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Higher-order equilibria of temporal soliton molecules in dispersion-managed fibers
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Bound states of two or three solitons in dispersion-managed fibers (soliton molecules) were experimentally
demonstrated recently. We investigate with a modified perturbation analysis whether the binding mechanism
creates a unique stable equilibrium of the relative positions of the solitons in the molecule. Indeed, we find a
multitude of equilibrium states, alternatingly stable and unstable. This holds for either case: nearest neighbor
solitons having the same or the opposite phase. The number of equilibria are limited by the level of the radiation
background. The state with the smallest separation and the highest binding energy (“ground state”) always
occurs for opposite-phase pulses; the lowest-order state for in-phase pulses is always unstable. Stable long-chain
molecules can be built with a mixture of different nearest-neighbor equilibrium separations. Our results agree
with our numerical simulations and experimental results, and connect well with certain results in the literature.
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I. INTRODUCTION

Internet traffic is driven by data-hungry novel applications,
and its volume increases incessantly. Soliton molecules in
dispersion-managed fibers have been suggested as one way
to enhance the data-carrying capacity of fibers, possibly in
combination with phase and polarization multiplexing [1,2].
This approach is unique in the way it exploits, rather than
avoids, the fiber’s nonlinearity. It has been recently pointed
out [3] that indeed nonlinearity can be used to an advantage in
dealing with the Shannon limit [4].

Molecules, i.e., bound states, of solitons are not unique to
fiber optics; similar concepts exist in other fields of physics
[5–8]. On the other hand, the soliton molecules in dispersion-
managed fiber discussed here have a mechanism different from
similarly named concepts described in [9–12]. The history of
soliton molecules began with the description [13] and first
experiment [14] of soliton interaction forces. In 1999, after the
introduction of dispersion-managed (DM) fibers, theoretical
descriptions of antisymmetric DM soliton molecules (i.e., a
pair of solitons in opposite phase, forming a bound state) were
presented that used an odd Hermite-Gauss function [15,16].
Maruta et al. then published numerical studies of in-phase DM
soliton molecules [17] and stable trains of DM solitons [18].
That work was extended in [19] with a higher-order multiscale
asymptotic analysis. Similar results were obtained in [16] for
solitons in adjacent wavelength channels, and in [20] for fibers
with Bragg gratings for dispersion compensation.

A first experimental demonstration was presented in 2005
[21], followed by a report of a full amplitude-and-phase
characterization [22] and an explanation of the binding mech-
anism [23]. Very recently, the concept was extended by the
experimental demonstration of three-soliton molecules [1,2].
With four symbols now demonstrated (to wit: no pulse, single
soliton, two-soliton molecule, and three-soliton molecule), two
bits of information can be coded in a single time step in a
soliton format.
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This study addresses a question that has arisen for several
years now: Do soliton molecules have a unique, single
equilibrium separation between the constituent solitons, or can
there be several stable states? In the language of molecular
physics, one might phrase this as follows: Is there only a
ground state or do excited (higher-order) states also exist? The
literature provides several hints to the existence of higher-order
equilibrium states.

Maruta et al. [18] found higher-order equilibrium states in
numerical simulations when they determined the asymptotic
shape using Nijhof’s method [24]. That group then came up
with a systematic family tree of stable bound dispersion-
managed solitons [25]. Gabitov et al. found what they
called twin families of bisolitons [26] from an averaged
Gabitov-Turitsyn model [27]. Their study of antiphase soliton
molecules revealed two branches of solutions, distinguished
by their energy; both types can coexist in the DM fiber. In
extension of that work, Shkarayev et al. [28] revealed the
stability properties of the two branches and found a bifurcation
point beyond which no molecules exist. In this paper, we en-
deavor to draw a more complete picture. We use a perturbative
treatment similar to that in [23,29], but with a refinement,
to calculate interaction forces and equilibrium separations of
adjacent solitons. We find conditions under which symmetric
in-phase and opposite-phase DM soliton pairs of the same
energy can have more than a single equilibrium separation.
These equilibria come in stable and unstable types. When the
pulse separation is increased, alternating branches of stable and
unstable equilibria appear, but the magnitude of the binding
energy decreases monotonically. We also locate bifurcation
points between the branches representing these equilibria.
Moreover, we can make statements regarding long chains of
solitons and their interpulse separations.

In Sec. II, the model for the interaction force of adjacent
solitons is presented, and an averaging method is used to
calculate equilibrium separations with an improved modeling
of the pulse wings. It will be shown that consideration of
the shape of soliton tails does make a difference. In Sec. III,
soliton movements as predicted from the model are compared
to numerical simulations. We will show alternating branches
of stable and unstable equilibria, and their energy depen-
dence. A possible arrangement of DM solitons at different
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higher-order equilibrium separations in stable soliton trains is
also presented. In Sec. IV, we will compare to experimental
data.

