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Lasing and high-temperature phase transitions in atomic systems with dressed-state polaritons
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We consider the fundamental problem of high-temperature phase transitions in the system of high-density
two-level atoms off-resonantly interacting with a pump field in the presence of optical collisions (OCs) and placed
in the cavity. OCs are considered in the framework of thermalization of atomic dressed-state (DS) population. For
the case of a strong atom-field coupling condition, we analyze the problem of a thermodynamically equilibrium
superradiant phase transition for the order parameter representing a real amplitude of cavity mode and taking
place as a result of the atomic DSs thermalization process. Such a transition is also connected with condensed
(coherent) properties of low branch DS polaritons occurring in the cavity. For describing nonequilibrium phase
transitions we derive Maxwell-Bloch–like equations which account for cavity decay rate, collisional decay rate,
and spontaneous emission. Various aspects of transitions to laser field formation by using atomic DS levels for
both positive and negative detuning of a pump field from atomic transition frequency are studied in detail. It is
revealed that for positive atom-light detuning DS lasing can be obtained in the presence of quasiequilibrium DS
population that corresponds to a true two-level atomic system with the inversion in a nonresonant limit.
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I. INTRODUCTION

Lasing and Bose-Einstein condensation (BEC) are two
phenomena which make photonic and matter waves macro-
scopically coherent when they are confined in the cavity and
trapped respectively; see, e.g. [1–3]. Although the final state of
the ensemble of particles is spontaneously broken, and can be
described by well-defined amplitude and phase, the physical
reasons for achieving this state are completely different for
lasers and for objects exhibiting BEC; cf. [4].

Nowadays lasing is recognized as a very general and
universal phenomenon that can be obtained under the matter–
light-field interaction in the cavity containing different media;
see, e.g. [5]. Lasers are nonequilibrium systems in the sense of
thermodynamics and, in the common case, require pumping
in order to form a population inversion, which elucidates
nonequilibrium features of the lasing process. In many cases,
such inversion can be reached in the medium with a three (or
more) energy-level configuration only. Steady-state population
inversion cannot be achieved for a two-level system interacting
with e.m. field in the cavity in the context of a semiclassical
treatment, because probabilities of pump-induced upward and
downward transitions between these two levels are equal.
However, as it is shown in [6] and recently discussed in [7],
a full quantum theory of atom-light interaction predicts the
presence of such inversion at the steady state.

The physical picture becomes richer in the case when co-
herent light-field formation takes place due to the equilibrium
(or quasiequilibrium) phase transition occurring in a coupled
matter-light system. In fact, population inversion does not
play any role in this case because it does not correspond to
equilibrium properties of the system and it is not relevant
for such transitions. Actually, that is why a two-level system
is suitable for realizing a thermodynamically equilibrium
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phase transition under the matter-light interaction; cf. [8].
Noticing that dissipation and decoherence effects must be
maximally suppressed in this case. If such effects are not so
weak a coupled matter-field system undergoes nonequilibrium
transition to lasing—see [9]. However, this transition behaves
quite differently as compared to conventional lasers because
it occurs in the inversionless two-level system coupled to
quantized field irradiation and strongly depends on the specific
features of the medium; cf. [10].

Nowadays it has been shown that different condensed-
matter, solid-state, and even photonic systems exhibit BEC
phenomenon first obtained with ultracold atoms; see, e.g.
[11–15]. Although not all of them are completely ther-
modynamically equilibrium, in practice, the requirement of
thermalization plays the essential role in achieving the BEC
state; cf. [2].

Recently, BEC phenomenon has been observed for low
dispersion branch exciton polaritons in high-finesse semicon-
ductor microcavities; see, e.g. [16]. Since polaritons are mixed
light-matter states, such experiments allow one to resume
the old discussion about physical similarities between lasing
and phase transition at a qualitatively new level; cf. [3,4,17].
Moreover, the terms “polariton laser” [9] or “atom laser”
[18], which appeared in the past decades for emphasizing
experimentally feasible high coherent properties of matter
waves attach practical value to the discussion. Actually, two
thresholds are clearly seen in the experiments with exciton
polaritons confined in the cavity. The first one occurs at low
pumping intensities and characterizes inversionless systems
with excitons strongly coupled with a cavity mode [19].
This is the case of polariton laser that corresponds to the
quasiequilibrium state of the system; cf. [9]. By increasing
the intensity of a pumping field it is possible to achieve the
second threshold that corresponds to photon lasing.

The situation becomes physically intriguing in the atomic
physics area operating with coupled atom-light states. The
keystone problem of observing of atomic polariton BEC
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is connected with the problem of achieving true thermal
equilibrium (or quasiequilibrium) for coupled atom-field states
[20]. Great interest in thermodynamic properties of atomic
gases in the presence of optical field irradiation has been
evoked recently [21,22]. Dressed states (DSs) are at the heart
of describing the interaction of high-density atomic gases
with nonresonant radiation in the presence of collisions with
buffer gas particles, so-called optical collisions (OCs) [23,24].
Previously we suggested a model of atomic DS thermalization
being obtained due to OC processes that accounts for the
evolution of pseudospin Bloch vector components and charac-
terizes the essential (negative) role of a spontaneous emission
in the thermalization process [25]. Recently, we have shown
that in the presence of both photon and polariton trapping
in biconical waveguide cavity with the appropriate lifetime
of polaritons a high temperature BEC for low branch (LB)
photonlike polaritons is achieved [26].

Some time ago nonequilibrium phenomena in the DS
picture were intensively discussed in the framework of lasing
phenomena in inversionless medium; these phenomena take
place for lasers which operate on a transition between DS
levels, or simply for DS lasers—see [27–31]. The systems
considered for these purposes imply the usage of spontaneous
processes playing the role of pumping. However, OC processes
which we deal with in the paper can represent a much more
effective mechanism for population redistribution of DSs.
In particular, OC-induced transitions between DS are not
identical for upward and backward directions. That is why
lasing can be obtained in a two-level DS system in the presence
of OCs; cf. [22].

