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We study Helmholtz bright soliton splitting at nonlocal nonlinear interfaces. Based on the framework of the
Helmholtz theory, we demonstrate that bright soliton breakup depends on angle of incidence, nonlinear refractive
index mismatch at the interface, and degree of nonlocality. Interestingly, the change of the degree of nonlocality
can introduce collision and oscillation of solitons.
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I. INTRODUCTION

In the seminal works, people numerically observed that
the planar boundary separating two dielectric media, where
at least one of them is nonlinear (Kerr-type), can produce the
breakup of an incident Gaussian soliton beam into multiple
output solitons [1]. Wright and co-workers demonstrated
numerically that external excitation of a nonlinear waveguide
can produce sequential threshold behavior via multisoliton
emission from the waveguide. This behavior is similar to
that predicted to occur at a nonlinear interface [2]. In 2004,
Aleshkevich and co-workers reported the results of numerical
studies of the fission of N -soliton bound states at the interface
formed by a Kerr nonlinear medium and a linear dielectric
in a planar waveguide [3]. In this scenario, the number of
solitons resulting from the reflection of multisoliton bound
states has been reported to possess a strong angular character
[3]. Subsequently, people addressed the reflection of vector
solitons, comprising several components that exhibit multiple
field oscillations, at the interface between two nonlinear media.
They revealed that reflection causes fission of the input signal
into sets of solitons propagating at different angles [4].

With the paraxial approximation, one has studied the
physics of solitons impinging on planar boundaries separating
two Kerr-type media using the nonlinear Schrödinger (NLS)
equation. The particlelike approach [5] has succeeded in
accounting for incident optical beam breakup into multiple
self-focused channels and to deal with multiple reflection
and transmission at multiple interfaces. Each new component
generated can be treated as a separate equivalent particle
moving in its own equivalent potential [6]. Nevertheless, most
nonlinear phenomena arising at nonlinear interfaces have an
angular component which is largely removed in any NLS-
based analysis due to the assumed paraxial approximation [7].
This limitation is overcome using a Helmholtz nonparaxial
framework. Nonparaxiality can refer to two different contexts
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of distinct nonparaxial character: high intensity and large
angles of propagation [8–10]. The first type of nonparaxiality
results from the evolution of ultranarrow beams in nonlinear
media. In 1993, Akhmediev et al. cast doubt on the suitability
and limitations of the normalized NLS equation for describing
the evolution of such beams [9]. The scalar theory of the
self-focusing of an optical beam is not valid for a very
narrow beam, and a vector nonparaxial theory is developed
from the vector Maxwell equations [10,11]. Based on these
equations, Crosignani et al. have reported and analyzed bright
[12] and dark [13] nonparaxial solitons. In contrast to the first
type, the second type of nonparaxiality arises from the rapid
evolution of the field envelope of a broad (when compared
to the wavelength) beam propagating at a large angle to the
longitudinal axis [8]. The scalar nonlinear Helmholtz (NLH)
equation well describe this nonparaxiality and overcome
the limitations of the NLS [14,15]. Exact analytical soliton
solutions have been found in a focusing Kerr-type medium
[14]. Nonparaxial theory based on NLH equation has also
been applied to find dark Kerr [15], two-component [16],
boundary [17], and bistable [18] Helmholtz soliton solutions.
At nonlinear interfaces, soliton refraction effects have a strong
inherent angular character and constitute an excellent test
bed for nonparaxial Helmholtz theory [8,19–21]. Especially,
soliton breakup occurring at the planar boundary separating
two Kerr focusing and defocusing media was analyzed within
the framework of the Helmholtz theory where the full angular
content of the problem was preserved [21].

However, thus far soliton splitting at nonlocal nonlinear
interfaces with the second type of nonparaxiality has not been
studied. A nonlocal nonlinear response played an important
role on the optical spatial solitons over the years. Nonlocality
exists in different physical settings, as nematic liquid crystals
[22], photorefractive media [23], thermal [24,25], and so
on. Various degree of nonlocality given by the width of
the nonlocal response function and the intensity profile of
the beam can be divided into four types, like local, weakly
nonlocal, general nonlocal, and highly nonlocal response
[26,27]. In this paper, we numerically investigate the soliton
splitting at nonlinear interfaces with the second type of
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nonparaxiality in the nonlocal nonlinear medium. We find
that the breakup number of solitons, the refraction power,
and angle of refraction in the nonlocal nonlinear medium
can be affected by angle of incidence, nonlinear refractive
index mismatch at the interface, and degree of nonlocality. We
devote Sec. II to a detailed description of the theory model
of Helmholtz bright soliton splitting at the nonlocal nonlinear
interfaces. Section III is devoted to studying the influence
of angle of incidence, nonlinear refractive index mismatch at
the interface, and degree of nonlocality on soliton breakup.
Section IV summarizes the main conclusions of the paper.

