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Negative azimuthal force of nanofiber-guided light on a particle
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We calculate the force of a quasicircularly polarized guided light field of a nanofiber on a dielectric spherical
particle. We show that the orbital parts of the axial and azimuthal components of the Poynting vector are always
positive, while the spin parts can be either positive or negative. We find that, for appropriate values of the size
parameter of the particle, the azimuthal component of the force is directed oppositely to the circulation direction
of the energy flow around the nanofiber. The occurrence of such a negative azimuthal force indicates that the
particle undergoes a negative torque.
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I. INTRODUCTION

It is well known that light has not only energy but also
linear and angular momenta that can be transferred to atoms,
molecules, and material particles. Radiation pressure due to
the momentum flux in a light beam tends to push illuminated
objects along the direction of propagation. The intensity-
gradient force tends to draw small objects toward extrema
of the intensity. In single-beam optical traps known as optical
tweezer, the axial intensity gradient is deep enough that the
intensity-gradient force exceeds radiation pressure [1]. The
tightly focused light beam of an optical tweezer can therefore
draw particles against the light propagation direction. Like
the optical tweezer technique [1–5], the techniques of optical
solenoid beams [6] and optical conveyor belts [7–9] also
require gradient forces to move small objects back and forth
along the beam axis.

Recent studies have shown theoretically [10–15] and
demonstrated experimentally [16] that small particles can be
pulled by so-called tractor light beams against the photon
stream even when the beam intensity is uniform along the
propagation axis. Unlike other optical techniques of micro-
object manipulation [1–9], the pulling of particles against
the propagation direction of a tractor beam originates from a
nonconservative optical backward pulling force. Such a pulling
force occurs when the projection of the total incident photon
momentum along the propagation direction is small and the
forward scattering is dominant [11–16].

Several types of tractor beams have been proposed and
studied. They include interfering Bessel beams [10], inter-
fering plane waves [14–16], or a single Bessel beam with a
semiapex angle close to 90◦ [11–13]. A disadvantage of the
Bessel-based technique is that, as with a plane wave, a true
Bessel beam cannot be created because it is unbounded and
would require an infinite amount of energy. Approximations
to Bessel beams are made in practice by focusing a Gaussian
beam with an axicon lens to generate a Bessel-Gauss beam.
Such beams exist only in a spatially limited volume dictated
by optical elements. Consequently, the lengths of approximate
versions of Bessel beams are short (typically less than 10 μm).
Similarly, the lengths of tractor beams created by interfering
Gaussian beams, which are approximations to plane waves in
practice, are also limited [16].

Due to wide applications of near-field optical microscopy
and spectroscopy, especially in biology, medicine, materials
engineering, and information technology, a lot of attention has
been paid to scattering of evanescent waves by small particles.
The motion of small particles in the evanescent field produced
by total internal reflection of a laser beam from a dielectric
surface has been experimentally studied [17]. The first theory
for scattering of evanescent waves by a spherical particle,
developed by Chew et al. [18] and slightly corrected by Liu
et al. [19], is essentially the analytical continuation of the
standard Mie theory for the case of plane-wave excitation [20].
The generalized Lorentz-Mie theory for a spherical particle in
an arbitrary incident light field has been developed [21–25].
Differential cross sections [19] and total cross sections [26]
for extinction of evanescent waves by small spherical particles
have been calculated. The radiation force exerted on small
spherical particles in an evanescent field near a dielectric
interface has been studied [27–35].

An interesting scheme for generating an evanescent-wave
optical field is to use an optical fiber that is tapered to a
diameter comparable to or smaller than the wavelength of light
[36–39]. In such a thin fiber, called a nanofiber, the guided
field penetrates an appreciable distance into the surrounding
medium and appears as an evanescent wave carrying a
significant fraction of the propagating power and having a
complex polarization pattern [40–42]. When the fiber diameter
is not too small, the guided field is tightly confined in the fiber
transverse plane [40–42]. Nanofiber-guided light fields can be
used for trapping atoms [43–45], for probing atoms [46–51],
molecules [52], quantum dots [53], and nanodiamonds [54,55],
and for mechanical manipulations of small particles [34,56].
Recently, it has been demonstrated that small particles can be
attracted to and transported along nanofibers by the evanescent
wave of a guided light beam [34].

In order to effectively probe, control, and manipulate the
interaction of nanofiber-guided light fields with particles, it
is desirable to study the mechanical action of the former on
the latter. In this paper, we study the force of the evanescent
wave of a quasicircularly polarized guided light field of a
nanofiber on a dielectric spherical particle. We show that, for
appropriate values of the size parameter of the particle, the
azimuthal component of the force is directed oppositely to the
circulation direction of the energy flow around the nanofiber.
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FIG. 1. (Color online) A dielectric particle in the vicinity of a
nanofiber. The components and trajectory of the Poynting vector of
the field in a quasicircularly polarized fundamental mode are shown.
The period of the trajectory is 2π/kS , where kS = Sϕ/rSz.

The paper is organized as follows. In Sec. II we describe the
nanofiber and study the Poynting vector of a quasicircularly
polarized guided light field. In Sec. III we investigate the
optical force of the nanofiber-guided light field on a dielectric
particle. Our conclusions are given in Sec. IV.

II. QUASICIRCULARLY POLARIZED
NANOFIBER-GUIDED LIGHT FIELD

We consider the mechanical action of a nanofiber-guided
light field on a dielectric spherical particle (see Fig. 1). The
nanofiber is a silica cylinder of radius a and refractive index
n1 and is surrounded by an infinite background medium of
refractive index n2, where n2 < n1. We neglect the absorption
by the nanofiber material and the surrounding medium, that
is, we assume that n1 and n2 are real parameters. The radius
a of the nanofiber is well below the wavelength λ of light.
Therefore, the nanofiber supports only the hybrid fundamental
modes HE11 corresponding to the given wavelength [57].

