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Propagation of the centroid of the Poynting vector in transversely phase-modulated
optical beams in spatially dispersive media
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The propagation of an optical beam in dispersive medium is described by a spatial analog of pulse propagation
in time domain. In particular, the evolution of transverse beam profiles with transversely complicated wave fronts
passing through spatially dispersive media is examined and explained on the basis of net group and reshaping
shifts in the ω and �k domains. The experimental results are in good agreement with the theory of net group
and reshaping delays as described by Peatross et al. [J. Peatross, S. A. Glasgow, and M. Ware, Phys. Rev. Lett.
84, 2370 (2000)], which successfully described the arrival time for optical pulses through frequency dispersive
media.
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I. INTRODUCTION

The concept of group velocity, as applied to wave motion, is
particularly useful for describing the propagation velocity. The
fundamental concept of group velocity was first introduced by
Hamilton [1] in 1839, before the works of Stokes [2], Rayleigh
[3], Sommerfeld and Brillouin [4–6]. The phenomena of slow
and fast light, in which pulse propagation is manipulated
mainly by frequency dispersion based on the quantum control
of coherence in cooled atoms or in solids and nanophotonic
structures, have attracted a great deal of attention. Slow light
refers to the case vg � c and occurs in the case of a system
with large normal dispersion. Effects such as slow pulse
propagation and the freezing or storage of light have been
observed in cooled atomic vapors [7–10]. Fast light has a
longer history. It is defined as vg > c or vg < 0, and can
be observed in the case of very large anomalous dispersion
[11,12]. Garret and McCumber [13] were the first to point
out that a Gaussian-shaped wave packet propagates at the
conventional group velocity, vg , even when vg > c or vg < 0.
Chu and Wong [14] performed experiments with fast light
propagation through an absorption resonance to investigate the
predictions of Garret and McCumber. They showed that the
group velocity is a useful concept for describing a significant
advance, even in the case of compression in the shapes of
outgoing wave packets. The key experimental tool in their
studies [13,14] was a narrow spectral width for their wave
packet and a propagation distance short enough that the
higher-order dispersive effects could be neglected.

For pulse propagation in dispersive media, conventional
analysis within the group velocity approximation is given on
the basis of the expansion, k(ω) = k(ω0) + [∂k(ω)/∂ω](ω −
ω0) + [∂2k(ω)/∂2ω](ω − ω0)2 + · · · . The first term adds a
constant to the phase. The second term adds a delay to the
wave packet and is understood as a conventional group velocity
defined as vg = vz[t] = ( ∂ω

∂kz
)−1 = c

ω[dn(ω)/dω]+n
, describing the

motion of a wave packet in a dispersive medium over a
short propagation distance, i.e., under conditions where the

*These authors contributed equally to the work.

packet retains its shape and dimensions. The third term in the
expansion is the group delay dispersion, also known as the
group velocity dispersion. During propagation, a wave packet
of a certain spectral width will broaden due to group velocity
dispersion. The fourth term is the third-order dispersion, which
applies a cubic phase across the wave packet.

A recurring problem over the last century was the develop-
ment of a concept of group velocity that was valid over long
propagation distances, i.e., under conditions where the outgo-
ing packet was severely deformed and lost its individuality.
Tanaka et al. [15] used the saddle-point method, taking the
imaginary part of the refractive index into account, and showed
that the spectral shift in the wave packet should be taken
into consideration, especially for broad spectral-width packets.
They concluded that the group velocity at the carrier frequency
had no meaning. However, the peak of the outgoing wave
packet dominated by the surviving spectrum was significant,
even over long propagation distances. Although it has been
experimentally confirmed [12], Tanaka et al. considered only
a Gaussian wave packet and their definition was not robust,
particularly for wave packets with complicated structures,
e.g., with asymmetric rising or falling or with multiple peaks.
Peatross et al. [16] proposed that the group velocity had
physical significance under all conditions when considering
the average energy flow that is the center of gravity (centroid)
of the Poynting vector—instead of the peak—of the wave
packet as the arrival time. This was actually first proposed by
Schwinger et al. [17]. Nevertheless, a neat separation of total
delay into the net group delay and reshaping delay by Peatross
et al. made this method attractive for describing the wave
propagation. In their definition, a time expectation integral
over the Poynting vector is used. In fact, the importance
of net group and reshaping delays in frequency dispersive
media was confirmed subsequently by the experimental
measurements [18].