II. THEORY MODEL

The scheme used in the Helmholtz analysis of nonlocal
nonlinear interfaces is illustrated in Fig. 1. The dashed
line represents the planar boundary separating two different
nonlinear media. Medium 1 is a local nonlinear medium, and
medium 2 is a nonlocal nonlinear medium. θin denotes an angle
(in unscaled coordinates) of the interface and the transversal
reference direction x, that is, the angle of incidence. Here we
define angles of incidence and refraction as those made with
the normal to the interface.

For the simple two-dimensional case, the time-independent
complex optical field envelope E(X,Z) of a continuous wave
TE-polarized beam satisfies the Helmholtz equation [8],

∂2 �E
∂Z2

+ ∂2 �E
∂X2

+ k2
0n

2( �E) �E = 0. (1)

Introducing a normalization appropriate to a forward-
propagating beam, E(X,Z) = A(X,Z)exp(ik1Z) (k1 = n01k0

is spatial wave number in medium 1), where k0 = ω/c is the
propagation constant in vacuum, c is the speed of light, ω is the
frequency, and n01 is the linear refractive index of a first Kerr-
type nonlinear material (medium 1) with total refractive index
n01 + α1|E|2, where α1 is the nonlinear coefficient and α1 �
n01. For medium 2, a nonlocal nonlinearity n( �E) = n02 + �n

and assuming that the approximation n2( �E) = n2
02 + 2n02�n.

n02 is the linear refractive index; �n is the nonlinear induced

FIG. 1. Basic scheme used in this paper. All quantities are plotted
in arbitrary dimensionless units.

change of the refractive index, which satisfies

w2
m

∂2�n

∂X2
− �n + α2| �E| = 0, (2)

where α2 is the nonlinear coefficient, and wm is the character-
istic length of the nonlinear response. Without further approx-
imation, we have employed the following normalizations: z =
Z/LD , x = √

2X/w0, u(x,z) = √
k1α1LD/n01A(x,z), �n =

α2n01φ/(k1α1LD). w0 is a transverse scale parameter that we
shall later relate to the width of nonparaxial soliton beams.
This scale parameter can also be considered as equivalent to the
waist of a (reference) paraxial Gaussian beam, at z = 0, which
has a diffraction length LD = kw2

0/2. So, we get the following
nonparaxial nonlinear Schrödinger equation (NNSE) for the
dimensionless amplitude u of the light field coupled to
the equation for normalized nonlinear induced change of
the refractive index φ,

κ
∂2u

∂z2
+ i

∂u

∂z
+ 1

2

∂2u

∂x2
+ |u|2u =

[
�

4κ
+ |u|2 − αφ

]
χ (x,z)u,

(3a)

d2 ∂2φ

∂x2
− φ + |u|2 = 0 (medium 2), (3b)

where κ = 1/(k2w2
0) is the nonparaxial parameter of the NNSE

[7,8,14–21] and d = wm/(
√

2w0) stands for the degree of
nonlocality of the nonlinear response. In the limits κ → 0 and
d → 0, the nonlinear Schrödinger equation can be recovered
from the system (3) which describes a local nonlinear response
at d → 0 and a strongly nonlocal response at d → ∞. χ (x,z)
accounts for the planar boundary which separates the two
media, so it takes values 0 or 1 when (x,z) is in medium 1 or
medium 2, respectively. In the particular case that the boundary
is situated at x = 0, one obtains the Heaviside function
χ (x,z) = H (x). � = 1 − n2

02/n2
01 and α = (n02α2)/(n01/α1)

account for the linear and nonlinear refractive index mismatch
at the interface, respectively. For Eq. (3b), we can also write it
into the form of convolution,

φ =
∫ +∞

−∞
R(x − x ′)I (x ′)dx ′, (4)

where I = I (x,z) = |u(x,z)|2. The real, localized, and sym-
metric function R(x) is the response function of the nonlocal
medium, whose width determines the degree of nonlocality.
For a singular response, R(x) = δ(x), the refractive index
change becomes a local function of the light intensity, φ =
I (x,z); i.e., the refractive index change at a given point is
solely determined by the light intensity at that very point. With
increasing width of R(x) the light intensity in the vicinity of the
point x also contributes to the index change at that point [27].