II. INTERACTION FORCES AND BINDING POTENTIAL

In this paper, we consider only soliton molecules of two or
more individual DM solitons with a relative phase of either
close to ϕ = π or close to ϕ = 0. Quite different phases lead
to an asymmetric energy transfer between the solitons which
may eventually cause the molecule to disintegrate.

A. Propagation equation and soliton characteristics

Optical pulse propagation in constant dispersion fibers is
well described by the nonlinear Schrödinger equation (NLSE)
with constant parameters β2 for group velocity dispersion
(GVD) and γ for the Kerr nonlinearity. This integrable equa-
tion has analytically known solutions; the fundamental soliton
has a hyperbolic-secant (sech) amplitude profile which remains
invariant during propagation. Its peak power P0 and temporal
width T0 are connected through the fiber parameters by the
constraint P0T

2
0 = β2/γ . Therefore, any of the parameters

peak power, width, and energy Esol = 2P0T0 can be set as
desired when the others are scaled accordingly. The interaction
of such fundamental solitons was formulated in [13]. In a
more recent and extended version [9], interacting soliton pairs
were called “soliton molecules;” however, they do not have
an equilibrium separation and must not be confused with the
soliton molecules in dispersion-managed fibers treated here.

Let the pulse amplitude profile be represented by u(t,z) with
z position and t time in a comoving frame. For the purpose
of this study, we do not include in the NLSE higher-order
corrections to the dispersion or nonlinearity. The position
dependence of fiber parameters β2(z) and γ (z) renders the
equation into a dispersion-managed version of the NLSE,
called DM-NLSE:

∂

∂z
u = − i

2
β2(z)

∂2

∂t2
u + iγ (z)|u|2u. (1)

Typical DM fibers have piecewise constant parameters which
alternate periodically. Fiber segments have lengths L±, where
index + (−) is for the normal (anomalous) dispersion segment,
respectively. The corresponding dispersion values are β±

2 .
The dispersion period is L = L+ + L−; the path average
dispersion is β2 = (L+β+

2 + L−β−
2 )/L. Usually, a DM fiber

line begins with a half segment of anomalously dispersive
fiber, followed by a full segment of normally dispersive fiber;
then, another half segment of anomalously dispersive fiber
concludes the first period. A soliton that propagates in such
fiber will experience a change of all its parameters as it
traverses one dispersion period. Even though Eq. (1) has no
loss term, in the dispersion structure some radiation arises and
constitutes a power loss of the soliton. We will neglect this
loss and use the approximation that the propagation is lossless.
Then, the midpoints of the fiber segments are chirp-free points
provided a chirp-free pulse is launched in the first place [30],
and the pulse shape will return exactly to its initial shape after
one dispersion period, and oscillate periodically thereafter.

The amount of breathing of the DM soliton has been
described by the concept of map strength. Several slightly
different definitions exist [31–34]: we adopt the form used in
[21,35] and implicitly in [36] which is

S ′ = |β−
2 − β2|L− + |β+

2 − β2|L+

τ 2
. (2)

Here, the pulse width τ is taken at the chirp-free points
of the anomalously dispersive segment where it takes its
minimum. τ = aT0 denotes the full width at half maximum
pulse width where the numerical factor is a = cosh−1(3) for
sech-shaped pulses, and a = 2

√
ln 2 for Gaussian pulses. It is

an inconvenience that there is no analytic form for the pulse
shape; while the fundamental soliton has a sech shape, neither
sech nor Gaussian describe a DM soliton accurately. Note that
a variation of the soliton energy leads, by way of scaling of
the pulse duration, to a change in S ′ even in the same fiber.

A more detailed characterization of the parameter alter-
nation was introduced in [18,25]. The (B, S, R) triplet in-
cludes the accumulated dispersion B = (β−

2 L− + β+
2 L+)/τ 2,

the map strength (defined slightly differently from above)
S = (−β−

2 L− + β+
2 L+)/τ 2, and a metric of the nonlinearity

allocation R = γ −L−/(γ −L− + γ +L+).
In the absence of an analytic pulse shape, one wishes to

obtain the shape numerically with the best possible precision.
This can be accomplished, e.g., by Nijhof’s iterative method
[24]. One should note that even the most precise approximation
only yields a shape which still suffers radiative losses in the
long haul which we neglect here.

Generally, DM solitons near the chirp-free points tend to
have Gaussian character near their center (in particular for
large S ′), whereas away from the center eventually sech-like
wings appear. The wings may have an oscillation on top of their
general shape [37–41]. Away from the chirp-free points, and
in particular near the segment splices where the pulse width
takes its maximum, oscillations in the tails tend to disappear.

A Gaussian ansatz as an approximation to a DM soliton
shape captures the central part quite well and is therefore
almost universally adopted (e.g., [42,43]); it is a reasonable
ansatz to describe the ground state of soliton molecules
[23,29]. It meets its limitations, however, when details of the
wings count: The tails of Gaussian, sech, and “true-soliton”
pulses are quite different, and any conclusions about higher-
order equilibria or interactions between adjacent solitons are
affected considerably.