In order to describe guided light fields, we use Cartesian
coordinates {x,y,z} and associated cylindrical coordinates
{r,ϕ,z}, with z being the fiber axis. We represent the electric
and magnetic components of the field as E = (Ee−iωt +
E∗eiωt )/2 and H = (He−iωt + H∗eiωt )/2, respectively. Here,
ω is the angular frequency of the field, and E and H
are the complex amplitudes of the electric and magnetic
components, respectively. We study the case where the light
field is quasicircularly polarized. We assume that the principal
rotation direction of the field polarization around the fiber axis
z is counterclockwise and the light field propagates in the
positive direction of the axis z. In this case, the amplitudes of
the field are [42,57]

E = N (r̂er + ϕ̂eϕ + ẑez)e
iβz+iϕ (1)

and

H = N (r̂hr + ϕ̂hϕ + ẑhz)e
iβz+iϕ. (2)

The propagation constant β is determined by the fiber eigen-
value equation (see [57] and Appendix A). The cylindrical
components {er ,eϕ,ez} and {hr,hϕ,hz} of the mode-profile
vector functions e(r) and h(r) of the electric and magnetic

parts, respectively, of the fundamental guided modes are given
in Appendix A. The coefficient N is determined from the
power Pz of the light field [see Eq. (5)]. The explicit expression
for Pz, which includes the normalization coefficientN , is given
in Ref. [58].

An important characteristic of the light propagation is the
cycle-averaged Poynting vector

S = 1
2 Re[E × H∗]. (3)

We denote the axial, azimuthal, and radial components of the
vector S in the cylindrical coordinates by the notation Sz,
Sϕ , and Sr , respectively. For quasicircularly polarized guided
modes of fibers, we have Sr = 0. Outside the fiber, that is, for
r > a, the axial and azimuthal components are given by [58]

Sz = |N |2 ωε0n
2
2

β
[(1 − s)(1 − s2)K2

0 (qr)

+ (1 + s)(1 + s2)K2
2 (qr)],

Sϕ = |N |2 ωε0n
2
2q

β2
[(1 − 2s2 + s2s)K0(qr)

− (1 + 2s2 + s2s)K2(qr)]K1(qr), (4)

where the parameters q, s, and s2 are given in Appendix A. The
axial component Sz describes the energy flow that propagates
along the fiber. The azimuthal component Sϕ describes the
energy flow that circulates around the fiber. The presence of
this flow is due to the existence of the longitudinal components
Ez and Hz of the field in the fundamental mode. The trajectory
of the Poynting vector is described by the spiral curve (r,ϕ,z)
where r = r0 and dϕ/dz = Sϕ/rSz, with r0 being a constant
[59]. Since Sz and Sϕ do not depend on z, the rotation angle
of the Poynting vector is given by ϕ = ϕ(0) + kSz, where
kS = Sϕ/rSz. The period of the trajectory of the Poynting
vector along the z axis is 2π/kS . The trajectory is illustrated
in Fig. 1. The radial dependencies of the components Sz

and Sϕ are plotted in Fig. 2 for the case of a nanofiber
in vacuum and in Fig. 3 for the case of a nanofiber in
water. The solid red lines of these figures show that Sz and
Sϕ are positive, that is, the energy of the counterclockwise
polarized guided light field propagates in the forward direction
and circulates counterclockwise around the nanofiber. Our
additional numerical calculations which are not shown here
confirm the result of Ref. [60] that the axial component Sz

may become negative when the refractive index n1 of the
fiber is large enough (n1/n2 > 2.71). However, we are not
interested in such high-index fibers. We note that the existence
of the azimuthal component Sϕ in the case of guided fields is
similar to that in the case of light beams with a transverse
phase gradient [61]. Such a component leads to a force
transverse to the direction of propagation. The observation
of optical forces arising from transverse phase gradients has
been experimentally demonstrated [61].

The propagation power Pz is determined as the integral of
Sz over the transverse plane of the fiber, that is,

Pz =
∫

Sz d2r. (5)

Here we have introduced the notation
∫

d2r =∫ 2π

0 dϕ
∫ ∞

0 r dr . When the fiber material is nonabsorbing and
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FIG. 2. (Color online) Radial dependencies of the axial compo-
nent Sz (a) and the azimuthal component Sϕ (b) of the Poynting
vector of the guided light field in a counterclockwise quasicircularly
polarized fundamental mode. The total values are shown by the solid
red curves while the orbital and spin parts are shown by the dashed
green and dotted blue lines, respectively. The wavelength and the
power of light are λ = 1064 nm and Pz = 1 mW, respectively. The
radius and refractive index of the nanofiber are a = 250 nm and
n1 = 1.45, respectively. The medium surrounding the nanofiber is
vacuum, with the refractive index n2 = 1. The thin black line in part
(a) stands for the zero value of the Poynting vector and is a guide to
the eye.

nondispersive, the energy per unit length is given by

U = ε0

2

∫
n2|E|2 d2r. (6)

Here n(r) = n1 and n2 for r < a and r > a, respectively. We
note that the propagation power Pz is related to the energy per
unit length U by the formula

Pz = Uvg, (7)

where vg = 1/β ′(ω) ≡ (dβ/dω)−1 is the group velocity of
light in the guided mode.

According to [62], the momentum density of the field can
be decomposed into two parts, the orbital part and the spin
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FIG. 3. (Color online) Same as Fig. 2 but the surrounding
medium is water, with the refractive index n2 = 1.33.

part. We apply such a decomposition to the Pointing vector.
Then, we obtain

S = Sorb + Sspin, (8)

where

Sorb = cε0

2k
Im[E∗ · (∇)E] (9)

and

Sspin = cε0

4k
∇ × Im[E∗ × E] (10)

are the orbital and spin parts, respectively. Here, k = 2π/λ is
the wave number of the light field in free space. In Eq. (9),
the dot product applies to the vectors E∗ and E , that is, we
use the notation E∗ · (∇)E ≡ ∑

i=x,y,z E∗
i ∇Ei . For the forward

counterclockwise quasicircularly polarized guided field given
by Eq. (1), we find

Sorb
z = cε0β

2k
|E|2,

Sorb
ϕ = cε0

2kr
[|Ez|2 + |Er + iEϕ|2] = cε0

2kr
[|Ez|2 + 2|E1|2],

(11)

and

Sspin
z = cε0

2kr

∂

∂r
[r Im(ErE∗

z )],

Sspin
ϕ = −cε0

2k

∂

∂r
Im(EϕE∗

r ). (12)

Here we have used the notation E±1 = ∓(Ex ± iEy)/
√

2 =
∓(Er ± iEϕ)e±iϕ/

√
2 for the spherical tensor components of

the field.
Equations (11) show that the orbital parts Sorb

z and Sorb
ϕ of

the axial and azimuthal components of the Poynting vector,
respectively, are always positive (see the dashed green curves
in Figs. 2 and 3). We note that the orbital part Sorb

ϕ of the
azimuthal component of the Poynting vector is produced
by the longitudinal field component Ez and the spherical
tensor component E1. The latter characterizes the clockwise
polarization that is opposite to the principal counterclockwise
polarization of the field in the case considered.