The main objective of the paper is to study both equilibrium
and nonequilibrium phase transitions occurring in the atomic
system with two generic levels being under OCs with high-
pressure buffer gas particles and interacting with the field in
the cavity with finite Q factor.

The paper is arranged as follows. In Sec. II we discuss
some equilibrium and nonequilibrium schemes and methods
of the atom-field interaction involving DS transitions and
lasing resulting in the origin of the coherent field state in
a two-level atomic system without cavity. Some principal
experimental results obtained previously are discussed in this
section. In Sec. III we develop the theory of cavity quantum
electrodynamics (QED) with DSs for a high density ensemble
of two-level atoms being under OCs with buffer gas atoms
in the presence of a pump field and interacting with cavity
mode simultaneously. In Sec. IV we examine the effect
of thermodynamically equilibrium phase transition to the
superradiant state occurring in such a system. Various aspects
of nonequilibrium phase transitions, temporal dynamics of
DS polarization, population inversion and cavity field, and DS
lasing phenomenon occurring in the cavity with finite Q factor
in the presence of collisions with high-pressure buffer gas
particles are studied in detail in Secs. V and VI, respectively.
In conclusion, we summarize the results obtained.

II. LASING WITH DS

Let us consider a high-density two-level atomic system
nonresonantly interacting with a quantized light field without
the cavity. Basic description of the interaction of atoms with

optical field can be done by using DS defined as, cf. [24],

|1(N )〉 = sin θ |a,N + 1〉 + cos θ |b,N〉, (1a)

|2(N )〉 = cos θ |a,N + 1〉 − sin θ |b,N〉, (1b)

where |1(N )〉 and |2(N )〉 are upper and lower levels for DSs
containing the number of photons N . The states |a,N + 1〉
and |b,N〉 correspond to uncoupled (bare) atom-light states,
respectively. The coefficients

sin θ = 1√
2

√
1 + δ

�R

, (2a)

cos θ = 1√
2

√
1 − δ

�R

(2b)

determine the contribution of bare states to DS levels |1(N )〉
and |2(N )〉; �R = √

δ2 + �2 is generalized Rabi frequency,
δ = ωL − ωat is atom-light detuning, and � represents reso-
nant (δ = 0) Rabi frequency that generally depends on photon
number N in the pump field [24].

In the paper we focus on the nonresonant (or so-called
perturbative) limit when inequality

|δ| � � (3)

is fulfilled for large enough N , i.e., N � 1.
In Fig. 1 we represent two adjacent manifolds of DS

levels for the different sign of atom-light detuning δ under
the perturbative limit. Optically allowed transitions between
these states form the so-called Mollow triplet, that consists of
the central component with frequency ωL and two sidebands
shifted onto ±�R .

In the absence of pressure broadening and accompanying
OC processes, the ground atomic state |a〉 is much more
populated due to the spontaneous emission. This leads to
the establishment of population inversion between DS levels
in a considerably nonresonant region when condition (3) is
fulfilled. It is worth noticing that the amplification in the system
of two-level atoms off-resonantly interacting with a high
intensity field has been discussed [32] and later experimentally
demonstrated in [33]. Actually, under condition (3), for
δ < 0 [see Fig. 1(a)] from (1), (2), we have sin θ ≈ 0 and
cos θ ≈ 1, and a lower DS |2(N )〉 corresponds to the bare state
|a,N + 1〉 which describes the atoms in the ground state. As
a result, population inversion is established between the states
|2(N )〉 and |1(N − 1)〉, thus giving a possibility to lasing and
amplification of the red fluorescence component ωL − �R .
Previously, laser field generation on this transition has been
obtained in [30] by using sodium atoms in a low-pressure (less
than 4 × 10−4 bars) buffer gas environment and in [28] by
exploring beam of barium atoms.

For positive detuning δ > 0 [see Fig. 1(b)], it is easy to show
that there is a population inversion between levels |1(N )〉 and
|2(N − 1)〉 that corresponds to the blue wing of Mollow triplet
with frequency ωL + �R . The generation on this transition has
been also observed; see, e.g. [27] and later discussed in [29].
This transition can be also recognized as a Raman process that
involves transition |a〉 → |b〉 accompanied by the emission of
photon from the ground to the excited atomic state; cf. [34].
This process is also called Rabi or three photon gain process
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FIG. 1. (Color online) Energy-level manifolds in the coupled
atom-light system without (a), (b) and with (c), (d) DS thermalization
under the perturbative condition (3) for (a), (c) negative and (b), (d)
positive atom-light detunings. Bold vertical lines indicate the transi-
tion involved in DS laser field generation. Wavy line corresponds to
spontaneous emission transitions between DSs being responsible for
DS population redistribution in the absence of thermalization. Double
line on (c) indicates equilibrium phase transition to superradiant state.

[35]. Noticing that in both cases in Figs. 1(a) and 1(b) laser gen-
eration occurs in the inversionless “two-level” atomic system.

In the presence of OCs, collisionally aided excitation allows
a transfer between DS components |1(N )〉 and |2(N )〉. If
such processes are fast enough, DS population distribution

approaches its equilibrium state characterized by Boltzmann
distribution—see [25]. As a result, in a completely thermalized
system the population of |2(N )〉 should be larger than that of
the upper one by Boltzmann factor exp[ h̄�R

kBT
] ≈ exp[ h̄|δ|

kBT
]; see,

e.g., Figs. 1(c) and 1(d). Particularly, in the limit of large and
negative δ characterizing the inversionless two-level atomic
system, the equilibrium distribution established between upper
and lower DS levels enables us to expect a thermodynamically
equilibrium phase transition to the superradiant state [see
double line in Fig. 1(c)].

A physical picture changes dramatically for positive detun-
ing δ > 0—see Fig. 1(d). For the large positive atom–light-
field detuning a lower DS |2(N )〉 corresponds to the excited
atomic level |b,N〉, which is much more populated now. In
other words, we achieve the inversion in a true two-level atomic
system in the presence of thermodynamically equilibrium or
quasiequilibrium state; cf. [6,22]. In fact, a thermal buffer
gas reservoir acts as a pumping for achieving population
inversion. Apart from the case discussed above [see Fig. 1(b)]
lasing in the system can be obtained in |2(N )〉 → |1(N − 1)〉
transition—see Fig. 1(d), that corresponds approximately to
transition |b〉 → |a〉 in terms of real atomic states under the
condition (3).