B. Averaging method

We now describe our semianalytical method to find equi-
librium separations of DM solitons. Consider a soliton with
complex amplitude profile u0(t,z) which is in interaction with
some other solitons u1, . . . ,un close to it. Their individual
energies are Esol,j = ∫ ∞

−∞ |uj |2dt . We use the assumption
that all solitons have the same shape uj (t,z) and energy
Esol, and are equidistant to each other, i.e., have the same
nearest-neighbor separation σ . We do, however, allow for
phase differences to the previous soliton ϕ = ϕj − ϕj−1 which
are all equal, and either 0 or π . Then, the soliton shapes can
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be written as

uj (t,z,σ,ϕ) = u0(t − jσ,z) exp(ijϕ). (3)

As shown in [23], the interaction creates a local center
frequency shift d〈ω〉0/dz of the fiducial soliton. This shift will
depend on the interaction strength, and thus on σ ; it will also
vary with z because the soliton shapes uj vary periodically
within the dispersion period. The shift takes the form


�(z,σ,ϕ) = d

dz
〈ω〉0

= −γ (z)

Esol

∫ ∞

−∞
|u0|2 ∂

∂t

⎛
⎜⎝

∣∣∣∣∣∣
n∑

j=0

uj

∣∣∣∣∣∣
2
⎞
⎟⎠ dt. (4)

In the presence of dispersion, a frequency change translates
into a velocity change β2
� which we metaphorically call
a force. Velocity here has units of s/m; the force, s/m2.
Integration over one dispersion period L yields the effective
force

Feff(σ,ϕ) = −β2

L

∫ L

0

�(z,σ,ϕ) dz. (5)

When in a given fiber the relative phase and soliton energy
are also given, the effective force depends on the separation as
the only parameter. An effective binding potential Veff of the
soliton molecules can then be calculated from

Feff(σ ) = − ∂

∂σ
Veff(σ ), (6)

which is in units of s2/m2. The binding energy is then given
by 
Veff = Veff(∞) − Veff(σeq).

In order to verify the existence of an equilibrium, in
[23] we assumed Gaussian pulse shapes for uj (t) and used
a perturbation ansatz; a single equilibrium position was
found. At close separations, that approach becomes inaccurate
because the perturbation is no longer small. It is important to
note, however, that the same approach does not at all become
better for very large separations: The far wings of real DM
solitons are not well represented by Gaussians. One might
try to use sech shapes as a more appropriate approximation,
but it turns out that that still does not capture the phase
dynamics which is important here. Therefore, we here use
numerically found shapes of the respective single DM solitons,
obtained from Nijhof’s averaging method [24], as an even
better approximation. This, indeed, provides fresh insights.

Specifically, we run numerical propagations over a com-
plete dispersion period L to obtain the complex amplitude
profiles at each position z. From that, the local and effective
forces and the molecular potentials are calculated for the
two-soliton molecule as well as the three-soliton molecule.
In Fig. 1, the molecular potentials are plotted for ϕ = π and
for energy values of Esol = 3 . . . 15 pJ. Particulars of the DM
fiber are as in the experiments of [1,2], and are detailed in
Table I in the Appendix. We refer to this fiber system as A©, to
distinguish from a different fiber below.

For all calculations, the fiducial soliton (j = 0) is the
leading soliton in the molecule. In that case, minima of
the potential curves define stable equilibrium separations σeq

(black points in Fig. 1). One can clearly see that with increasing
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FIG. 1. Binding potential of opposite-phase two-soliton
molecules (left) and three-soliton molecules (right) for DM fiber
system A©. Energy is varied from 3 to 15 pJ in 1-pJ increments.
Bottom panels: magnified view; equilibrium points are marked by
black dots. Note the small potential barrier in some of the curves.

soliton energy the potential minimum gets deeper and moves
to smaller separation, i.e., the bond becomes tighter and
stronger. Below a certain energy value (here ≈7.5 pJ), no
local minimum exists. Note that by definition the potential
tends to zero for infinite separation, but for energies around
8 pJ there is a small potential barrier. The depth of the potential
well (binding energy) is therefore not identical to the energy
required to separate the molecule (dissociation energy); in a
very narrow energy range between 7.5 and 8 pJ (not explicitly
shown), the equilibrium is even metastable. The equilibrium
separations of the two-soliton and three-soliton compounds
are nearly the same.