In all of the above discussions, the wave propagation de-
scribed by group velocity was discussed in terms of frequency
or time dispersion, where the medium function ϵ depended
on ω, i.e., ε = ε(ω). It may be interesting to extend the
problem into the spatial dispersion domain, where the medium
function also depends on the wave vector �k, i.e., ε = ε(ω,�k).
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FIG. 1. (Color online) Schematic cross-section profiles of the
beam along the x axis, while the beam is propagating in the z direction.
The upward arrows indicate the x positions of the profile centroids.

In 1978, Polevoi and Rytov discussed the propagation of
electromagnetic wave packets in electrically and magnetically
anisotropic media possessing space-time dispersion [19].
Starting with the four-dimensional form of the fundamental
Maxwell equations, they were able to introduce a simple
expression for the group 4-velocity. In fact, spatial dispersion
effects are usually much weaker than those arising from
frequency dispersion, but the effects can result in some new
phenomena in physics. In addition to the study of effects such
as stopping light in hot atoms based on the spatial dispersion
of refractive index [20] or the possibility of engineering new
artificial materials (meta-materials), an interesting possibility
appears when considering the aspects of negative group
velocity, that is, the manipulation of strong spatial dispersion
profiles [21,22]. Superprism effects, or the directional control
of light in which the light beam enters through one facet of a
prism and exits from another facet, has also been an attractive
phenomenon [23–25]. Superprism effects permit the creation
of ultrahigh-resolution spectroscopes, which is impossible
using traditional gratings. Therefore, it may be of interest to
consider a very steep spatial dispersion and to examine the
wave propagation through it, especially from the viewpoint
of beam steering. In this study, we apply the concept of net
group and reshaping delays to an analogous spatial domain,
and discuss whether the propagation of an arbitrarily shaped
transverse beam profile can be described in terms of the net
group and reshaping shifts, in the spatial (ω and �k) domain, in
the absence and presence of attenuation, respectively.

II. THEORY

To develop the concept of group velocity in the ω and �k
domains, we start with a simple case of a monochromatic
light wave propagating through a homogeneous isotropic
nonmagnetic medium that satisfies the Helmholtz equation,

∇2 �E(x,y,z,t) = −
(nω

c

)2 �E(x,y,z,t). (1)

Here, n is the refractive index. Suppose a monochromatic laser
beam with an arbitrary profile in the x direction (x profile),
propagates a distance within the x − z plane, as shown in
Fig. 1. The input field in Eq. (1) can be written as �E(x,y,z,t) →

�E(x,z)e−iω0t . If

�E(kx,0) = 1√
2π

∫
�E(x,0)e−ikxxdx (2)

is the Fourier component composing the initial x profile of the
beam, the output beam profile can be written as

�E(x,z) = 1√
2π

∫
�E(kx,0)ei(kxx−kzz)dkx, (3)

where kz(kx) can be expanded around kx0 as

kz(kx) = kz0 + ∂kz(kx)

∂kx

|kx0

(
kx − kx0

)

+ 1

2

∂2kz(kx)

∂k2
x

|kx0

(
kx − kx0

)2 + · · · , (4)

and ω0/k0 = c. Neglecting the higher-order terms in Eq. (4),
Eq. (3) reduces to

�E(x,z) = �E
[
x − ∂kz(kx)

∂kx

∣∣∣∣
kx0

z,0

]
eiφ, (5)

where φ = (kz0 − kx0{ ∂kz(kx )
∂kx

}|kx0
)z, and the velocity at

which the slowly varying envelope moves, vgx ≡ Gzx =
({ ∂kz(kx )

∂kx
}|kx0

)−1, are used in the simplification. vgx is the
transverse group velocity and is proportional to the shift in
the x position of the profile. Here, z is perpendicular to the x

plane and, in the case of free space, �k has x and z components
that are related by

kz(kx) = (
k2

0 − k2
x

)1/2 = k0 + 1

2k0
k2
x − 1

8k3
0

k4
x + · · · . (6).

