ̂φ, (50)

and we have introduced the noise operator

ξ̂φ = x̂1ξ̂2 − x̂2ξ̂1. (51)

As expected from the symmetry of the potential, L̂φ is a
constant of motion in the absence of mechanical dissipation.
Importantly, the angular momentum is insensitive to cavity
fluctuations and the associated decoherence, assuming, as we
have done, that both mechanical modes are subject to the same
optomechanical coupling.

From Eq. (50) we have

〈L̂φ〉(t) = e−γ t/2〈L̂φ〉(0), (52)

showing that the mean angular momentum decays to zero due
to mechanical phase diffusion with the characteristic time scale
of γ −1.

(b) Opposite couplings. Perhaps more interesting is the
situation where the two modes have optomechanical coupling
constants of equal magnitude but opposite signs and are
governed classically by the effective potential of Fig. 6. The
corresponding quantum-mechanical ground state is plotted in
Fig. 15. Not surprisingly, it is symmetric about both lines
x1 = 0 and x2 = 0 and exhibits two peaks localized at the local
minima of Ueff . Physically, this state corresponds to oscillator
2 being in a “cat state,” whereas the oscillator 1 is a Gaussian
centered at the origin x1 = 0. The Schmidt number for this
ground state is found numerically to be equal to 1, which
implies that it is separable.

Figure 16 shows the time evolution of the von Neumann
entropies of oscillators 1 (orange dot-dashed line) and 2
(green dotted line), their joint entropy (red dashed line), and
mutual quantum information (blue solid line). All entropies
being initially equal to zero confirms that the ground state is
separable, with both subsystems in pure states [57]. Under the

FIG. 15. (Color online) Ground state of the effective potential
describing the motion of the two mechanical modes for the case of
quadratic interactions and coupling coefficients of equal magnitude
but opposite sign. Parameters are the same as in Fig. 6.

influence of quantum noise from both the optical field and the
mechanics the entropy of the oscillators then increases, with
oscillator 1 experiencing an entropy increase that is much
slower than oscillator 2. This is not surprising since due to its
catlike nature the second oscillator is expected to be much more
sensitive to decoherence. Eventually, the increase in entropy
of oscillator 2 reverses, and asymptotically, the mechanics
reaches a situation where entropy is distributed almost equally
between the two oscillators. As was the case for linear
optomechanical coupling (see Fig. 11), the growth of their
quantum mutual information (blue solid line) with time shows
that the cavity fluctuations in fact correlate the two initially
uncorrelated mechanical oscillators; that is, dissipation builds
correlation via interaction of the two oscillators with a common
light field or bath.

The absence of mutual coherence between the two oscilla-
tors in the ground state begs the question of the extent to which
the spatial coherence of oscillator 2, which is initially in a
catlike state associated with the double-well effective potential

FIG. 16. (Color online) Von Neumann entropies of mechanical
oscillators 1 (orange dot-dashed line) and 2 (green dotted line),
their joint quantum entropy (red dashed line), and mutual quantum
information (blue solid line). Parameters are the same as in Fig. 6
with γ1/κ = γ2/κ = 10−3.
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FIG. 17. (Color online) (a) Normalized time (κt) evolution of the
marginal probability distribution P (x2,t), where the vertical axis is
the dimensionless position x and P (x,t) is color-coded, and (b) the
effective potential (red dashed line), in units of �κ , and probability
distribution P (x2,t) (blue solid line) for the times indicated in (a),
with plot A corresponding to the initial time t = 0. Parameters are
the same as in Fig. 16, γ1/κ = γ2/κ = 10−3.

along axis x2, survives in the presence of decoherence. To
explore this we computed the time dependence of the marginal
probability density P (x2,t) (see Fig. 17). As expected, the
initial interference fringes wash out in the long-term limit, but
similar to the case of a single oscillator, we find somewhat
counterintuitively that the main source of decoherence is
mechanical damping, despite the fact that the mechanical
decay rates are three orders of magnitude slower than the
cavity decay rate κ in that example. Again, we attribute this
result to the coherent driving of the optical field that reduces its
effective decoherence rate. We also find that the localized wave
functions oscillate around the local minima of the effective
potential with a frequency

�m ≈ ωm − κ2ω2
m

8|g0||η|2 . (53)

The origin of these oscillations is the cavity fluctuations that
act as a source of multiplicative noise on the mechanic, as can
be seen from Eq. (40). The cavity noise terms are multiplied
with the position of the oscillator, and the oscillator thus favors
small displacement.

VI. CONCLUSION

In summary, we have investigated a number of aspects
of the quantum dynamics of multiple mechanical modes
coupled to a single quantized cavity field mode via linear
or quadratic optomechanical interactions in the single-photon
strong-coupling regime, where the single-photon optomechan-
ical coupling coefficient is comparable to the mechanical

frequency and the cavity decay rate κ is large enough that the
optical field can be adiabatically eliminated. At the mean-field
level the coherent part of the cavity field provides an effective
potential for the mechanics, revealing mechanical bistability
for the case of a single mode and linear interactions and a
subcritical bifurcation and associated double-well potential
for the case of quadratic interactions. In addition to sideband
cooling effects that are not addressed in this paper, a number
of aspects of the resulting nonlinear dynamics have been
investigated in the past in the classical regime, for instance, the
radiation-pressure-induced bistability of the mechanics that
was already demonstrated nearly 30 years ago [53]. A key
finding here is that in the single-photon strong-coupling regime
of optomechanics, quantum noise changes the mean-field
picture significantly, particularly since the noise component
associated with the optical field is multiplicative. Specifically,
for a single mode and linear interactions we found the
disappearance of mechanical bistability, reminiscent of the
familiar cavity QED case, whereas for quadratic interactions
we elucidated a quantum interference phenomenon based on
bifurcation-induced wave-packet splitting. For the case of two
mechanical modes and linear interactions we explored how
an initial entangled state, taken as the quantum-mechanical
ground state of the effective potential, evolves in the presence
of optical and mechanical decay, finding that the mutual
quantum information can persist for long times due to the
fact that the mechanical modes interact with a common cavity
mode. A similar persistence of quantum effects for times orders
of magnitude longer than the short cavity decay time κ−1 was
also found for the case of quadratic interactions, which is a
plus for the possibility of observing these effects. Moreover,
these results should serve as a cautionary tale and a warning
against making superficial order of magnitude arguments to
ignore the effects of mechanical damping rate γ for γ � κ .
Coherent driving of one or the other system can change things
dramatically, and particular care must be taken under such
conditions.

Clearly, this paper has only scratched the surface of the
wealth of dynamical effects that can take place in multimode
optomechanical systems, in both the classical and the quantum
regimes. For example, nonlinearities need not be associated
with the interaction of mechanical modes with a common
optical field and can also result from a number of other
coupling mechanics, such as interacting with the phonon bath
of a common substrate, providing, e.g., interesting options
for band-structure engineering. Larger multimode systems
also open interesting venues for the study of lattice systems,
and multimode systems are also at the core of propagation
studies, with an interesting potential for quantum acoustics,
for example. This is an extremely rich area of investigation
that we will continue to explore in forthcoming research.
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