Calculations of the effective force are time consuming
because the integrals of the local force Eq. (4) need to be
solved numerically for each value of σ and z. The following
simplification speeds the process considerably: Averaging of
the complex amplitude profile yields an average pulse profile
u0. Considering the phase profile φsol(t,z) of the fiducial
soliton, we note that a chirp naturally arises due to the high
local dispersion. This chirp evolves from zero at a midpoint
of an anomalously dispersive segment until the midpoint of
the normally dispersive segment (the other chirp-free point),
then evolves back in the same manner. It therefore suffices to
extend the integral in Eq. (7) over one half of the dispersion
period:

u0(t) = 2

L

∫ L/2

0
u0(t,z) exp[−iφsol(t = 0,z)]dz. (7)

With the use of u0(t) an approximate value of the effective
force can be obtained directly from Eq. (4). This is shown
in Fig. 2 for several energy values (dashed lines) along with
corresponding results of the full calculation (solid). Again, the
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FIG. 2. (Color online) Effective force acting on the fiducial soli-
ton u0 in an opposite-phase soliton molecule in DM fiber system
A©. Left: two-soliton molecule; right: three-soliton molecule. Solid
curves: approximate solution from Eq. (7); dashed curves: full
calculation.

left panel shows the two-soliton case, and the right panel, the
three-soliton case. In all cases, negative frequency shifts of
the leading soliton correspond to an equal positive shift of the
trailing soliton. At anomalous average dispersion of the DM
fiber, this corresponds to a mutual attraction of the solitons.
Reversed signs correspond to a repulsion.

As Fig. 2 shows, the results from the approximation (7)
agree acceptably well with the full calculation: in the low-
energy limit they are nearly identical, and only at high-pulse
energies do slight deviations arise. Below, we will therefore
use the approximation throughout.

For large separations, the interaction is diminished. It
is therefore not surprising that above σ ≈ 0.5 ps, two- and
three-soliton cases hardly differ. For narrow separations there
are differences, however. There is only repulsion for the
two-soliton molecule, whereas for the three-soliton molecule a
regime of attraction exists. Apparently, the attraction between
the in-phase “outside” pulses overcompensates the repulsion
of each with the central opposite-phase pulse.

III. HIGHER-ORDER EQUILIBRIA

The situation may arise that in an n-soliton molecule an
equilibrium separation (vanishing net force) between two
solitons does not have a single, unique value but several. In
such cases, we call an arrangement at the smallest σ value the
“ground state,” the others, “higher-order states.”

A. Effective force in different fiber systems

Stable higher-order states of DM solitons have already been
found numerically in [18] in a parameter range of (B,S,R) =
(−0.1,2.3,0.8). For ease of comparison, we introduce here a
second DM fiber system (system B©) which closely matches
these parameters when Esol = 2.2 pJ. Fiber parameters are
given in Table II in the Appendix. For comparison, the pulse
profiles of both DM fiber systems considered here are shown
in Fig. 3 on a logarithmic grayscale, for a range of pulse
energies. Energy is varied on the abscissa; all profiles were
obtained with Nijhof’s method. In the upper half, profiles are
shown at the chirp-free point of the anomalous fiber segment;
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FIG. 3. Pulse profiles of DM solitons are displayed in grayscale;
dependence on soliton energy Esol is shown. Left panel: amplitude
profiles in DM fiber system A©; right panel: amplitude profiles in DM
fiber system B©. Upper half: pulse shape at the chirp-free points (CFP)
in the anomalous fiber segment. Lower half: average DM soliton
shape. Black dashed lines mark the contour at the half width τ , and
white dashed-dotted lines that at 1% amplitude.

in the lower half, average profiles are shown. Black dashed
lines mark the contour at the full width at half maximum, and
white dashed-dotted lines that at 1% of maximum.

The data show that the width at the chirp-free point
decreases with increasing energy. The amount of overlap of
adjacent pulses is better represented by the average shape,
though, and that has an opposite trend in its far wing as is best
seen at the 1% contour.

Interestingly, at the chirp-free point and above a certain min-
imum energy (≈13 pJ for A©, ≈2 pJ for B©) structures in Fig. 3
appear which look like horizontal, stretched horseshoes. They
represent oscillating tails in the pulse shape as described in
[37–41]. In the averaged profiles they disappear, and therefore
are not of primary relevance for higher-order states. Note that
in A© only the first “horseshoe” is visible. This is explained by
different levels of radiative background. Fiber A© was inspired
by an experiment in which dynamics was to be studied in
a finite total length; hence, β2 was chosen relatively large
in relation to the local dispersion values, whereas it is much
smaller in B©. As a consequence, the background level is much
higher in A© and swamps the far wings. Where the power has
fallen to background level, for fiber A© a line pattern appears. It
might be mistaken for hatching inserted for highlighting which
it is not; the reason will become apparent from Fig. 4.

The upper part of Fig. 4 shows power profiles of averaged
DM solitons in both systems on a log scale, and clearly reveals
the different background levels. In B© it is at the numerical
noise level. In A©, due to periodic boundary conditions used
in the calculation, periodic structure arises in the background
which is an otherwise harmless artifact; however, it explains
the apparent hatching in Fig. 3.