Equations (12) show that the spin parts S
spin
z and S

spin
ϕ of

the axial and azimuthal components of the Poynting vector,
respectively, can be either positive or negative depending on
the parameters. We observe that, outside the fiber, for our
parameters, the spin part S

spin
z of the axial component Sz is

negative [see the dotted blue curves in Figs. 2(a) and 3(a)],
while the spin part S

spin
ϕ of the azimuthal component Sϕ is

positive [see the dotted blue curves in Figs. 2(b) and 3(b)].
It is clear that the presence of the spin part S

spin
z of the axial

component Sz results from the presence of the longitudinal
component Ez of the guided light field. When the refractive
index contrast n1/n2 is large enough, the magnitude of the
negative spin part S

spin
z outside the fiber may exceed that of the

positive orbital part Sorb
z . In this case, the axial component Sz

becomes negative [60]. A similar situation occurs in the case
of Bessel beams [63].

Comparison between Figs. 2 and 3 shows that the mag-
nitudes of the components of the Poynting vector in the
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presence of water are smaller and reduce with increasing the
distance r − a slower than in vacuum. The reason is that, when
immersed in water, the size parameter V = ka

√
n2

1 − n2
2 for

a nanofiber with radius of 250 nm is small because of the
reduction of the contrast in refractive index between the core
and the surrounding medium. For such a nanofiber, the guided
field can penetrate deeply into the outside, making its spatial
gradient small. In addition, the longitudinal component of the
field is small, the axial Poynting vector component Sz consists
of mainly the orbital part [see the solid red curve and the dashed
green curve of Fig. 3(a)], while the azimuthal component Sϕ

consists of mainly the spin part [see the solid red curve and
the dotted blue curve of Fig. 3(b)].

III. FORCE OF THE NANOFIBER-GUIDED LIGHT FIELD
ON A DIELECTRIC PARTICLE

We consider the scattering of the guided light field from
a dielectric spherical particle in the vicinity of the nanofiber
in vacuum or in a dielectric medium. Let as and n̄ = √

ε be
the radius and refractive index of the particle, respectively,

with ε being the dielectric constant of the particle material.
Various formulations of the generalized Lorentz-Mie theory
for a spherical particle in an arbitrary incident light field have
been developed [21–25]. The formulation of the generalized
theory by Barton et al. [22] is summarized in Appendix B. We
use this formulation in our numerical calculations. We omit
multiple scattering between the particle and the fiber surface.
This approximation is valid when the particle is small or not
too close to the fiber surface or when the contrast in refractive
index between the fiber and the medium is not too high.

In the steady-state condition, the radiation force F on the
particle is given by the formula [64]

F =
〈∮

S

n̂ · ←→
T dS

〉
, (13)

which is the time average of the integral of the scalar product of
the outwardly directed normal unit vector n̂ and the Maxwell’s
stress tensor

←→
T over a surface S enclosing the particle. The

radiation force of an arbitrary incident light field on a spherical
particle has been calculated [23–25]. According to [23], the
components of the radiation force F are given by

Fx + iFy = iε0n
2
2k

2

4

∞∑
l=1

l∑
m=−l

{
l(l + 2)

√
(l + m + 2)(l + m + 1)

(2l + 1)(2l + 3)

(
2n2

2alma∗
l+1,m+1 + n2

2almA∗
l+1,m+1 + n2

2Alma∗
l+1,m+1

+ 2blmb∗
l+1,m+1 + blmB∗

l+1,m+1+Blmb∗
l+1,m+1

)+l(l + 2)

√
(l − m+2)(l − m+1)

(2l + 1)(2l + 3)

(
2n2

2al+1,m−1a
∗
lm + n2

2al+1,m−1A
∗
lm

+ n2
2Al+1,m−1a

∗
lm + 2bl+1,m−1b

∗
lm + bl+1,m−1B

∗
lm + Bl+1,m−1b

∗
lm

) +
√

(l + m + 1)(l − m)n2(2almb∗
l,m+1

+ almB∗
l,m+1 + Almb∗

l,m+1 − 2blma∗
l,m+1 − blmA∗

l,m+1 − Blma∗
l,m+1)

}
(14)

and

Fz = −ε0n
2
2k

2

2

∞∑
l=1

l∑
m=−l

Im

{
l(l + 2)

√
(l − m + 1)(l + m + 1)

(2l + 1)(2l + 3)

(
2n2

2al+1,ma∗
lm + n2

2al+1,mA∗
lm + n2

2Al+1,ma∗
lm

+ 2bl+1,mb∗
lm + bl+1,mB∗

lm + Bl+1,mb∗
lm

) + mn2(2almb∗
lm + almB∗

lm + Almb∗
lm)

}
. (15)

Here, Alm and Blm are the beam shape coefficients, and alm and
blm are the scattering coefficients [22,23]. The expressions for
these coefficients are given in Appendix B, where the notation
a is used, instead of as , for the radius of the dielectric spherical
particle, and r , θ , and ϕ are the spherical coordinate system
with the origin at the center of the particle.