A. Net and reshaping shift

We now consider the ∂kx/∂kz term and discuss the arrival of
the x profiles of the beam as a function of propagation distance
z for a medium dispersive in the �k domain. It is similar to the
term ∂ω/∂k, which is used to describe the temporal position
of a wave packet, propagating along the z axis, through a
medium dispersive in ω. In the present work, our interest is in
situations where the cross section of the beam has an arbitrary
presupposed profile that evolves into a complicated structure
in both the amplitude and phase when propagating through
a strong spatially dispersive medium. For example, as shown
in the schematic in Fig. 1, the peak position of the beam
profile cannot be tracked well if it contains multiple peaks,
nonuniform rising, or both, and if it deforms significantly
because of the effect of the higher-order terms in Eq. (4).
Using the definition of arrival time in [16], the x position of
the beam can be defined by the profile centroid,

〈x〉z = ûz · ∫ ∞
−∞ x �S(x,z)dx

ûz · ∫ ∞
−∞ �S(x,z)dx

, (7)

where �S(x,z) = �E(x,z) × �H ∗(x,z) is the Poynting vector.
Using the definition of Eq. (7), we can develop a discussion
similar to the net group and reshaping delays for pulse
propagation through a strong frequency dispersive medium
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[16]. In this approach, the transverse shift of the beam (x
positions) between the longitudinal propagation distances z0

and z is given by

�x ≡ 〈x〉z − 〈x〉z0
= �xG + �xR. (8)

The first term on the right-hand side of Eq. (8), the net group
shift, is a spatial average of the conventional group delay
weighted by the output �k vectors,

�xG =
〈
∂Rekz

∂kx

�z

〉
z

=
∫ ∞
−∞

[
∂Rekz

∂kx
�z

]
Sz(kx,z)dkx∫ ∞

−∞ Sz(kx,z)dkx

, (9)

where Sz(kx,z) is the z component of the Poynting vector
�S(kx,z). The second term in Eq. (8) is called the reshaping
shift in the x position, denoted by

�xR ≡ T [e−Imkz(kx )�z �E(kx,z0)] − T [ �E(kx,z0)], (10)

where

T [ �E(kx,z)] ≡ −i
ûz · ∫ ∞

−∞
∂ �E(kx ,z)

∂kx
× �H ∗(kx,z)dkx

ûz · ∫ ∞
−∞ �S(kx,z)dkx

. (11)

Net group and reshaping shifts for spatial dispersion are similar
to net group and reshaping delays for pulse propagation in a
frequency dispersive medium. The net shift is the expectation
integral over the surrounding spectrum. Therefore, if the
Poynting vector, �S(kx,z), does not change in kx space, the net
shift remains the same for coherent (Gaussian) and irregularly
shaped beams. When the bandwidth, �kx , of the incident beam
is narrow as Sz(kx) → δ(kx), the factor ∂Re[kz]/∂kx may fall
outside the integral, in which case the simple group velocity,
∂Re[k]/∂ω is obtained. The reshaping shift appears from the
initial organization of the phase of the beam and its spectral
change during propagation. Thus, the reshaping shift will be
zero if there is no phase modulation or any spectral change
through the medium.

III. EXPERIMENTS AND RESULTS

In our previous study [18], we verified the concept of
net group and reshaping delays in terms of arrival time
for arbitrarily shaped wave packet propagation in frequency
dispersive media. As the transverse component of group
velocity attributed to the spatial dispersion is an area of
recent interest, especially in terms of its application, it is
important to obtain experimental verification of the net group
and reshaping effects in the �k domain. The concept of both net
group and reshaping effects may be examined individually in
a well-designed experimental system. Figure 2 illustrates the
measurement configuration. A single-mode coherent He-Ne
laser was used as the beam source. The well-collimated beam
passed through a pair of Fourier transform lenses (L1 and L2)
with focal lengths f 1 = f 2 = 80 cm. The beam diameter was
�10 mm at the Fourier plane of the lenses. A liquid crystal
on silicon–spatial light modulator (LCOS-SLM; Hamamatsu
Photonics) consisting of a matrix of 792 × 600 rectangular
pixels (16 mm × 12 mm) was placed at the Fourier plane to
modulate the phase or to shape the beam into a complex form

with multiple peaks. In our experimental setup, the 792-pixel
side (16-mm side) of the LCOS-SLM is oriented along the
x axis (transverse direction) and modulates the phase of the
vertically polarized light components. Although it is possible
to introduce a two-dimensional arbitrary phase in the kx and ky