In [22] laser field gain has been demonstrated experimen-
tally under the excitation of the blue wing of fluorescence
intensity component of sodium atoms being at temperatures
T = 600 K under the pressure from 600 torrs to four
atmospheres of helium buffer gas and interacting with the
optical field in a single pass regime. Such conditions did not
allow one to obtain a thermodynamically equilibrium state for
DS population; cf. [25]. However, they were sufficient to reach
the population inversion for true atomic levels.

III. DS CAVITY QED

Let us consider the case when the ensemble of Nat two-
level atoms interacts with the optical field in the presence of
OCs in the cavity. Total Hamiltonian H = HATF + HC can
be represented as a sum of part HATF that characterizes the
interaction of two-level atoms with a pump light field; HC

corresponds to the interaction of atoms with a cavity mode
tuned to frequency ωc and described by annihilation (creation)
operators a (a†). We represent HATF and HC in the form

HATF = h̄ωLf †f + h̄

Nat∑
j

[
ωat

2
(|b〉jj 〈b| − |a〉jj 〈a|)

+ g(s+j f + s−j f
†)

]
, (4a)

HC = h̄ωca
†a + h̄κ√

Nat

Nat∑
j

(s+j a + s−j a
†), (4b)

where f (f †) is the annihilation (creation) operator for the
photons absorbed (or emitted) under the interaction with
the pumping field having frequency ωL—see Fig. 2, g =
(|dab|2ωL/2h̄ε0V )1/2 is the atom-field interaction constant,
which is supposed to be identical for all Nat atoms, dab is
the atomic dipole matrix element, and V is the atom-field
interaction volume in the cavity; κ = (|dab|2Natωc/2h̄ε0V )1/2
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FIG. 2. (Color online) Schematic representation of nonresonant absorption of pump field with frequency ωL for (a) negative atom-field
detuning, δ ≡ ωL − ωat < 0, and (b) positive atom-field detuning, that is, δ > 0 in the perturbative limit (3); ωc is frequency of cavity field,
with relevant detuning � 	 ωc − ωL − |δ|. For positive detuning δ > 0, in the presence of OCs the atom has some energy excess h̄δ, which is
transformed into the kinetic energy of the atoms after the collision.

is a cooperative parameter of the interaction of cavity field with
Nat two-level atoms; s−j = |a〉jj 〈b| and s+j = s

†
−j = |b〉jj 〈a|

represent atomic transition operators for the j th atom.
Then, the estimate of Eqs. (4) presumes transition to DS

basis; cf. [29]. Considering a pump field as a classical one
that possesses the average photon number N0 we suggest
substituting f †f → √

N0 in Eq. (4a) and assume the so-called
semiclassical DSs for further calculations; cf. [31]. In this case,
the transition to DS basis could be realized by using the unitary
operator U = ∏

j exp[iθs2j ], where s2j = (s+j − s−j )/i; see
[29] for more details.

A more rigorous approach to the transformation of Eqs. (4)
into the DS basis could be achieved with the usage of complete-
ness relation I = ∑∞

N=0 |N〉〈N | in a relevant representation
of the Fock state basis for pump field operators, that is,
f †f = ∑∞

N=0 N |N〉〈N | and f = ∑∞
N=0

√
N |N − 1〉〈N | =∑∞

N=0

√
N + 1|N〉〈N + 1|; cf. [36]. For example, we can

rewrite Eq. (4a) as

HATF = h̄

∞∑
N=0

{
ωLN |N〉〈N |

+
Nat∑
j

[
ωat

2

(|b,N〉jj 〈b,N | − |a,N + 1〉jj 〈a,N + 1|)

+ h̄�N

2
(|a,N + 1〉jj 〈b,N | + |b,N〉jj 〈a,N + 1|)

]}
,

(5)

where �N = 2g
√

N + 1 is the photon number dependent
resonant Rabi frequency.

However, for large N � 1 and small photon number
fluctuations in the pump field it is justified to assume that
in Eq. (5) �N 	 � = 2g

√
N0 and �R 	

√
δ2 + 4g2N0; cf.

[24,37].
Taking into account the definitions (1) for DSs and moving

to the rotating frame, that is, relative to frequency ωL, we can

recast total atom-field Hamiltonian H in the DSs basis:

H = h̄δca
†a + h̄�R

2

Nat∑
j

SDS
zj

+ h̄κ

2
√

Nat

Nat∑
j

[{
SDS

zj sin 2θ

+ 2SDS
+j cos2 θ − 2SDS

−j sin2 θ
}
a

+{
SDS

zj sin 2θ + 2SDS
−j cos2 θ − 2SDS

+j sin2 θ
}
a†] , (6)

where δc = ωc − ωL is detuning of the cavity mode from
frequency ωL of a pump field. In (6) we give definitions

SDS
−j =

∞∑
N=0

|2(N )〉jj 〈1(N )|, (7a)

SDS
+j =

∞∑
N=0

|1(N )〉jj 〈2(N )|, (7b)

SDS
zj =

∞∑
N=0

(|1(N )〉jj 〈1(N )| − |2(N )〉jj 〈2(N )|), (7c)

taking the sum throughout all photon numbers N in DS
manifolds; cf. [25].

In this paper we restrict ourselves by one-photon transitions
only, taking into account neighbor manifolds—see Fig. 1.
Hence we can transfer to rotating wave approximation al-
locating appropriate processes in the DS basis. Transitions
between the states |1(N )〉 → |2(N − 1)〉 (for brevity we call
it |1〉 → |2〉)—see Figs. 1(b) and 1(c)—correspond to the
destruction of excitation at the upper dressed level |1(N )〉
[operator SDS

−j in Eq. (7a)] with the emission of a cavity
photon characterized by operator a†. As a result Eq. (6)
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reduces to

H ≡ H12 = h̄δca
†a

+
Nat∑
j

[
h̄�R

2
SDS

zj + h̄κ12√
Nat

(
SDS

+j a + SDS
−j a

†)] , (8)

where we introduce the parameter κ12 = κ cos2 θ that de-
scribes the effective coupling of the atomic DS ensemble with
a cavity mode when cavity frequency is tuned close to the
frequency of transition |1(N )〉 → |2(N − 1)〉.