The lower part of Fig. 4 shows calculations of the effective
force for either fiber system; for each we distinguish ϕ = 0
(dashed lines) and ϕ = π (solid lines). Equilibria (vanishing
net force) exist at the zeros of these curves; stable equilibria
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FIG. 4. (Color online) Upper panel: power profiles of average
DM solitons in fiber A© at Esol = 10 pJ and B© at Esol = 2.2 pJ.
Lower panels: effective force on fiducial soliton u0 in a two-soliton
molecule. Solid curve: ϕ = π ; dashed curve: ϕ = 0. Stable equilibria
are marked by black (opposite-phase) and white (in-phase) dots.

are characterized by a negative slope of the effective force so
that there is repulsion (attraction) at separations below (above)
the zero, respectively. These stable equilibrium positions are
marked by black (white) dots for opposite-phase (in-phase)
molecules. Intersection points with a positive slope correspond
to an unstable equilibrium and are not marked here. The ground
state (closest stable separation) occurs for opposite-phase
solitons in all cases. As the separation is increased, in-phase
and opposite-phase equilibria appear in alternation.

B. Molecule formation and movement of pulses

With interaction forces and molecular potentials derived,
we can now fix the initial separation σ0 and calculate the
motion of solitons, in particular, the evolution of σ (z) during
propagation down the fiber. The latter, calculated for DM fiber
system B© and for opposite-phase pulses, is shown for a range
of σ0 values (initial velocity is zero throughout) in Fig. 5
in the lower half. For comparison, the upper half shows the
corresponding full numerical simulations of Eq. (1). Here, we
use the full width at half energy, rather than the difference of
coordinates of maxima, to obtain the separation σ (z) reliably.

In Figs. 5(a) and 5(c), the situation at a single-pulse energy
of 1.1 pJ is shown. All trajectories, regardless of σ0, diverge;
this indicates that at this energy a molecule does not exist.
This is explained by noting that for low energies, and thus
map strengths, the DM soliton shapes approach unchirped sech
functions. Opposite-phase standard solitons always experience
repulsion; at low energy, only a weak chirp remains and
contributes to an attractive force, but not enough to compensate
the repulsion. At the slightly higher energy of 1.3 pJ in
Figs. 5(b) and 5(d), all trajectories above σ0 ≈ 0.9 ps (see
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FIG. 5. (Color online) Evolution of the separation σ of an
opposite-phase soliton pair in the long haul (250 dispersion periods)
when the initial separation σ0 is varied. (a), (b) Results from a
full numerical simulation of the DM-NLSE in fiber system B©. (a)
Single-pulse energy 1.1 pJ; (b) 1.3 pJ. In (a) there is no bound state;
in (b) the stable equilibrium is at 1©, and an unstable equilibrium at
2©. Panels (c), (d) show corresponding results from the simplified

model; good agreement is obvious.

the line highlighted by the symbol 2©) still diverge. Following,
for 0.6 ps � σ0 � 0.9 ps, they oscillate around the position
highlighted by the symbol 1©. Further below, trajectories again
diverge. Obviously, there is a capture range within which
there is a stable equilibrium at 1©; such oscillations around
the equilibrium are well known [23]. The separatrix at 2©
marks an unstable equilibrium. For the energies considered
here, in-phase soliton pairs are always mutually attracted
(not shown).

Figure 5 demonstrates the existence of a ground state and
an unstable state. In Fig. 6, we show that several stable and
unstable states can exist. The figure combines propagation
data over a long distance (250 dispersion periods) on two-
soliton molecules (left half) and three-soliton molecules (right
half), each for in-phase and opposite-phase pulses (see labels),
and also for both full numerical simulation (upper row) and
approximate theory (lower row). All data are for DM fiber
system B© at a single-pulse energy of 2.2 pJ. Stable equilibria
are identified by circled numbers; unstable equilibria are not
specifically marked for the sake of clarity.

In the left half (soliton pair), there is a ground state of the
opposite-phase pair ( 1©), but above it there are two more stable
states ( 3© and 5©). For the in-phase pair, there are also stable
states ( 2© and 4©) which fall between the former ones in their
σ values. The agreement between simulation and theory is
obvious.
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FIG. 6. (Color online) Evolution of the separation of soliton molecules over 250 dispersion periods in dependence on the initial separation
σ0. Data are for fiber system B© at energy of 2.2 pJ; panels (a), (b), (e), (f) are for soliton pairs, and (c), (d), (g), (h) for triplets. The upper row
is from simulation, the lower row from theory. For both types of soliton molecules, up to five stable equilibrium separations with alternating
relative phase (starting with ϕ = π ) are found in both theory and simulation. Also, for both types the equilibrium separation values are nearly
equal. The ground state of the three-soliton molecule survives only for about 35 dispersion periods (see text).