For a Rayleigh particle having a radius as very small as
compared to the wavelength λ of light (as � λ), the electric
dipole approximation can be used [20]. In the framework
of this approximation, the particle can be considered as
an electric dipolar particle. The electric polarizability of
the particle is given by α = 6πiε0a

Mie
1 /n2k

3, where aMie
l is

the conventional Mie coefficient given by Eq. (B8). In the
limit kas � 1 and in the absence of absorption (for real n̄),

we have [20]

Re(α) � 4πε0n
2
2a

3
s

n̄2 − n2
2

n̄2 + 2n2
2

,

Im(α) � 8πε0

3
n5

2k
3a6

s

(
n̄2 − n2

2

n̄2 + 2n2
2

)2

. (16)

According to [25,65–70], the force on the Rayleigh particle is

F = Fgrad + Fscat, (17)

where

Fgrad = 1
4 Re(α)∇|E|2 (18)
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is the gradient force and

Fscat = σext
n2

c
S − σext

c

2n2
[∇ × Jspin] (19)

is the scattering force. Here, the quantity

σext = k

ε0n2
Im(α) � 8π

3
n4

2k
4a6

s

(
n̄2 − n2

2

n̄2 + 2n2
2

)2

(20)

is the extinction cross section of the Rayleigh particle [20],
and

Jspin = ε0n
2
2

2ω
Im[E∗ × E] (21)

is the spin density of the light field [71,72]. In Eq. (19), the first
term, σextn2S/c ≡ Fpress, is the traditional radiation pressure,
while the second term, −σextc[∇ × Jspin]/2n2 ≡ Fcurl, is called
the force from the curl of the spin angular momentum [68–70].

When we use the decomposition (8) for the Poynting
vector, we can decompose the traditional radiation pressure
Fpress into two parts: the orbital part σextn2Sorb/c and the
spin part σextn2Sspin/c. It is interesting to note that [∇ ×
Jspin]/2n2

2 = Sspin/c2. Hence, we find Fcurl + σextn2Sspin/c =
0. This formula means that the force from the curl of the spin
angular momentum cancels the spin part of the traditional
radiation pressure. Consequently, Eq. (19) can be rewritten in
the form [62]

Fscat = σext
n2

c
Sorb. (22)

Thus, the scattering force acting on a dipolar particle is propor-
tional to the orbital part of the Poynting vector. The scattering
force (22) can be interpreted as the orbital component of the
radiation pressure force or simply as the radiation pressure in a
more accurate formulation [62]. This interpretation is different
from but equivalent to the traditional interpretation given in
Refs. [68–70]. We note that the definition used in Refs. [68–70]
for the spin density of the light field is not consistent with the
textbook definition [71,72]. Indeed, a factor of −2 must be
added to the former to remove the difference between the two
definitions.

We use Eqs. (14) and (15) to perform numerical calculations
for the radiation force F on the particle. We note that the
analytical and numerical calculations from these equations are
in perfect agreement with the calculations from Eq. (13), which
is the integral of the Maxwell’s stress tensor

←→
T over a surface

enclosing the particle. We present the results of our numerical
calculations below.

We consider the situation where the particle is positioned on
the fiber surface. To be specific, we assume that the center of
the particle is located on the axis x, that is, at the position with
the coordinates x = a + as , y = 0, and z = 0 in the Cartesian
coordinate frame of the fiber. With this specific choice, we
have Fx = Fr and Fy = Fϕ . In our numerical calculations, we
use a guided light field with the wavelength λ = 1064 nm and
the propagation power Pz = 1 mW. We examine two different
cases: the system is in vacuum and the system is immersed in
water.

Size parameter kas

R
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f N
)

Fr (a)

(b)

(c)

Fϕ

Fz

FIG. 4. Components Fr (a), Fϕ (b), and Fz (c) of the force of the
guided light as functions of the size parameter kas of the particle in
vacuum, whose refractive index is n2 = 1. The radius of the nanofiber
is a = 250 nm. The refractive index of the nanofiber is n1 = 1.45.
The wavelength of light is λ = 1064 nm. The power of light is
Pz = 1 mW. The particle-material refractive index is n̄ = √

ε =√
2.6. The particle is positioned on the fiber surface. The dotted lines

in parts (a) and (b) stand for the zero value of the force components
and are guides to the eye.

A. In vacuum

First, we consider the case where the medium around the
fiber and the particle is vacuum, with the refractive index
n2 = 1. In Fig. 4, we plot the radial, azimuthal, and axial
components Fr , Fϕ , and Fz, respectively, of the radiation force
as functions of the size parameter kas of the particle in the
range kas � 10. In these calculations, we use the fiber radius
a = 250 nm, the fiber refractive index n1 = 1.45 (for silica),
and the particle-material refractive index n̄ = √

ε = √
2.6 (for

a polystyrene particle). The details of Fig. 4 in the range kas �
1.2 are shown in Fig. 5.

We observe from Fig. 4 the oscillations in the dependencies
of the force components on the size parameter kas of the
particle. The oscillatory behavior is evident when kas is not
small. Such oscillations occur due to the Mie resonances
associated with the whispering gallery modes of the spherical
particle [20]. We observe from Fig. 4(a) that Fr < 0 in the
region kas � 8 and Fr > 0 in some narrow intervals in the
region kas > 8. The negative or positive values of the radial
force component Fr indicate that the particle is attracted to or
repelled from the fiber surface, respectively, depending on the
size of the particle. The repulsion in some narrow intervals of
large kas is due to the excitation of and interference between
circulating whispering-gallery modes that may become totally
reflected from the boundary at the upper (remotest) part of
the sphere [35]. We observe from Fig. 4(c) that Fz > 0 in
the whole range (kas � 10) of the figure. The positive axial
force component Fz means that the particle is pushed along

063845-5



FAM LE KIEN AND A. RAUSCHENBEUTEL PHYSICAL REVIEW A 88, 063845 (2013)

Size parameter kas

R
ad

ia
tio

n 
fo

rc
e 

co
m

po
ne

nt
s (

f N
)

Fr (a)

(b)

(c)

Fϕ

Fz

FIG. 5. Details of Fig. 4 in the range kas � 1.2.

the propagation direction. Similar features have been observed
in the case of a particle in the evanescent wave produced by a
flat surface [28,35].