Another type of transitions in the atomic system with DSs
can be associated with the process |2(N )〉 → |1(N − 1)〉 [see
Figs. 1(a) and 1(d)] that is relevant to the emission of a cavity
photon under the transition from a lower DS level |2〉 to the
upper one |1〉. In this limit effective Hamiltonian (6) reduces
to

H ≡ H21 = h̄δca
†a

+
Nat∑
j

[
h̄�R

2
SDS

zj − h̄κ21√
Nat

(
SDS

−j a + SDS
+j a

†)] , (9)

where κ21 = κ sin2 θ presumes an effective coupling coeffi-
cient for transition |2(N )〉 → |1(N − 1)〉, or |2〉 → |1〉 for
brevity.

In the perturbative limit (3) the efficiency of atom-cavity
field coupling depends essentially on the sign of atom-pump
light detuning δ. In particular, for coupling parameter κ12 in
(8) we obtain

κ12 ≈ κ

(
1 − �2

4δ2

)
→ κ for δ < 0, (10a)

κ12 ≈ κ�2

4δ2
� κ for δ > 0. (10b)

Equation (10a) implies that it is easier to realize a strong
atom-cavity field coupling condition for which effective
parameter κ12 exceeds dissipation, decoherence, and/or de-
phasing effects for negative detuning δ < 0; see (12) and
Fig. 1(c). As it was discussed in the previous section the case of
δ > 0 corresponds to Raman-type transitions with frequency
ωL + �R , this being relevant to a weak effective coupling
between atomic DSs and cavity mode—see Fig. 1(b). This
limit corresponds to the DS laser described in [29].

For parameter κ21, given in Eq. (9), the situation is opposite,
that is,

κ21 ≈ κ�2

4δ2
� κ for δ < 0, (11a)

κ21 ≈ κ

(
1 − �2

4δ2

)
→ κ for δ > 0. (11b)

Now a strong-coupling condition can be achieved at δ > 0.
An appropriate laser field generation and amplification on
transition |2〉 → |1〉 under this condition can be obtained in
the presence of OCs only—see Fig. 1(d). On the other hand,
for δ < 0 one can obtain a vanishing coupling between the
atomic DS ensemble and cavity mode that corresponds to
Raman-type lasing represented by the red arrow in Fig. 1(a)
and 1(c); cf. [28].

In the following section we will focus mainly on the strong
coupling between atomic DSs and cavity field when a new
type of polaritons, that is, DS polaritons can be found.

IV. SUPERRADIANT PHASE TRANSITION

Let us consider the processes characterized by negative
atom-light detuning δ < 0 and described by Hamiltonian (8)
under strong-coupling condition

κ12 � max {γ,
c,
} , (12)

where 
c denotes cavity photon leakage, 
 is spontaneous
emission rate, and γ characterizes pressure broadening.

Strictly speaking, we suppose our system to be at full
thermal equilibrium. The total excitation number Nex = a†a +
1
2

∑
j SDS

zj is a conserved quantity now. It is instructive to define
polariton number density

ρ = 1

2
+ ρex = λ2 + 1

2

⎛
⎝ 1

Nat

〈
Nat∑
j

SDS
zj

〉
+ 1

⎞
⎠ (13)

that corresponds to the sum of an average number of cavity
photons and atoms populating upper DS; ρex = 〈Nex〉

Nat
is exci-

tation number density. In (13) λ =
√

〈a†a〉/Nat is normalized
cavity field amplitude, which we take as an order parameter of
the system.

Alternatively, Eq. (13) can be obtained by using DS
polaritons. Actually, for describing macroscopic excitations of
the effective two-level DS system one can define annihilation
φ and creation φ† excitation operators by using transformation,
cf. [20],

φ 	
Nat∑
j

SDS
−j /

√
Nat, (14a)

φ† 	
Nat∑
j

SDS
+j /

√
Nat, (14b)

Nat∑
j

SDS
zj = 2φ†φ − Nat. (14c)

Here we restrict ourselves by the so-called low excitation
density limit φ†φ � Nat; excitation operators φ, φ† possessing
bosonic commutation relation [φ,φ†] 	 1; cf. [9,10]. Physi-
cally, a low-density limit implies that it is the lower DS level
|2〉 which is mainly populated; see (14c) and (7c); this being
true under the condition of equilibrium Boltzmann distribution
for DS level populations.

At the steady state for a coupled atom-light system
Hamiltonian (8) can be diagonalized with the help of operators
(14) by using unitary transformations

�1 = Xa + Cφ, (15a)

�2 = Xφ − Ca, (15b)

where X = 1√
2
(1 + �√

4κ2
12+�2

)1/2, C = √
1 − X2 are Hopfield

coefficients, and � = δc − �R is effective detuning. Physi-
cally, � = δc + ωL − (�R + ωL) = ωc − (�R + ωL) defines
the detuning of a cavity field with frequency ωc from blue
Mollow triplet sideband frequency �R + ωL—see Fig. 2. We
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have �R + ωL ≈ ωat for δ < 0 and � simply defines detuning
of cavity field from atomic transition, that is, � 	 ωc − ωat.