For pulse triplets, the essential patterns are repeated (right
half of Fig. 6). In the simulation, the only major difference is
that the ground state ( 1©) decays after ≈35 dispersion periods
(still a long distance). In the corresponding theoretical result
below, the same does not happen because theory assumes
a fixed phase relation and does not capture the cumulative
effects of phase shifts during propagation. To assess the
limits of validity of the theoretical model, we provide an
additional clue: The shapes of two-soliton molecules have
perfect symmetry which is unaffected under the action of both
Kerr nonlinearity and dispersion. In that context, the only
decay mechanism is radiative power loss. In a three-soliton
molecule, the power of the center pulse is either enhanced or
reduced through interference with the other pulses, depending
on the relative phase. Once its power is different from the
other pulses, the center pulse has a different rate of phase
rotation as it propagates; thus, the phase relation is perturbed.
If this continues for a sufficiently long distance, the phase
relation may even be reversed, and the triplet is likely to fall
apart. As an estimate of the critical distance for this failure,
we created a superposition of three averaged DM solitons at
the relevant separation. Considering interference effects, the
center pulse has a different peak power than the other pulses.
From that difference, we calculate the relative phase rotation,
and extrapolate to the point where it reaches π . This limit is
shown as the line bordering the hatched area; inside that area,
the theory can not claim validity. Indeed, the decay as seen
in the simulation occurs at a position which is consistent with
this argument. For in-phase pulse triplets [Figs. 6(d) and 6(h)]

the same interference mechanism, which tends to enhance the
center pulse, does not have the same consequences because
the equilibrium separations are larger.

Note that opposite-phase pulse triplets can not be con-
structed for σ0 < 0.25 ps because the center pulse disappears
altogether; similarly, in-phase pulses at the same close distance
merge together immediately. No soliton molecules can then be
formed.

The fiber parameters of system B were chosen close to the
system of Ref. [18] at the energy level used there; therefore,
we can also draw quantitative comparisons between that paper
and Fig. 6. Stable equilibria were reported; the lowest occurs
at opposite phase; the others alternate between in phase and
opposite phase. Separations were given in units of pulse widths
τ ; we translate our data to the same for ease of comparison. To
do so, we find the τ value pertaining to the power used which
is τ = 259 fs. Beginning at the ground state, equilibria were
located in [18] without any claim of precision at separations
of 2τ , 3τ , 4τ , and 5τ , respectively. We find them at 2.22τ ,
3.44τ , 4.32τ , and 5.06τ . The agreement, given the difficulty
of comparison, is satisfactory.

C. A multitude of equilibrium states

In suitable cases there can be a multitude of stable equi-
librium states, alternatingly for opposite-phase and in-phase
pulses. To organize this multitude, we investigate the global
structure of parameter space, with relevant parameters pulse
energy Esol and initial separation σ0. We concentrate on DM
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FIG. 7. (Color online) Stability properties of two-soliton
molecules in the (Esol, σ0) plane for DM fiber system B©. Upper
panels: equilibrium separations calculated for relative phases of
ϕ = π (left) and ϕ = 0 (right). Stable (unstable) equilibria are
marked by solid red (dashed black) curves and circled numbers,
respectively. In blue regions, the solitons repel, and in orange regions,
they attract. In the hatched regions, equilibria are strongly affected
by the radiative background and therefore data become unreliable.
Lower panels: binding energy of the equilibria identified by circled
numbers; branches appear pairwise at positions highlighted by
asterisks. Positive (negative) values correspond to stable (unstable)
cases.

fiber system B© which admits more states; we will return to A©
in the following for a comparison to experiments.

The upper panels of Fig. 7 show data obtained for
each energy level. Equilibrium states are characterized by

vanishing effective force; if there is attraction for σ0 > σeq,
the equilibrium is stable. Red solid lines denote stable states,
and black dashed lines, unstable states. Areas enclosed by
these lines correspond to attractive (yellow) or repulsive (blue)
force, respectively. At too large separation, due to radiative
background the approximation is no longer trustworthy; the
corresponding area is hatched. In the lower panels, the binding
energies pertaining to the branches are given in corresponding
line styles; for better visibility, the very small values for 3©
and 4© are shown magnified as indicated.

As above, we again find that the smallest stable separation
( 1©) occurs for opposite-phase pulses; this would be the
first state one expects to find in experiments as it has the
strongest bond. The limiting point (saddle-node bifurcation)
of the first “tongue” of attraction is marked by an asterisk and
indicates the threshold energy to establish a soliton molecule;
below threshold the usual repulsion between weakly chirped
opposite-phase pulses prevails. Similarly, higher-order states
have thresholds, but these are slightly larger. As the lower
panels of Fig. 7 show, they also have significantly lower
binding energy and are therefore likely to be more vulnerable
to perturbations. In-phase soliton pairs always have an unstable
ground state.