III. SOLITON SPLITTING AT DIFFERENT INTERFACES

Our analysis of bright soliton splitting will be restricted
to � = 0; i.e., interfaces where linear refractive indices in
both media are the same and the interfaces are nonlinear-
step interfaces [8]. Under this condition, the amount of
reflected power on such interfaces is reduced comparing with
� �= 0 interfaces. Otherwise, these reflections could affect
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the number of solitons appearing in the second medium.
Second, we consider nonlinear-step interfaces with α > 1,
which is a sufficient condition for the existence of solitons
in the second medium and establishes the necessary condition
for the splitting of the solitons when crossing the interface
[8]. Therefore, our work is almost restricted to mild on-axis
nonparaxiality where any dramatic reduction in soliton width
resulting from soliton breakup is avoided in order to maintain
the validity of a scalar-based analysis of the problem [8]. In
our study, we remove scenarios of very strong focusing.

To discuss the influence of the angle of incidence, nonlinear
refractive index mismatch at the interface and degree of
nonlocality on the Helmholtz bright solitons splitting at the
interface, we use the split-step Fourier method (SSFM) and
spectral renormalization method [28] to obtain the evolutions
of solitons by solving the equations (3), where a solution
guess for field distribution is u(x) = sec h(x). There is a need
to explain that the red solid line and the green dot-dashed
line denote the interface and the interface normal in all
figures of the simulated evolutions of the beams in this paper,
respectively. In our simulations, a fundamental bright soliton
impinges on different nonlinear-step interfaces at same degree
of nonlocality and angles of incidence, as illustrated in Fig. 2.
Figure 2(a) shows the natural logarithm of the refraction power
P and the effective angle of refraction θeref in medium 2
versus nonlinear refractive index mismatch at the interface
α. We find that total power of the solitons in medium 2
will decrease with α. When α increases, the nonlinear-step
increases; that is to say, the refractive index potential barrier
at the interface increases. So, the power through the barrier
decreases. The effective angle of refraction θeref , which is
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FIG. 2. (Color online) (a) The natural logarithm of the refraction
power ln P (dotted green line) and the effective angle of refraction
θeref (solid blue line) in medium 2 versus nonlinear refractive index
mismatch at the interface α. Panels (b), (c), and (d) show the simulated
evolutions of the beams at α = 5, α = 7, and α = 11, respectively.
The other parameter κ = 1 × 10−3, � = 0, θin = 0.52, and d = 0.2.
The white solid lines denote x = 0, that is, the direction of the
incidence. All quantities are plotted in arbitrary dimensionless units.
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FIG. 3. (Color online) (a) The natural logarithm of the refraction
power ln P (dotted green line) and the effective angle of refraction
θeref (solid blue line) in medium 2 versus angle of incidence
θin. Panels (b), (c), and (d) show the simulated evolutions of the
beams at θin = 0.20,0.70,1.22, respectively. The other parameter
κ = 1 × 10−3, � = 0, α = 7, and d = 0.2. All quantities are plotted
in arbitrary dimensionless units.

the angle of refraction of the largest-amplitude beam in
medium 2, increases with α. The nonlinear refractive index
mismatch at the interface may affect not only the number
of solitons appearing in the second medium, but also the
refraction scheme. Comparing Fig. 2(b) with Fig. 2(c), the
smallest-amplitude beam is external refraction in Fig. 2(b);
however, the beam is internal refraction in Fig. 2(c) [29].
Solitons impinging on an interface with α = 5,7 [see Figs. 2(b)
and 2(c)] decompose into two solitonlike beams, while three
are obtained with α = 11 [see Fig. 2(d)].

Next, we discuss the influence of angle of incidence θin on
the soliton splitting at the interfaces. Not only the number of
solitons but also the amount of refracted power at the interface
P or the angle of refraction of the largest amplitude beam θeref

are so different. From Fig. 3(a), we can see that the angle of
refraction of the largest amplitude beam θeref first decreases
with angle of incidence θin and then increases with θin. When
θin is smaller, the largest amplitude beam in medium 2 and the
incident beam in medium 1 emerge on the same side of the
interface normal, and θeref will decrease with θin . While θin ex-
ceeds a certain value, the largest amplitude beam in medium 2
and the incident beam in medium 1 appear on the opposite side
of the interface normal, and θeref will increase with θin. The
total power of the solitons P in medium 2 will decrease with
θin. Solitons impinging on an interface with θin = 0.70,1.22
[see Figs. 3(c) and 3(d)] decompose into two solitonlike beams,
while only one is obtained with θin = 0.20 [see Fig. 3(b)].