Operators �1,2 in Eqs. (15a) and (15b) characterize upper
and lower branch DS polaritons, which are mixed states of a
cavity field and DS macroscopic polarization. Thus the average
total number of polaritons Npol = ∑

i=1,2〈�†
i �i〉 normalized

to atom number Nat is relevant to polariton number density ρ

in (13).
To determine the order parameter λ at thermal equi-

librium, we apply a variational (thermodynamic) approach;
see, e.g. [38]. In this case, the partition function Z =
Tr[exp(−H ′/kBT )] should be used; H ′ = H12 − μNex is a
modified Hamiltonian. The function Z(T ) describes a grand
canonical ensemble with the finite (nonzero) chemical poten-
tial μ. The estimate of the partition function Z could be given
in the coherent state basis for the cavity photonic field; cf. [8].
Neglecting fluctuations of the optical field as well as atom-field
correlations, one can obtain in the semiclassical limit

�̃cλ = λκ2
12 tanh[h̄�/2kBT ]

�
, (16)

where we made denotations �̃R = �R − μ, �̃c = δc − μ,
and � ≡

√
�̃2

R + 4κ2
12λ

2. Equation (16) is a gap equation
that characterizes the phase transition problem in different
physical systems; see, e.g. [8,38,39]. In our case Eq. (16)
describes a second-order phase transition to a superradiant
phase characterized by λ > 0.

By using (13) and the partition function Z(T ) we can get
an expression for polariton density ρ versus temperature:

ρ = 1

2
+ λ2 − �̃R tanh[h̄�/2kBT ]

2�
. (17)

Combining (16) and (17) for μ parameter we have

μ1,2 = 1

2
{δc + �R ± �R eff} , (18)

where �R eff =
√

�2 − 8κ2
12(ρ − λ2 − 1/2). At low polariton

densities and λ = 0 Eq. (18) defines the normal state for upper
(μ1) and lower (μ2) polariton branch frequencies. Below we
focus our attention on LB DS polaritons only, because at
the full thermal equilibrium one can expect that a lower DS-
polariton branch should be much more populated. In particular,
in this case we can assume that �̃R = 1

2 {−� + �R eff} and
�̃c = 1

2 {� + �R eff} if we use Eq. (18).
In the limit of nonresonant atom-field interaction for OC

processes it is instructive to suppose that detuning |�| ∼ |δ| �
κ12. The critical temperature TC of a phase transition (for given
atom-field detuning δ) can be obtained from (16) for λ = 0 and
looks like

TC ≈ h̄�

2kB tanh−1 [2ρ − 1]
. (19)

With the help of Eq. (17) it is possible to obtain the expression
for the order parameter λ that obeys

λ ≈ λ∞

{
1 − 1

ρ[1 + (ρ−1 − 1)ζ/ζc ]

}1/2

, (20)

where ζ = h̄�/kBT is a vital parameter for our problem; λ∞
is an order parameter in “zero temperature” limit h̄�̃R � kBT ;

λ
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FIG. 3. (Color online) Dependence of order parameter λ on
dressed atom-cavity field detuning � for a fixed value of DS
polariton density ρ = 0.27, corresponding to the system having the
temperature T = 530 K with κ/2π = 0.62 THz, �/2π = 1 THz,
and δ/2π = −11 THz. The dependence of critical temperature TC on
detuning � for the same value of ρ and T is plotted in the inset.

ζc = − ln[ρ−1 − 1] is a critical value of parameter ζ in the
limit when |�| � κ12 that defines a phase boundary between
normal and superradiant states. The dependence of order
parameter λ and critical temperature TC of the phase transition
(inset) on atom-cavity field detuning � is presented in Fig. 3
for a fixed value of excitation number density ρ. When the
critical temperature TC exceeds the temperature of the system
[horizontal solid (yellow) line] a nonzero value of coherent
light amplitude λ is obtained.

For large, negative detunings � the phase-transition temper-
ature is high enough even for low polariton number densities ρ

due to the photonlike character of LB polaritons (�2 ≈ −a).
Our special interest is in the case when � ≈ −�R that
corresponds to the degenerate frequency of a cavity mode
ωc ≈ ωL (δc = 0). In fact, in this case we obtain from (19)
the same result as is derived from [20] for a superradiant
high-temperature phase transition without cavity. However, in
the present case such results can be also interpreted as a phase
transition to BEC state for DS polaritons if we take into account
the cavity geometry and trapping potential; cf. [26,39].

On the other hand, for vanishing detunings � the critical
temperature diminishes. In particular, for half-photon–half-
matter–like LB polaritons that correspond to the resonant case
of � = 0 [ωc ≈ ωat—see Fig. 2(a)] the temperature (19) of a
phase transition becomes essentially lower.

V. DS LASING FOR |1(N)〉 → |2(N − 1)〉 TRANSITION

In the real experiment a thermodynamically full equilibrium
cannot be achieved because of the spontaneous emission and
finite lifetime of photons in the cavity. The aim of this section is
to create the conditions for crossover from superradiant phase
transition to lasing.

We start from the master equation for density matrix
σ in the presence of OCs, radiative (spontaneous) relax-
ation, and cavity leakage processes. This can be written

063834-6
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as follows:

σ̇ = − i

h̄
[H,σ ] + Lradσ + Lcollσ + Lcavσ, (21)

where the last three terms

Lradσ = 


Nat∑
j

{
s−j σ s+j − 1

2

(
s+j s−j σ + σs+j s−j

)}
,

(22a)

Lcollσ =
Nat∑
j

{
−γ

2
σ + 2γ szjσ szj − iη[szj ,σ ]

}
, (22b)

Lcavσ = 
c(2aσa† − a†aσ − σa†a), (22c)

account for the spontaneous emission (22a), collisions with
buffer gas atoms (22b), and a leakage of photons out of the
cavity (22c). In (22b) γ is collisional broadening and η is
collisional phase shift. In Eq. (21) we suppose that Hamiltonian
H is given by Eq. (8).

Neglecting quantum atom-field correlations and inho-
mogeneous broadening that is significantly smaller than
the collisional one, we can obtain Maxwell-Bloch–like
equations,

λ̇ = −(iδc + 
c)λ − iκ12S, (23a)

Ṡ = −(i[�R + η1] + 
1 + γ1)S + iκ12λSz, (23b)

Ṡz = −2w
(
Sz − S(eq)

z

) − 
+Sz + 
− + 2iκ12(Sλ∗ − S∗λ),

(23c)

for new variables which are a normalized coherent amplitude
of cavity field λ, collective atomic excitation (S), and popula-
tion imbalance (Sz); the latter two are defined as

S = 1

Nat

Nat∑
j=1

∞∑
N=0

j 〈1(N )|σ |2(N )〉j , (24a)

Sz = 1

Nat

Nat∑
j

∞∑
N=0

(j 〈1(N )|σ |1(N )〉j − j 〈2(N )|σ |2(N )〉j ).