Figure 4(b) shows that the azimuthal force component Fϕ

becomes negative in a wide region of kas , namely, in the
region 1.06 < kas < 5.55. Such a negative force is directed
oppositely to the direction of the azimuthal Poynting vector
component Sϕ , that is, oppositely to the direction of the energy
circulation around the nanofiber [see the solid red curve in
Fig. 2(b)]. The negative or positive values of the azimuthal
force component Fϕ mean that the particle undergoes a
negative or positive torque, respectively, depending on the
size of the particle. Such a negative azimuthal force occurs in
the case where the incident quasicircularly polarized guided
field is scattered dominantly in the positive direction of the
azimuthal energy flow and, based on the principle of action
and reaction, the momentum transfer leads to an azimuthally
backward force, similar to the case of axial drag forces [11,12].
The dominant scattering in the direction of the energy-flow
circulation is a result of interference between multipolar fields
of the particle. When the radius as of the particle is very small
as compared to the wavelength λ, the particle is dipolar and,
consequently, the difference between forward and backward
scattering is negligible. Then, the force is mainly determined
by the momentum removed from the incident field. In the case
considered here, where Sϕ is positive at the position of the
particle, the removed momentum is positive in the azimuthal
direction. This is the reason why Fig. 5(b) shows Fϕ > 0 for
kas < 1.06.

The polar-coordinate diagrams for the scattering intensity
in the fiber transverse plane (x,y) and the axial plane (x,z)
are shown in Fig. 6. We observe from Fig. 6 that, for kas = 4,
the scattering is dominant in the positive directions +x, +y,
and +z. This means that the projections of the force resulting
from the recoil of the scattered photons onto the axes x, y,
and z are oriented in the negative directions −x, −y, and −z,

x

y
(a)

z

x

(b)

FIG. 6. (Color online) Polar-coordinate diagrams for the scatter-
ing intensity in the fiber transverse plane (x,y) and the axial plane
(x,z). The particle (red circle) is positioned on the fiber surface at the
x axis. The size parameter of the particle is kas = 4. Other parameters
are as in Fig. 4.

respectively. We note that, although the scattering is dominant
in the +z direction, the axial component Fz of the radiation
force remains positive in the whole considered range kas �
10 of the size parameter of the particle. The reason is that,
due to the significant axial component Sz of the Poynting
vector, the radiation momentum imparted to the particle in
the +z direction is large. This imparted momentum exceeds
the momentum taken away from the particle by the scattered
photons.

B. In water

We now consider the case where the fiber and the particle
are immersed in water, whose refractive index is n2 = 1.33.
In Fig. 7, we plot the components of the radiation force as
functions of the size parameter n2kas of the particle in water
in the range kas � 10. The radius of the nanofiber is 250
nm (solid red lines), 500 nm (dashed green lines), 750 nm
(dash-dotted blue lines), and 1000 nm (dotted cyan lines).
Other parameters are as for Fig. 4. The details of Fig. 7 in the
range kas � 0.8 are shown in Fig. 8.

Figure 7 shows that the oscillatory behavior in the depen-
dencies of the force components on the size parameter of the
particle becomes very weak when the system is immersed in
water. In addition, the magnitude of the force in the case of
water is smaller than that in the case of vacuum. These features
are mainly due to the reduction of the contrast in refractive
index between the particle and the surrounding medium. The
reduction of the size parameter V = ka

√
n2

1 − n2
2 of the fiber

and the reduction of the contrast in refractive index between
the nanofiber (the core) and the surrounding medium (the
cladding) also play a role. Indeed, the presence of water
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FIG. 7. (Color online) Components Fr (a), Fϕ (b), and Fz (c) of
the force of the guided light as functions of the size parameter n2kas of
the particle immersed in water, whose refractive index is n2 = 1.33.
The radius of the nanofiber is a = 250 nm (solid red lines), 500 nm
(dashed green lines), 750 nm (dash-dotted blue lines), and 1000 nm
(dotted cyan lines). Other parameters are the same as those for Fig. 4:
λ = 1064 nm, Pz = 1 mW, n1 = 1.45, and n̄ = √

ε = √
2.6. The

particle is positioned on the fiber surface. The thin dotted black lines
in parts (a) and (b) stand for the zero value of the force components
and are guides to the eye.

makes the fiber size parameter V smaller, the field confinement
weaker, and the spread of the evanescent wave field in the
outside of the fiber broader. These features partially contribute
to the reduction of the force of the guided light on the particle.

It is worth noting that, according to the dashed green line
of Fig. 7(b), for a polystyrene particle with radius of 410
nm (n2kas � 3.2), a nanofiber with radius of 500 nm, and a
guided light field with power of 1 mW, we obtain a negative
azimuthal force Fϕ � −5.6 fN. By increasing the power of
light to 60 mW, we can achieve the force value Fϕ � −0.34
pN. This value is almost the same as that of the negative axial
force realized in the interfering plane-wave experiment [16].

We observe from Figs. 7(a) and 7(c) that Fr < 0 and Fz > 0,
respectively, in the whole range n2kas � 10 of the figures.
Figures 7(b) and 8(b) show that the azimuthal force component
is negative, i.e., Fϕ < 0, in a broad range 0.8 < n2kas < 10
of the size parameter of the particle. This is a result of the
reduction of the contrast in refractive index between the
particle and the surrounding medium. Indeed, a decrease in
the ratio n̄/n2 between the refractive index n̄ of the particle
and the refractive index n2 of the surrounding medium leads to
an increase in the widths of the intervals of appropriate values
of n2kas in which the particle can scatter the incident light
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FIG. 8. (Color online) Details of Fig. 7 in the range n2kas � 0.8.

dominantly in the positive (forward) azimuthal direction of the
energy circulation. The manifestation of such a broadening is
related to the reduction of the Q factor of the Mie resonances.
Another favorable factor for the azimuthal force Fϕ to be
negative in a broad interval of n2kas is that the orbital azimuthal
Poynting vector part Sorb

ϕ , which determines the radiation
pressure on a dipolar particle in the ϕ direction, is very small
in a broad range of the distance r − a [see the dashed green
line in Fig. 3(b)].