When one endeavors to create long chains of molecules,
one may mitigate the problem of unequal powers by arranging
solitons at higher-order equilibrium separations. Figure 8
shows that larger molecules built in this way can propagate
stably over very long distances (here, 300 dispersion periods).
As an example, Fig. 8(a) demonstrates how soliton molecules
of up to five pulses can be built when the second opposite-phase
equilibrium separation 3© is used throughout. Figures 8(b) and
8(c) show examples of five-soliton molecules where different
pulse separations and different relative phases are mixed. The
individual separations used are identified by circled numbers
corresponding to the previous figures. For reference, the input
shapes are shown (black), the output shapes after a propagation
of 300 dispersion periods (gray). Comparison shows that the
shape is well maintained.

IV. COMPARISON TO EXPERIMENTAL DATA

In order to compare our results with experimental findings,
we now concentrate on DM fiber system A©. We mapped out
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FIG. 8. (Color online) Construction of trains of dispersion-managed solitons. Shown are shapes after numerical propagation and application
of Nijhof’s method for DM fiber system B© at pulse energy Esol = 2.2 pJ. (a) Starting with a single DM soliton, up to four more solitons can
be attached with a separation taken as the second stable location 3©. (b), (c) Examples of the propagation of five-soliton molecules over 300
dispersion periods with different intersoliton separations and relative phases. Input shapes, black lines; output shapes, gray lines.
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FIG. 9. (Color online) Stability properties of two-soliton
molecules in the (Esol, σ0) plane for DM fiber system A©, otherwise
as in Fig. 7. Inset of (c): magnification showing that binding energy
(red solid lines) and dissociation energy (blue dotted lines) are not
identical (see text).

the stability in the (Esol, σ0) plane in the same way as in
Fig. 7; Fig. 9 shows that the situation is qualitatively similar.
One distinction is that the binding potential in this case has
a noticeable barrier (compare the discussion accompanying
Fig. 1 above). Therefore, in the magnification (inset) of
Fig. 9(c) we make the distinction between binding and
dissociation energy.

A quantitative comparison with experimental data obtained
in [2] yields the following: The lowest threshold energy
for formation of a stable soliton molecule pertains to an
opposite-phase pair. Our model suggests that this is the only
stable molecular equilibrium due to relatively strong radiative
background; this conclusion is supported by the experiment.
According to Fig. 9, the threshold energy is Eth = 7.45 pJ,
in excellent agreement with the experimental observation of
≈7 pJ. Using the same soliton energy of Esol = 11.7 pJ as
in the experiments, the equilibrium separation σeq = 0.72 ps
matches the experimental value of σeq = 0.74 ps quite closely.
This can be seen in the upper part of Fig. 10. Data were taken
for a range of initial separations (vertical axis); the left panel
shows cross-correlation traces, the center panel the separations
extracted from the data, and the right panel velocities which
were also obtained from the cross-correlation measurements
(compare [2]). For reference, the center panel also shows the
bisector, i.e., the locus of points where the input separation
equals output separation. It is plain to see that the initial
separation was maintained at σeq = 0.74 ps. As the slope of
crossing this point indicates, for smaller initial separations
there was repulsion and vice versa; this is the signature of
a stable equilibrium. Correspondingly, at the same point, the
velocity in the right panel becomes zero.
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FIG. 10. (Color online) Experimental data to find equilibrium
states. Left: cross-correlation data shown in color code from near zero
(white) through gray and orange to yellow (highest value) for a range
of input pulse separations σ0. Center: extracted output separation
σout; note that the bisector is the locus of unchanged separation. Right:
relative velocities as obtained from cross-correlation data. Upper row:
for the opposite-phase soliton pair, the ground state is located at the
highlighted position. Lower row: for the in-phase pair, an unstable
equilibrium is revealed at the highlighted position.

The lower part of Fig. 10 shows data taken for in-phase
soliton pairs. At the marked position the position is unchanged,
but the slope of crossing is reversed, indicating an unstable
equilibrium. The velocity is zero again. This is experimental
evidence for the existence of the unstable lowest-order state
of in-phase soliton molecules, and corroborates our analysis.
Unfortunately, the position of the unstable equilibrium does
not fit well in quantitative terms with the other data; the reason
goes unexplained for now.

V. CONCLUSIONS

We have investigated the binding mechanism of soliton
molecules in dispersion-managed fibers. We used a semiana-
lytical model to calculate the binding potential and interaction
forces of adjacent solitons; the method is modified over earlier,
similar approaches in that we use a realistic shape of the pulse’s
far wings rather than the coarse approximation of Gaussian
shapes previously employed.

We find that the interaction provides the possibility of more
than a single separation where all forces balance out. Indeed,
there is an entire hierarchy of separations with increasing
pulse-to-pulse separation; at the smallest separation, one finds
the strongest binding which is then progressively diminished
as the separation is increased. This suggests to call the
equilibrium positions “ground state” and “higher-order states,”
respectively.