(24b)

In Eqs. (23) the following notations are introduced:

w = γ sin2(2θ )

2
,


± = 
[sin4(θ ) ± cos4(θ )], γ1 = γ (cos4 θ + sin4 θ ),

η1 = η cos 2θ, 
1 = 


4
(2 + sin2 2θ ). (25)

Thereafter, we assume that Rabi frequency �R also includes
phase shift η1 introduced by the collisions, i.e., �R + η1 →
�R .

In (23) we have incorporated S
(eq)
z = − tanh[ h̄�R

2kBT
] that

characterizes a thermodynamically equilibrium value of DS
population imbalance; cf. [40]. In the absence of a cavity (at
λ = 0) DS population imbalance Sz relaxes toward its station-

ary value S(st)
z = 2wS

(eq)
z +
−

2w+
+
. In the presence of thermalized OCs
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(
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st zS
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FIG. 4. (Color online) Dependence of a stationary value of DS
population imbalance Sz as a function of detuning δ/2π for different
values of collisional broadening. Parameters are �/2π = 1 THz,
κ/2π = 0.62 THz, and 
 	 37 MHz.

the difference of DS populations approaches it equilibrium
value with the rate 2w, i.e., S(st)

z 	 S
(eq)
z .

In Fig. 4 we represent the dependences for DS population
imbalance Sz as a function of detuning δ. A thermodynamically
full equilibrium behavior of Sz is shown by the dotted
(red) curve in Fig. 4. From Fig. 4 it is clearly seen that a
thermodynamically equilibrium state could be achieved at the
far red detuned tails (δ < 0) of DS population imbalance Sz

under high enough buffer gas pressures which correspond to
large values of γ .

The terms containing 
 in (23) characterize the influence
of spontaneous emission on the process of thermalization. To
minimize this effect it is necessary to require that the rate
of thermalization of atom-field DS be much higher than the
effective rate of the spontaneous emission. In other words,
thermalization occurs when condition w � 
+ [see (23c)] is
fulfilled or, in perturbative limit (3), inequalities




γ
� �2

δ2
� 1 (26)

are satisfied—see [25].
The suppression of the DS thermalization process due to

the spontaneous emission leads to the formation of thermo-
dynamically quasiequilibrium (dashed-dotted curve in Fig. 4)
or completely nonequilibrium [dashed (blue) and solid (black)
curves, respectively] of the coupled atom-light states for which
the condition (26) is violated.

For highly nonequilibrium coupled atom-light states Sz ≈ 1
(solid curve in Fig. 4) at positive detuning δ > 0 we obtain
the inversion for DS population that corresponds to the
inversionless two-level atomic system. In this case the role
of pressure broadening (parameter γ ) is responsible for the
rapid dephasing of DS [see (23b)] at the rate γ1.

Below we focus on the thermodynamically nonequilibrium
limit for a coupled atom-light system that can also be
connected with a large cavity field dissipation rate, 
c, as
an example. Stationary solutions λ = λe−iμt , S = Se−iμt , and
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Ṡz = 0 of Eqs. (23a) and (23b) yield to

μ1,2 = 1

2

(
(δc − i
c) + [�R − i(
1 + γ1)]

±
√

{(δc − i
c) − [�R − i(
1 + γ1)]}2 − 4κ2
12S̄z

)
,

(27)

that implies relevant “chemical potential” for polaritons. The
imaginary part of Eqs. (27) suppresses coherent effects for
cavity field λ and is responsible for the dissipation of polariton
states, when condition (12) is satisfied; cf. [9]. It is justified to
choose S̄z for lower branch eigenstates such as Im(μ2) = 0. In
this case one can obtain from (27) a threshold value S(thr)

z of
the stationary population inversion level S̄z:

S(thr)
z = 
c (
1 + γ1)

κ2
12

(
1 + �2

(
c + 
1 + γ1)2

)
. (28)

At the same time the real part of chemical potential, that is
μ ≡ Re(μ2), takes the form

μ = δc − �
c


1 + γ1 + 
c

. (29)

Equation (29) determines the characteristic frequency of a
laser field generation under the condition (28). Physically, μ

signifies a relative frequency accounted from frequency ωL

of the pump light. Relation γ1 � 
1,
c can be achieved for
high-pressure atomic vapor and large atom-light detunings δ,
when it is realized simultaneously with inequality w < 
; this
is done for gaining DS population inversion. Thus Eq. (27)
results in μ ≈ δc.

The stationary population of DSs can be found out by
solving the set of Eqs. (23) that yields to

S̄z = S(st)
z |�̃R,eff|2

|�̃R,eff|2 + 4(
1+γ1)
2w+
+

κ2
12|λ|2 (30)

where we define

�̃R,eff = 1

2

{−� − i
eff +
√

(� + i
eff)2 − 4κ2
12S̄z

}
,

and 
eff = 
1 + γ1 − 
c; cf. (16).
To specify the properties of the order parameter λ in this

case one can represent the polariton number density (13) that
evolves in time according to

ρ̇ = −0.5(2w + 
+)
(
Sz − S(st)

z

) − 2
c|λ|2 (31)

in the presence of dissipation and dephasing effects. At the
steady state we can put in (31) ρ̇ = 0 and Sz = S(thr)

z , which
immediately leads to the equation for |λ|2 in the form

|λ|2 = (2w + 
+)

4
c

(
S(st)

z − S(thr)
z

)
. (32)

In the DS laser theory Eq. (32) plays the same role as
Eq. (16) in the theory of a thermodynamically equilibrium
phase transition to superradiant state with a cavity photonic
field; cf. [8]. Actually, Eq. (32) indicates the region where
a cavity field has nonzero value. Lasing can occur only
for DS population imbalance S(st)

z > 0 obeying the condition
S(st)

z > S(thr)
z � 0 that corresponds to the nonequilibrium phase

transition for an atom-light system taken for positive δ—see
solid curve in Fig. 4.