Comparison between the solid red, dashed green, dash-
dotted blue, and dotted cyan lines of Figs. 7 and 8 shows that
variations in the fiber radius affect the components of the force
in a complicated way. Indeed, we observe that, when the fiber
radius increases, the force components may either reduce or
increase, depending on the region of parameters.

In order to see the effects of the refractive index n̄ = √
ε

of the material of the particle on the force, we perform
numerical calculations for the case where n̄ = √

ε = √
5. In

Figs. 9 and 10, we plot the components of the force from
the guided light field of a nanofiber with the fiber radius of
250 and 500 nm, respectively. We observe from both figures
the oscillatory behavior that is typical in the scattering from
Mie particles [20]. Figure 9 shows that, in the case of the
fiber radius of 250 nm, the azimuthal force Fϕ is negative in a
broad interval of the particle size parameter n2kas . Meanwhile,
in the case of Fig. 10, where the fiber radius is 500 nm,
the azimuthal force Fϕ is negative in a smaller (but still
significant) interval of n2kas . Outside this interval, the sign
of Fϕ sequentially changes from negative to positive and vice
versa. Comparison between Figs. 9 and 10 shows that the
oscillations and magnitudes of the dependencies of the force
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FIG. 9. Components Fr (a), Fϕ (b), and Fz (c) of the force of the
guided light as functions of the size parameter n2kas of the particle in
the case where the particle-material refractive index is n̄ = √

ε = √
5

and the radius of the nanofiber is a = 250 nm. Other parameters are
the same as those for Fig. 7.

components on the particle size parameter n2kas do not depend
much on the fiber radius a. This stems from the fact that the
Mie resonances are not modified significantly by the change
of the fiber radius.

We recognize that multiple backscattering between the
particle and the fiber surface on the force was omitted in
our treatment. We note that the effect of multiple reflections
between a particle and a dielectric surface has been studied in
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FIG. 10. Same as Fig. 9 except for the fiber radius a = 500 nm.

the framework of a ray-optic model for evanescent-wave scat-
tering [27]. Rigorous multiple scattering numerical methods
have been developed [29,30]. In the context of the experimental
demonstration of a tractor beam, the influence of the scattered
field reflected from a mirror back towards the particle has
also been investigated [16]. According to the above-mentioned
studies, the effect of multiple scattering is not serious even
for a particle located on the surface if the values of the size
parameters are moderate. Indeed, it has been shown that, for
a polystyrene particle with a diameter of 7 μm in alcohol,
located at a very small separation distance (about 1 nm) from
a MgF2 film, more than 98% of the scattered energy is due
to the initial contact of the evanescent wave [27]. For smaller
particles, such as those considered in the present paper, the
effect of multiple scattering on the force is expected to be
very small. The numerical calculations of Ref. [16] for the
experimental realization of a tractor beam have also confirmed
that the reflection of the scattered field by a mirror does not
significantly alter the resulting optical force. Therefore, we
believe that the effect of multiple scattering is not important
in our present problem, where moderate values of the size
parameters were used in calculations.

In order to observe the occurrence of a negative azimuthal
force experimentally, it is desirable to minimize the motion
of the particle along the fiber axis. This can be done by
using a standing-wave scheme instead of the running-wave
configuration studied in this paper. We have calculated the
force in the case of a pair of counterpropagating guided
fields with the same quasicircular polarization. We have
found for this scheme that a negative azimuthal force can
also occur, while the particle experiences an axial force
toward the positions of either quasiantinodes or quasinodes
of the standing-wave structure depending on the particle size
parameter.

IV. SUMMARY

We have studied the Poynting vector of a quasicircularly
polarized guided light field of a nanofiber, and have calculated
the force of the field on a dielectric spherical particle outside
the nanofiber. We have shown that the orbital parts of the
axial and azimuthal components of the Poynting vector are
always positive, while the spin parts can be either positive
or negative. The presence of the spin part of the axial
Poynting vector component is related to the presence of
the longitudinal component of the guided light field. It is
the source of the negative axial Poynting vector obtained in
Ref. [60] for high-contrast optical nanofibers. We have found
that, when the size parameter of the particle is appropriate, the
azimuthal component of the force is directed oppositely to the
circulation direction of the energy flow around the nanofiber.
The occurrence of such a negative azimuthal force indicates the
occurrence of a negative torque upon the particle, depending on
the size of the particle. A negative azimuthal force occurs when
the incident quasicircularly polarized guided field is scattered
dominantly in the positive direction of the azimuthal energy
flux. Unlike the case of the azimuthal direction, a negative
force along the axial direction could not be obtained in the
range of the parameters we considered. The reason is that the
incident photons have a significant orbital momentum aligned
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along the axial direction. Our results open the way to future
research on sorting, manipulating, and controlling dielectric
particles using nanofibers.
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APPENDIX A: FIBER-GUIDED MODE FUNCTIONS

Consider a nanofiber that is a silica cylinder of radius a and
refractive index n1 and is surrounded by an infinite background
medium of refractive index n2, where n2 < n1. The radius of
the nanofiber is well below a given wavelength λ of light.
Therefore, the nanofiber supports only the hybrid fundamental
modes HE11 corresponding to the given wavelength [57]. The
light field in such a mode is strongly guided. It penetrates
into the outside of the nanofiber in the form of an evanescent
wave carrying a significant fraction of energy [42]. For a
fundamental guided mode HE11 of a light field of frequency
ω (free-space wavelength λ = 2πc/ω and free-space wave
number k = ω/c), the propagation constant β is determined
by the fiber eigenvalue equation [57]

J0(ha)

haJ1(ha)
= −n2

1 + n2
2

2n2
1

K ′
1(qa)

qaK1(qa)
+ 1

h2a2

−
[ (

n2
1 − n2

2

2n2
1

K ′
1(qa)

qaK1(qa)

)2

+ β2

n2
1k

2

(
1

q2a2
+ 1

h2a2

)2 ]1/2

. (A1)

Here the parameters

h = (
n2

1k
2 − β2

)1/2
(A2)

and

q = (
β2 − n2

2k
2
)1/2

(A3)

characterize the fields inside and outside the fiber, respectively.
The notations Jn and Kn stand for the Bessel functions of the
first kind and the modified Bessel functions of the second kind,
respectively.