In the case that adjacent solitons have opposite phase of
each other, the ground state is stable; this is the situation that
has been described in experiments [1,2,21]. Higher-order states
are alternatingly unstable and stable. If adjacent solitons are
in phase, the lowest-order state is unstable; beyond, there is
the same alternation of stability. The hierarchy of states in
the in-phase and opposite-phase states are interleaved in their
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separation values. We emphasize that while the existence of
a hierarchy of equilibrium separations may suggest that it is
caused by the oscillating tails of DM solitons, this can not be
so because we use an averaged expression for the tails which
is not oscillatory.

The total number of equilibrium states is limited because
in the unavoidable presence of radiative background in the
fiber, the far wings of the pulses are swamped at some point.
This explains why in the reported experiments, in which the
background level was relatively high, only the ground state
was described; however, here we showed data demonstrating
the lowest-order state for in-phase pulses.

The results of our treatment match well with both numerical
simulations and experimental data. Both the threshold energy
for generation of a ground-state molecule and its separation
are predicted in agreement with experimental data. Theoretical
approaches attempting to construct soliton molecules from a
Gauss-Hermite ansatz [15,16] predict, by logical extension,
that longer-chain molecules exist; however, they preclude by
ansatz the possibility of different equilibrium separations.
We conclude that the Gauss-Hermite approximation does
not capture some essential features. On the other hand,
the hierarchy of stable states found numerically in [18] is
confirmed almost perfectly in a qualitative sense, and even
quite well quantitatively. Moreover, the result that molecules
can exist on two branches [26,28] is now embedded in a wider
picture. We also show that soliton molecules of even more
constituent pulses can be constructed when one adheres to the
stable separations. Even mixing different orders of equilibrium
is possible. This is in many ways similar to the behavior of
dark DM solitons that can also be arranged into long chains
with several different separations [44].

It is only appropriate that we point out one caveat: In
DM fibers, solitons always suffer from radiative loss, and in
this sense they neither repeat their shapes periodically nor
do they live forever. This does not prevent commercial DM
systems from functioning well. Soliton molecules suffer from
the same loss mechanism. The opposite-phase three-soliton
molecule seems to be particularly affected as both the “outside”
pulse interacts destructively with the center pulse. In a similar
molecule, but with the next-higher equilibrium, this problem is
mitigated. In order to find the molecule of the best long-term
stability, one may have to weigh this interference problem
against the lower binding energy of the higher-order state.

We may also point out that an apparently similar phe-
nomenon of soliton-pair formation at a set of discrete separa-
tions was reported for fiber lasers [45]. However, the similarity,
while striking, is superficial: It is a signature of lasers that there
is gain to balance the outcoupling loss; in contrast, we study
a passive, near-lossless system. This distinction is reflected in

the fact that the relevant underlying equation in fiber lasers
is the Ginzburg-Landau equation, whereas we deal with the
nonlinear Schrödinger equation. As one consequence, soliton
pairs in lasers typically appear with a relative phase of π/2,
whereas here we find phases of 0 and π . According to [45],
pair separations in fiber lasers are governed by interaction
with radiation (Kelly sidebands). In our case, separations
are governed by pulse chirp, and radiation is only a minor
perturbation to that mechanism.
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APPENDIX: FIBER LINE SPECIFICATIONS

Tables I and II present the parameters of DM fiber systems
A© and B©.

TABLE I. Parameters of DM fiber system A© which correspond
to the fiber used in experiments in [1,2]. τ is obtained from Nijhof’s
averaging method [24].

β−
2 = −5.16 ps2 km−1 β+

2 = 4.26 ps2 km−1

γ − = 1.72 W−1 km−1 γ + = 1.72 W−1 km−1

L− = 24.0 m L+ = 22.0 m

λ0 = 1540 nm
β2 = −0.65 ps2 km−1

γ = 1.72 W−1 km−1

S ′@3 pJ = 0.710 (τ = 552 fs)
S ′@15 pJ = 3.038 (τ = 267 fs)

(B,S,R)@3 pJ = (−0.099,0.714,0.522)
(B,S,R)@15 pJ = (−0.423,3.056,0.522)

TABLE II. Parameters of DM fiber system B© which approximate
the fiber used in calculations in [18]. τ is obtained from Nijhof’s
averaging method [24].

β−
2 = −1.90 ps2 km−1 β+

2 = 6.25 ps2 km−1

γ − = 2.30 W−1 km−1 γ + = 2.30 W−1 km−1

L− = 39.4 m L+ = 11.0 m

λ0 = 1490 nm
β2 = −0.121 ps2 km−1

γ = 2.30 W−1 km−1

S ′@1 pJ = 1.256 (τ = 334 fs)
S ′@5 pJ = 3.435 (τ = 202 fs)

(B,S,R)@1 pJ = (−0.055,1.287,0.782)
(B,S,R)@5 pJ = (−0.150,3.520,0.782)
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