It is worth emphasizing that the threshold of DS population
imbalance S(thr)

z, min = 
c (
1 + γ1)/κ2
12 is minimal for a cavity

light detuning which satisfies resonant condition � = 0. In
Fig. 2(b) we have shown relevant transition frequencies for
a laser field generation taking place at δ > 0 under the
perturbative limit (3). It is easy to see that the resonant
case � = 0 can be realized when the frequency of cavity
mode ωc is in the vicinity of the blue component of Mollow
triplet that corresponds to transition |1〉 → |2〉 in the DS
level picture—see Fig. 1. On the other hand, S(thr)

z increases
with detuning � �= 0 from the blue Mollow component. For
example, at � = −�R we have S(thr)

z ≈ 
cδ
2

κ2
12(
c+
1+γ1)

� S(thr)
z, min.

Noticing that vanishing threshold DS population imbalance
S(thr)

z 	 0 can be obtained under the inequality

κ12 �
√

γ
c, (33)

which can also be associated with some modification of the
effective strong-coupling condition (12). In fact, in this case we
deal with the thresholdless laser field generation for which the
order parameter is maximal and is equal to |λ| ≈

√

S(st)

z /4
c.
In Fig. 5 we represent the numerical solution of a full set of

Eqs. (23) revealing nonequilibrium dynamics of modulus of
the order parameter (cavity field amplitude) |λ|, DS population
imbalance (Sz), and DS polarization (|S|) in the presence of
OCs. We suppose that all atoms initially occupy the lower
DS level |2(N )〉; that is, Sz(t = 0) = −1 with zero value
of DS polarization S(t = 0) = 0. Without a cavity, i.e., at
λ = 0, a coupled atom-light system exhibits the behavior with
S̄z = S(st)

z that is inherent to the transient quasiequilibrium
dynamics described in [25]. Lasing occurs for Sz(t = τL) =
S(thr)

z at characteristic time scales τL which can be taken from
the evolution of DS population imbalance in the absence
of the cavity field Sz = S(st)

z + [Sz(t = 0) − S(st)
z ]e−(2w+
+)t .

Figure 5(b) and Fig. 5(c) indicate rapidly vanishing temporal
oscillations around the value S(thr)

z for DS population imbal-
ance Sz and modulus of DS polarization |S| at t > τL. For the
plots in Fig. 5 we have τL ≈ 20 ns. Noticing that the estimated
time of thermalization Ttherm = 2πδ2/γ�2 (see [25]) for the
parameters given in Fig. 5 is large enough (Ttherm 	 0.34 μs)
as compared to τL and characteristic times separated two
successive acts of collisions and spontaneous decay from the
upper level.

In Fig. 6 we give the dependencies of modulus of the
order parameter |λ| as a function of positive atom-light
detuning δ taken for transition |1〉 → |2〉 for S(thr)

z = S(thr)
z, min

and for different values of collisional broadening. DS lasing
occurs within the domain where the order parameter |λ| �= 0.
In this sense we can speak about the analogy between
lasing and thermodynamically equilibrium phase transition to
superradiant phase; cf. Fig. 3. Notice that for moderate values
of detuning δ the value of a laser field amplitude grows due
to the increase of the steady-state DS population imbalance
S(st)

z —see Fig. 4. However, for a large enough δ the magnitude
of S(st)

z is saturated, while the effective coupling parameter κ12

vanishes according to 1/δ2 [see (10b)] and a strong coupling
condition (33) is broken; the order parameter vanishes as well.
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FIG. 5. (Color online) Dependencies of (a) cavity field amplitude |λ|, (b) DS population imbalance Sz, and (c) DS polarization |S| as
a function of reduced time κ12t . Parameters are �/2π = 1 THz, κ/2π = 0.65 THz, δc = �R , 
c/2π = 100 MHz, γ /2π = 0.36 GHz, and
δ/2π = 11 THz. Initial conditions are Re [λ(0)] = 0.05, Im [λ(0)] = 0, Re [S(0)] = Im [S(0)] = 0, and Sz = −1. The dot-dashed (red) curve
on (b) describes the behavior of the system without cavity; cf. [25]. The dashed horizontal lines describes stationary levels of variables.

In Fig. 7 we represent a phase diagram exhibiting the
dependence of ratio κ/γ (for fixed κ) on normalized atom-light
detuning δ/� (for fixed �). Thermalization of atomic DSs
requires a large enough collisional broadening parameter γ .
However, at the same time we require a strong coupling be-
tween the effective DS atomic system and the cavity field that
implies the enhancement of ratio κ/γ . For negative detuning
δ conditions (26), (12) can be fulfilled simultaneously in the
small (green) area which is far from resonance and corresponds
to the superradiant state where the thermodynamical approach
is justified.

Crossover to the lasing that corresponds to transition |1〉 →
|2〉 in DS basis occurs at the positive detuning δ—dark area
in Fig. 7. It is interesting to note that the width of the area
where |λ| �= 0 depends essentially on collisional broadening
parameter γ ; see also Fig. 6. This area becomes smaller with
the increase of γ . In this sense collisions lead to the suppression
of DS laser field generation.

VI. DS LASING FOR |2(N)〉 → |1(N − 1)〉 TRANSITION

Now we pay our attention to the transition |2〉 → |1〉 in the
DS manifold picture (see Fig. 1), described by Hamiltonian
(9). Proceeding as in the previous section it is possible to get
Maxwell-Bloch–like equations for normalized cavity field λ,

λ

 / Bk Tδ

 7γ π
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FIG. 6. (Color online) Modulus of order parameter |λ| vs reduced
positive atom-light detuning δ for T = 530 K temperature of atomic
gas confined in the cavity. The parameters are �/2π = 1 THz,
κ/2π = 0.62 THz, 
c/2π = 100 MHz, 
 	 37 MHz, and � = 0.