domains, we implemented an arbitrary phase modulation φ(kx )
only in the x direction, i.e., �E(kx,ky) = �E(kx), by applying
a masking function of �E(kx) ∞ exp [iφ(kx)] on LCOS-SLM
with computer programming. The maximum kx bandwidth can
be determined by the minimum pixel size of the LCOS-SLM;
i.e., �kx = (LOCOS pixel size)−1 = 49.5 mm−1, and the
kx-space resolution is determined by the incident laser beam
size, δkx min = (laser beam size)−1 = 0.1 mm−1. Free-space
propagation was used in our experiment. For the net group shift
measurements, the output beam was monitored for different
propagation distances, z, where the zero point (z = 0) was
located at a position near the resettable mirror (RSM), 0.8 m
from L2, as shown in Fig. 2(a). The charge-coupled device
(CCD) detector used for monitoring the x profile of the beam
was placed on a translation rail such that its position could be
moved forward or backward for different z. For the reshaping
shift measurements, we used reflection near a total internal
reflection to introduce steep k-dependent attenuation of the
beam. For this purpose, the RSM was removed and the beam
took path (b) through a silica prism, as shown in Fig. 2.
The prism was set on a rotational stage, which allowed us
to induce beam attenuation with respect to the beam’s total
internal reflection (TR). The top inset of Fig. 2 shows the
reflectance curve of the prism as a function of the incident
angle (θ ) of the beam on the prism boundary. In this case, the
detector (CCD) was fixed at a point near z = 0 so that the net
group shift would be negligible. Our setup was well designed
for individual measurements of net group and reshaping shifts
in the �k domain.

Net group shift experiments were performed for both
a Gaussian beam and irregularly shaped beam. The four
major peaks of irregularly shaped beam are denoted by filled
diamonds, filled circles, open circles, and upward triangles
in Fig. 3. A Gaussian beam was used as a reference in
our experiment, and its initial phase was set to φ(kx) = 0,
while a phase modulation of φ(kx) = φirregular was applied to
achieve the initial irregularly shaped beam. The left column
shows the output x profiles for both types of beams observed
at different propagation distances, z. The centroid position
of the irregularly shaped beam was investigated using the
Gaussian beam centroid as a reference, indicated by the
downward arrow in Fig. 3(a). The transverse profiles of
irregularly shaped beams widened and deformed significantly
with increasing propagation distance, evolving new peaks at
the expense of the originals, as shown by the downward
triangles in the profiles, Figs. 3(b)–3(e). However, in all
cases, the center of gravity positions remained constant with
respect to those of the Gaussian beams. We also examined the
propagation of the Gaussian and irregularly shaped beams
by applying linear phase modulation of φ(kx) = Akx and
φ(kx) = φirregular + Akx , respectively, on the incident beams;
A is a constant in this study. The right column in Fig. 3 shows
the resultant output x profiles, which are similar to those in
the left column. Indeed, we see a shift in the centroid position
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FIG. 2. (Color online) Schematic of the experimental setup. BEC is the beam expander with collimation, M is the mirror, L1 and L2 are
lenses with equal focal lengths of 80 cm, HM is the half mirror, RSM is the resettable mirror, and CCD is the charge-coupled device (CCD)
camera. LCOS-SLM is the liquid crystal on silicon–spatial light modulator. The modulation of kx components is projected at the right side of
LCOS-SLM. For net group shift measurements, the beam takes path (a). For reshaping shift measurements, the RSM is removed and the beam
takes path (b) through a prism on a rotational stage. The top inset shows the reflection curve of the prism when rotated towards its total internal
reflection (TR) point. The output profile symmetry is curtailed, as shown by the profile in front of the CCD in path (b).

from that shown in the left column for both types of beam
because of the linear phase modulation of the input beam.
The peak has no significance, as the initial beam contains
multiple peaks. However, the centroid of the Poynting vector
retains its physical significance and remains precisely the same
for both the irregularly shaped beam and the Gaussian beam,
demonstrating one of the predictions of net group delay.