At last, the influence of the degree of nonlocality d on
the solitons splitting at the interfaces will be studied. A
fundamental bright soliton impinges on the interfaces at
different degree of nonlocality, as illustrated in Fig. 4. Figure 4
shows that the soliton splitting scheme actually depends on
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FIG. 4. (Color online) Panels (a)–(f) show the simulated evolu-
tions of the beams for a range of d values varying from d = 0.2 to d =
2, respectively. The other parameter κ = 1 × 10−3, � = 0, α = 10,
and θin = 0.52. All quantities are plotted in arbitrary dimensionless
units.

the degree of nonlocality. At d = 0.2, solitons decompose
into two solitonlike beams in medium 2, and the two beams
interactions do not occur, as shown in Fig. 4(a). However, when
the degree of nonlocality increases, the light intensity in the
greater range of the point x contributes to the index change at
that point [27], the two beams in medium 2 can collide shown
in Figs. 4(b) and 4(c). Comparing Fig. 4(b) with Fig. 4(c), we
can see that one collision occurs at d = 0.3, but two collisions
occur at d = 0.35. In two figures, the two beams will separate
after collision. However, it is clear that for a strong enough
nonlocality the two spatial solitons trap each other. When
the degree of nonlocality is greater, the smaller amplitude
beam will periodically oscillate around the greater amplitude
beam, and the oscillation amplitude increases with the degree
of nonlocality. Interestingly, a similar phenomenon was noted
in the intermediate process for dealing with incoherent solitons
in “fast” nonlocal nonlinear media [30] and in the short-range
interactions between strongly nonlocal spatial solitons [31].
These are shown in Figs. 4(d)–4(f). The amount of refracted
power P will increase when d increases, as illustrated in
Fig. 5(a). The angle of refraction of the greater amplitude
beam θeref first decreases with d and then increases with d

[see Fig. 5(b)]. When d is smaller, the largest amplitude beam
in medium 2 and the incident beam in medium 1 emerge on
the same side of the interface normal, and θeref will decrease
with d . While d exceeds a certain value, the largest amplitude
beam in medium 2 and the incident beam in medium 1 appear
on the opposite side of the interface normal, and θeref will
increase with d. There is a need to explain why we only show
the cases of d � 1 in Fig. 5(b). We cannot explain angles of
refraction in the cases of d = 0.3,0.35, because the solitons
collide.

A general feature that appears qualitatively striking about
the data presented is the relative orientation of incident and
refracted beams with respect to the interface normal. As shown
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FIG. 5. (Color online) Panels (a) and (b) show the natural loga-
rithm of the refraction power ln P (dotted green line) and the effective
angle of refraction θeref (solid blue line) in medium 2 versus degree of
nonlocality d , respectively. The other parameters are κ = 1 × 10−3,
� = 0, α = 10, and θin = 0.52. Panels (c) and (d) illustrate that the
profiles of solitons |u|2 (dotted red line) and the distribution of the
refractive index |φ| (solid blue line) correspond to Fig. 2(b) and
Fig. 4(f) at z = 60, respectively. All quantities are plotted in arbitrary
dimensionless units.

in Figs. 3(d) and 4(f), the largest amplitude (refracted) beam in
medium 2 and the incident beam in medium 1 emerging on the
same side of the interface normal. However, Figs. 2(b)–2(d),
Figs. 3(b) and 3(c), and Figs. 4(d) and 4(e) show that the largest
amplitude beams emerging on the same side of the interface are
normal to the incident beams. The reason for these situations
is that medium 2 is a nonlocal nonlinear medium. A nonlocal
nonlinear medium means that the response of the medium at a
particular point is not determined solely by the wave intensity
at that point (as in local media), but also depends on the wave
intensity in its vicinity [27]. Further, the intensity dependence
of the refractive index affects considerably the propagation of
light waves in nonlinear media. As illustrated in Figs. 5(c)
and 5(d), the largest amplitude beam must appear on the
position of the largest refractive index. So, some plots here
show refracted beams and the incident beams emerging on the
same side of the interface normal.

IV. CONCLUSION

In conclusion, we have numerically analyzed soliton
breakup at nonlinear interfaces separating two local and nonlo-
cal nonlinear media. Based on the framework of the Helmholtz
theory, we demonstrated that bright soliton breakup depends
on angle of incidence, nonlinear refractive index mismatch
at the interface and degree of nonlocality. The number of
solitons, the refraction power, and angle of refraction in
the nonlocal nonlinear medium can be affected by these
parameters. Especially, the change of the degree of nonlocality
can introduce collision and oscillation of solitons.
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