DS polarization S, and DS population imbalance Sz in the form

λ̇ = −(iδc + 
c)λ + iκ21S
∗, (34a)

Ṡ = −[i�R + 
1 + γ1]S − iκ21λ
∗Sz, (34b)

Ṡz = −(2w + 
+)
(
Sz − S(st)

z

) + 2iκ21(S∗λ∗ − Sλ). (34c)

Stationary solutions λ = λe−iμtand S∗ = S∗e−iμt of
Eqs. (34) lead to

μ1,2 = 1

2

{
(δc − i
c) − [�R + i(
1 + γ1)]

±
√

{(δc − i
c) + [�R + i(
1 + γ1)]}2 + 4κ2
21S̄z

}
.

(35)

Proceeding as in the previous section for chemical potential,
which is a relative frequency of laser field generation, one can
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FIG. 7. (Color online) Phase diagram. The parameters are
�/2π = 1 THz, κ/2π = 0.62 THz, and 
c/2π = 100 MHz. The
detuning � for each transition was chosen so as to satisfy the
most favorable condition for generation, i.e., � = 0 for |1〉 → |2〉,
and � = −2�R for |2〉 → |1〉 transitions, respectively. Red (solid)
lines define boundaries for DS thermalization condition (26). Black
(solid) curve corresponds to condition κ12 = max{γ,
,
c} defining
the boundary of a strong coupling limit (12). Dashed (green) triangle
domain corresponds to the proposed equilibrium superradiant phase
transition. White areas correspond to the order parameter λ = 0.
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parameters are T = 530 K, �/2π = 1 THz, κ/2π = 0.6 THz,

c/2π = 100 MHz, and � = −2�R .

obtain μ = δc − (�+2�R )
c


1+γ1+
c
. The generation itself is determined

by the condition S(st)
z � S(thr)

z , where

S(thr)
z = −
c (
1 + γ1)

κ2
21

[
1 +

(
� + 2�R


c + 
1 + γ1

)2
]

(36)

is a threshold population imbalance for DSs which is always
negative.

Noticing that stationary DS population imbalance S̄z is
characterized by the same equation as (30) but with polariza-
tion frequency μ determined in (35). In this case the modulus
square of the order parameter is determined as

|λ|2 = (2w + 
+)

4
c

(
S(thr)

z − S(st)
z

)
. (37)

Since threshold value S(thr)
z of DS population imbalance is

always negative [see (36) and cf. (28)] we expect that S(st)
z �

S(thr)
z < 0, particularly for obtaining lasing in DS system, i.e.,

for |λ|2 > 0. It is important that lasing can be obtained both
in positive (δ > 0) and negative (δ < 0) domains; see Fig. 8
and blue areas in Fig. 7. This situation radically differs from
lasing conditions examined in the previous section where
lasing occurs only at δ > 0. Actually, in the system being
far from thermodynamic equilibrium, one can obtain S(st)

z < 0
for δ > 0 just in the vicinity of atom-field resonance—see
solid curve in Fig. 4. Meanwhile, true atomic population
inversion characterized by DS population without inversion
occurs under the condition (26) and happens for large enough
δ and relatively large collisional broadening γ —see Fig. 1(c)
and dashed-dotted line in Fig. 4.

In Fig. 8 dashed and dashed-dotted curves clearly show
the enhancement of the order parameter |λ| by increasing
parameter γ . The effective coupling parameter κ21 is maximal
and equal to κ21 ≈ κ at δ > 0; see (11b). From Eqs. (36) and
(37) it is obvious that the lowest threshold level S(thr)

z can be
achieved with � = −2�R , i.e., when the frequency of a cavity
mode is tuned to the red Mollow triplet (see Fig. 2), and we
have S(thr)

z 	 0 due to the fulfillment of a strong atom-field
coupling condition κ21 >

√
γ
c; cf. (33).

Thus one can conclude that for δ > 0 the lasing phe-
nomenon that is characterized by a wide area in Fig. 7 occurs
in the presence of quasithermalized DSs; cf. [23].

VII. CONCLUSION

Let us briefly summarize the results obtained. We have
considered the problem of both thermodynamically equi-
librium and nonequilibrium phase transitions with coupled
atom-light states, i.e., DSs. The essence of our description is
the so-called OCs occurring with the emission or absorption
of two-level (rubidium) atoms placed in the cavity in the
presence of the collision with buffer gas particles. In this
framework we analyze a rich picture of coherent effects that
take place under the atomic transition within DS manifolds for
a coupled atom-light system. In particular, thermodynamically
equilibrium phase transition to some superradiant (coherent)
phase becomes possible for the cavity field in an inversionless
atomic system at the negative detuning of a pump field
from atomic transition due to the establishment of a strong-
coupling regime and thermalization of atomic DS population
simultaneously. Physically, such a transition occurring in the
cavity at high enough (500 K and above) temperatures can be
explained in the terms of the phase transition of photonlike DS
polaritons to some condensed (and/or superfluid) state in the
cavity with a special geometry; cf. [26].

The suppression of the DS thermalization process due
to spontaneous emission leads to the formation of thermo-
dynamically quasiequilibrium or completely nonequilibrium
coupled atom-light states. In this case the atomic system in the
cavity exhibits nonequilibrium phase transition to lasing in DS
basis under the DS population inversion only. Notice that the
vanishing threshold for DS population imbalance S(thr) 	 0
can be achieved under the fulfillment of the inequality that
represents some modification of a strong-coupling condition.
The order parameter that is nothing else but the average number
of photons in the cavity field in this limit depends on the
ratio of atomic spontaneous emission rate to the cavity decay
rate for |1〉 → |2〉 transition in DS basis. It is important to
emphasize that the lasing phenomenon characterized by DS
population imbalance occurs at δ > 0 in the presence of DS
thermalization, too, that perhaps contradicts the imperative of
lasers as entirely nonequilibrium devices.

Hopefully, the theory developed in the paper can be also
useful for describing some other systems where the DS picture
is of great importance. Practically, here we refer to the problem
of lasing and amplification in the system of superconducting
flux qubits coupled to a resonator in the presence of a strong
driving field; cf. [37].
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