The incident beam in our experiment has a complex
structure, containing multiple peaks in �k space. Therefore,
the expectation integral in Eq. (7) can be used to define the
beam shift in the x direction. The net group shift depends on the
power spectrum of the beam and is independent of the phases of
the field components, φ(kx). As the power spectrum is the same
for these two cases in our experiments, the net group shift (the
relative movement of the beam centroids) will be the same for
the irregularly shaped and Gaussian beams for any propagation
distance, z. This is demonstrated in the graphs presented in
Fig. 4. It is obvious that the linear phase modulation shifts
the centroid of the beam compared to the centroid of the beam
without linear phase modulation. However, in accordance with
the concept of net group shift, the relative movements of the
centroids as a function of propagation distance are the same
for both the Gaussian and the irregularly shaped beams, as
shown in the upper portion of Fig. 4. The solid lines are the
theoretically calculated shifts in the centroids, computed using

Eq. (9). All measurements show excellent agreement with the
predictions of net group delay.

To measure the reshaping shift, we produced a linearly
chirped beam by applying phase modulation on the Gaussian
beam from LCOS-SLM. The phase modulation of the kx

components in such a case can be described by the equation
φ(kx) = B(kx − C)2, which is shown as a schematic curve
beside LCOS-SLM in Fig. 2; B and C are constants in this
study. As mentioned earlier, a steep angle-dependent reflec-
tivity near the total internal reflection (TR) of a conventional
silica prism was used in this case. The �k bandwidth of the total
internal reflection (i.e., the range over which the reflection of
the prism rises from 30% to 90%) was estimated to be γ =
50 mm−1. When the bandwidth, �kx , of the incident beam
is narrow compared to the prism bandwidth, γ , vgx = ∂Re[kz]

∂kx

then applies. However, in the present case, �kx ≈ γ , a sharp
attenuation causes strong reshaping in the transmitted beam,
and the centroid of the transmitted beam can be explained by
the reshaping shift defined in Eq. (10).

The reshaping effect is sensitive to the phase modulation. It
occurs through absorption or amplification during propagation.
A transverse linear phase chirped beam, under the effects
of absorption or amplification, will experience a shift in
the centroid position. The positions of the centroids do not
change (or the reshaping shift is zero) for a narrow band
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FIG. 3. (Color online) The cross-sectional profile of the beam
along the x axis for different propagation distances, z: (a) 0.8 m,
(b) 1.0 m, (c) 1.2 m, (d) 1.4 m, and (e) 1.6 m. The left column shows
the observed x profiles for a Gaussian (red-dashed curve) and an
irregularly shaped (solid curve) beam, while the right column shows
the same when a linear modulation is applied to the beams represented
in the left column. The horizontal axes for both graphs describe the
absolute translation in the x direction where the centroid of a Gaussian
beam is estimated to be at zero. The relative positions of the centroids
of the Gaussian and irregularly shaped beams coincide precisely, as
indicated by the downward arrows in the graphs. The solid diamonds,
solid circles, open circles, and upward triangles mark the four major
peaks of the irregularly shaped beam profile. The profile is seen
to widen and deform severely with increasing propagation distance,
evolving additional peaks, as shown by the downward triangles in
(b)–(e) in the left and right columns.

limit, �k � γ , even when the beam suffers attenuation or
amplification. It is also true that the reshaping shift is zero if
the input beam has no phase modulation, i.e., φ(kx) = constant
(Gaussian beam). In our reshaping shift experiment, we

(m)

(m
m

)

FIG. 4. The net group shift as a function of propagation distance,
z. The solid and open circles at the lower side of the graph mark
the relative shifts in the centroids for the Gaussian and irregularly
shaped beams, respectively, without linear phase modulation from
LCOS-SLM. The upper portion of the graph shows the shifts when a
linear phase chirp is applied from LCOS-SLM to the beams described
in the lower portion. The solid lines correspond to calculations made
using Eq. (9).
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FIG. 5. (Color online) (a) Cross-sectional intensity profiles of the
chirped beam, observed along the x direction, for four different
incident angles θ of the prism, 43.3°, 43.5°, 43.6°, and 43.8°, where
the simple beam shift due to the prism rotation is adjusted in the
graph. The upward arrow indicates the direction of increasing θ for
the curves. The profile intensity was normalized to the maximum
of the intensity for an unchirped beam incident at an angle much
larger than θc of the prism. (b) The shifts in the centroids of the x

profiles as a function of incident angle, θ . The solid circles indicate
the centroids of the experimentally observed x profiles, while the
solid line represents the centroids obtained from a simulation created
using Eq. (10). The x = 0 position was estimated at the centroid of
an unchirped beam incident at an angle larger than θc of the prism.