The cylindrical vector components of the mode-profile
functions e(r) and h(r) of the electric and magnetic parts,
respectively, of the fundamental guided mode [57] are given,
for r < a, by

er = i
q

h

K1(qa)

J1(ha)
[(1 − s)J0(hr) − (1 + s)J2(hr)],

eϕ = −q

h

K1(qa)

J1(ha)
[(1 − s)J0(hr) + (1 + s)J2(hr)],

ez = 2q

β

K1(qa)

J1(ha)
J1(hr) (A4)

and

hr = ωε0n
2
1q

βh

K1(qa)

J1(ha)
[(1 − s1)J0(hr) + (1 + s1)J2(hr)],

hϕ = i
ωε0n

2
1q

βh

K1(qa)

J1(ha)
[(1 − s1)J0(hr) − (1 + s1)J2(hr)],

hz = i
2q

ωμ0
s
K1(qa)

J1(ha)
J1(hr), (A5)

and, for r > a, by

er = i[(1 − s)K0(qr) + (1 + s)K2(qr)],

eϕ = −[(1 − s)K0(qr) − (1 + s)K2(qr)],

ez = 2q

β
K1(qr) (A6)

and

hr = ωε0n
2
2

β
[(1 − s2)K0(qr) − (1 + s2)K2(qr)],

hϕ = i
ωε0n

2
2

β
[(1 − s2)K0(qr) + (1 + s2)K2(qr)],

hz = i
2q

ωμ0
sK1(qr). (A7)

Here the parameter s is defined as

s = 1/h2a2 + 1/q2a2

J ′
1(ha)/haJ1(ha) + K ′

1(qa)/qaK1(qa)
. (A8)

The parameters s1 and s2 are related to s via the formulas
s1 = (β2/k2n2

1)s and s2 = (β2/k2n2
2)s. We note that the axial

components ez and hz are significant in the case of nanofibers
[42]. This makes guided modes of nanofibers very different
from plane-wave modes of free space and from guided modes
of conventional (weakly guiding) fibers [42,57].

APPENDIX B: SCATTERING OF AN ARBITRARY
INCIDENT LIGHT FIELD FROM A DIELECTRIC

SPHERICAL PARTICLE

Consider the scattering of an arbitrary light beam from a
dielectric spherical particle in a dielectric medium. The field
distribution is described by the generalized Lorentz-Mie theory
[21,22]. We review the formulation of the generalized theory
by Barton et al. [22].

Let a and n̄ = √
ε be the radius and refractive index of the

particle, respectively, with ε being the dielectric constant of
the particle material, and let n2 be the refractive index of the
surrounding medium. The parameters ε and, consequently, n̄

for the particle can, in general, take complex values, that is,
the particle can be absorbing. However, we assume that n2 is
real, that is, the surrounding medium is nonabsorbing. We use
the spherical coordinate system (r,θ,ϕ) with the origin at the
center of the particle.

1. Incident field

According to [22,23], the complex amplitudes E (i) and H(i)

of the positive-frequency parts of the electric and magnetic
components, respectively, of an arbitrary incident field can, in
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the spherical coordinates, be decomposed as

E (i)
r = 1

r2

∞∑
l=1

l∑
m=−l

l(l + 1)AlmSl(n2kr)Ylm(θ,ϕ),

E (i)
θ = n2k

r

∞∑
l=1

l∑
m=−l

(
AlmS ′

l (n2kr)
∂Ylm(θ,ϕ)

∂θ

− m

n2
BlmSl(n2kr)

Ylm(θ,ϕ)

sin θ

)
,

E (i)
ϕ = n2k

r

∞∑
l=1

l∑
m=−l

(
imAlmS ′

l (n2kr)
Ylm(θ,ϕ)

sin θ

− i

n2
BlmSl(n2kr)

∂Ylm(θ,ϕ)

∂θ

)
, (B1)

and

H(i)
r = cε0

r2

∞∑
l=1

l∑
m=−l

l(l + 1)BlmSl(n2kr)Ylm(θ,ϕ),

H(i)
θ = cε0n2k

r

∞∑
l=1

l∑
m=−l

(
BlmS ′

l (n2kr)
∂Ylm(θ,ϕ)

∂θ

+ mn2AlmSl(n2kr)
Ylm(θ,ϕ)

sin θ

)
,

H(i)
ϕ = cε0n2k

r

∞∑
l=1

l∑
m=−l

(
imBlmS ′

l (n2kr)
Ylm(θ,ϕ)

sin θ

+ in2AlmSl(n2kr)
∂Ylm(θ,ϕ)

∂θ

)
. (B2)

Here, Sl(x) = xjl(x) = √
πx/2Jl+1/2(x) is the first-kind

Riccati-Bessel function, and Ylm is the spherical harmonic
function, while the beam shape coefficients Alm and Blm are
determined by the surface integrals of the radial components
E (i)

r (a,θ,ϕ) and H(i)
r (a,θ,ϕ) of the electric and magnetic fields,

respectively, via the formulas

Alm = a2

l(l + 1)Sl(n2ka)

×
∫ 2π

0

∫ π

0
E (i)

r (a,θ,ϕ)Y ∗
lm(θ,ϕ) sin θ dθ dϕ,

Blm = a2

cε0l(l + 1)Sl(n2ka)

×
∫ 2π

0

∫ π

0
H(i)

r (a,θ,ϕ)Y ∗
lm(θ,ϕ) sin θ dθ dϕ.