introduced attenuation to the propagating beam by changing
the incident angle with respect to the critical angle (θc) for the
total internal reflection (TR) of the prism. Figure 5(a) shows
the observed x profiles for different incident angles, θ , of the
beam, where the simple beam shift due to the prism rotation,
2θ , is subtracted in the graph. The profiles are deformed from
one side; hence, the centroid is shifted. When the prism is
rotated clockwise, the kx components on the positive x side are
more strongly attenuated than those on the negative x side of
the beam; hence, the profiles are distorted, which is attributable
to the reshaping effect. Figure 5(b) summarizes the changes
in reshaping shift with incident angle, θ . The reshaping shift
increases with increasing θ (rotating the prism anticlockwise),
which is attributable to phase modulation of the kx components
of the beam and the transfer function of the prism (refer to the
top inset of Fig. 2). As θ approaches θc (�43.6°), the reshaping
shift decreases with increasing θ because of the smaller beam
deformation. It drops to zero at an angle θ � θc. The reshaping
shift calculated using Eq. (10) is represented by the solid line
in Fig. 5(b), and is in good agreement with the shift observed
in our experiment.

IV. DISCUSSION

In studying wave propagation, only the group velocity vg

in the z direction has been considered. By generalizing to four
dimensions, it is possible to also deal with the group velocity
in other directions. Similar to the above calculation, it can be
shown that the group velocity satisfying the wave equation in
a four-dimensional (4-vector or tensor) generalization may be
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expressed by the following relationship:

Gμν =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂k0

∂k0

∂k1

∂k0

∂k2

∂k0

∂k3

∂k0

∂k0

∂k1

∂k1

∂k1

∂k2

∂k1

∂k3

∂k1

∂k0

∂k2

∂k1

∂k2

∂k2

∂k2

∂k3

∂k2

∂k0

∂k3

∂k1

∂k3

∂k2

∂k3

∂k3

∂k3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The details of this four-dimensional group velocity and
its generalization in a medium with space-time dispersion
will be discussed elsewhere. Usually, four-dimensional group
velocity, which has a functional dependence of Gμν(�k,ω), is
difficult to study compared to the traditional group velocity,
vg . A large number of higher-order terms in the expansion in ω

and �k domains complicate the net group effect. The parameters
of wavelength and angle of incidence introduce additional
complications to the reshaping effect, which is due to the atten-
uation or amplification of various �k components on a boundary.
However, the decomposition of the propagation velocity into
net group and reshaping shifts (delays) has enabled us to study
both effects individually in strong spatially dispersive (present
case) and frequency dispersive (Ref. [18]) media.

In a recent study of the propagation velocity of
pulses [26], the arrival of the temporal (〈t〉 = [û ·∫

t �S(x,t)dt]/[û · ∫ �S(x,t)dt]) and spatial (〈x〉 = [û ·∫
x �S(x,t)dx]/[û · ∫ �S(x,t)dx]) centroids for wave packets

were discussed on the basis of real-ω, dk/dω, and real-k,
dω/dk, expansions, respectively. It was shown that the group

velocities defined by the arrival of temporal and spatial
beam profiles along the z direction in a frequency dispersive
medium are unlikely to be equal. In the above study, only
longitudinal group velocity (i.e., ∂k

∂ω
or ∂ω

∂k
) was considered. In

contrast, in the present study, the transverse group velocity
( ∂k
∂k

) was studied and explained in terms of net group and
reshaping shifts along the x direction in the absence and
presence of beam attenuation.

V. CONCLUSION

The propagation of light in spatially dispersive media was
described by a spatial analog of pulse propagation in time
domain. The propagation shifts in the spatial dimension for
transversely shaped arbitrary beam profiles were measured to
good experimental accuracy in the absence and presence of
attenuation, and mathematically described in the context of
net group and reshaping shifts, respectively. The centroids
of x profiles for Gaussian and irregularly shaped phase-
modulated beams remained the same in the case of free-space
propagation, although the profiles suffered severe deformation
with propagation distance. To date, there have been no reports
discussing this transverse group velocity in free space or
even presentation of any experimental verification. When
a transversely phase-modulated beam propagates through a
medium that will attenuate the beam in �k space, the centroid
of the Poynting vector changes; specifically, reshaping occurs
due to the attenuation of the kx components. The experimental
results were in good agreement with the theory of net group
and reshaping delays.
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