(B3)

2. Scattered field

For the scattered field, the complex amplitudes E (s) and H(s)

of the positive-frequency parts of the electric and magnetic
components, respectively, are given in the spherical coordinate

system by [22,23]

E (s)
r = 1

r2

∞∑
l=1

l∑
m=−l

l(l + 1)almξ
(1)
l (n2kr)Ylm(θ,ϕ),

E (s)
θ = n2k

r

∞∑
l=1

l∑
m=−l

(
almξ

(1)′
l (n2kr)

∂Ylm(θ,ϕ)

∂θ

− m

n2
blmξ

(1)
l (n2kr)

Ylm(θ,ϕ)

sin θ

)
,

E (s)
ϕ = n2k

r

∞∑
l=1

l∑
m=−l

(
imalmξ

(1)′
l (n2kr)

Ylm(θ,ϕ)

sin θ

− i

n2
blmξ

(1)
l (n2kr)

∂Ylm(θ,ϕ)

∂θ

)
, (B4)

and

H(s)
r = cε0

r2

∞∑
l=1

l∑
m=−l

l(l + 1)blmξ
(1)
l (n2kr)Ylm(θ,ϕ),

H(s)
θ = cε0n2k

r

∞∑
l=1

l∑
m=−l

(
blmξ

(1)′
l (n2kr)

∂Ylm(θ,ϕ)

∂θ

+ mn2almξ
(1)
l (n2kr)

Ylm(θ,ϕ)

sin θ

)
,

H(s)
ϕ = cε0n2k

r

∞∑
l=1

l∑
m=−l

(
imblmξ

(1)′
l (n2kr)

Ylm(θ,ϕ)

sin θ

+ in2almξ
(1)
l (n2kr)

∂Ylm(θ,ϕ)

∂θ

)
. (B5)

Here, ξ
(1)
l (x) = Sl(x) − iCl(x) = xh

(1)
l (x) = √

πx/2
H

(1)
l+1/2(x) is the complex Riccati-Bessel function, with

Cl(x) = −xyl(x) = −√
πx/2Yl+1/2(x) being the second-kind

Riccati-Bessel function. The scattering coefficients alm and
blm are determined by the formulas

alm = n2S
′
l (n̄ka)Sl(n2ka) − n̄Sl(n̄ka)S ′

l (n2ka)

n̄Sl(n̄ka)ξ (1)′
l (n2ka) − n2S

′
l (n̄ka)ξ (1)

l (n2ka)
Alm,

blm = n̄S ′
l (n̄ka)Sl(n2ka) − n2Sl(n̄ka)S ′

l (n2ka)

n2Sl(n̄ka)ξ (1)′
l (n2ka) − n̄S ′

l (n̄ka)ξ (1)
l (n2ka)

Blm.

(B6)

Note that Eqs. (B6) can be rewritten in the form

alm = −aMie
l Alm,

blm = −bMie
l Blm,

(B7)

where

aMie
l = n̄Sl(n̄ka)S ′

l (n2ka) − n2S
′
l (n̄ka)Sl(n2ka)

n̄Sl(n̄ka)ξ (1)′
l (n2ka) − n2S

′
l (n̄ka)ξ (1)

l (n2ka)
,

bMie
l = n2Sl(n̄ka)S ′

l (n2ka) − n̄S ′
l (n̄ka)Sl(n2ka)

n2Sl(n̄ka)ξ (1)′
l (n2ka) − n̄S ′

l (n̄ka)ξ (1)
l (n2ka)

(B8)

are the conventional Mie coefficients [20].
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3. Internal field

For the internal field, the complex amplitudes E (w) and H(w)

of the positive-frequency parts of the electric and magnetic
components, respectively, are given in the spherical coordinate
system by [22,23]

E (w)
r = 1

r2

∞∑
l=1

l∑
m=−l

l(l + 1)clmSl(n̄kr)Ylm(θ,ϕ),

E (w)
θ = k

r

∞∑
l=1

l∑
m=−l

(
n̄clmS ′

l (n̄kr)
∂Ylm(θ,ϕ)

∂θ

− mdlmSl(n̄kr)
Ylm(θ,ϕ)

sin θ

)
,

E (w)
ϕ = k

r

∞∑
l=1

l∑
m=−l

(
imn̄clmS ′

l (n̄kr)
Ylm(θ,ϕ)

sin θ

− idlmSl(n̄kr)
∂Ylm(θ,ϕ)

∂θ

)
, (B9)

and

H(w)
r = cε0

r2

∞∑
l=1

l∑
m=−l

l(l + 1)dlmSl(n̄kr)Ylm(θ,ϕ),

H(w)
θ = cε0k

r

∞∑
l=1

l∑
m=−l

(
n̄dlmS ′

l (n̄kr)
∂Ylm(θ,ϕ)

∂θ

+ mn̄2clmSl(n̄kr)
Ylm(θ,ϕ)

sin θ

)
,

H(w)
ϕ = cε0k

r

∞∑
l=1

l∑
m=−l

(
imn̄dlmS ′

l (n̄kr)
Ylm(θ,ϕ)

sin θ

+ in̄2clmSl(n̄kr)
∂Ylm(θ,ϕ)

∂θ

)
. (B10)

The internal-field coefficients clm and dlm are determined by
the formulas

clm = n2
2ξ

(1)′
l (n2ka)Sl(n2ka) − n2

2ξ
(1)
l (n2ka)S ′

l (n2ka)

n̄2Sl(n̄ka)ξ (1)′
l (n2ka) − n2n̄S ′

l (n̄ka)ξ (1)
l (n2ka)

Alm,

dlm = n2ξ
(1)′
l (n2ka)Sl(n2ka) − n2ξ

(1)
l (n2ka)S ′

l (n2ka)

n2Sl(n̄ka)ξ (1)′
l (n2ka) − n̄S ′

l (n̄ka)ξ (1)
l (n2ka)

Blm.

(B11)

Note that Eqs. (B11) can be rewritten in the form

clm = cMie
l Alm,

dlm = dMie
l Blm,

(B12)

where

cMie
l = n2

2ξ
(1)′
l (n2ka)Sl(n2ka) − n2

2ξ
(1)
l (n2ka)S ′

l (n2ka)

n̄2Sl(n̄ka)ξ (1)′
l (n2ka) − n2n̄S ′

l (n̄ka)ξ (1)
l (n2ka)

,

dMie
l = n2ξ

(1)′
l (n2ka)Sl(n2ka) − n2ξ

(1)
l (n2ka)S ′

l (n2ka)

n2Sl(n̄ka)ξ (1)′
l (n2ka) − n̄S ′

l (n̄ka)ξ (1)
l (n2ka)

(B13)

are the conventional Mie coefficients [20].
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