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Modeling off-resonant nonlinear-optical cascading in mesoscopic thin films
and guest-host molecular systems
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A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent
field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements
in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an
example of the dependence on excitation beam cross sectional structure and a simplified derivation of the
microscopic cascading of the nonlinear-optical response in guest-host systems.
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I. INTRODUCTION

Although of increasingly greater importance in compact op-
tical devices and metrology, structural mesoscopic nonlinear-
optical effects have not been extensively studied. In bulk
systems, it is well known that cascaded nonlinear-optical
interactions and local field effects at the molecular level
can enhance higher-order nonlinear-optical susceptibilities
[1–4]. Dolgaleva et al. showed that local-field corrections
predict trends in the nonlinear susceptibilities as functions
of concentration in a bulk material [5–7]. Earlier studies
focused on a tensor formalism to describe correlated cascading
effects in bulk materials [1], while others focused on cascading
between coupled molecules only [4,8]. Mesoscale nonlinear-
optical effects, however, have not been well investigated, and
give new insights into enhancing the nonlinear susceptibility
that are not present in a bulk approximation [9].

Here we use the self-consistent field approach to cascading
(Bloembergen’s method [10]) to approximate the sum of
the dipolar response fields and thereby the cascading con-
tribution in mesoscopic systems. We compute the effective
(hyper)polarizabilities and susceptibilities with respect to the
applied field by an iterative update method to approximate
a finite ensemble of polarizable molecules. Of experimental
relevance, we apply this technique in realistic model systems to
quantitatively illuminate the role that boundaries and geomet-
rical orientation play in nonlinear susceptibility enhancement.

After describing our method in Sec. II, we apply it in Sec. III
to bounded and strained tetragonal systems. The dipolar field at
each molecule from all other molecules is shown for different
film thicknesses, where the dipoles are induced by a linear
polarized Gaussian beam. Then, as an application to a real
system, we find that the relationship between the cascad-
ing contribution of hexagonal close-packed and honeycomb
structured monolayers of the molecule C60 can be understood
by the fill factor and concentration. Finally, in Sec. IV we
approximate the effective second hyperpolarizability of a
mesoscale guest-host system in which a nonlinear dopant
has been randomly distributed in a discretized linear matrix,
providing an example of matrix-enhanced dye polarizability.

*Corresponding author: dawsphys@hotmail.com

II. THEORY

A. Self-consistent approach

When point molecule j is polarized by an electric field,
it becomes a dipole, causing molecule i �= j to experience a
corresponding dipole field

Ei,j = 3(r̂i − r̂j )[ pj · (r̂i − r̂j )] − pj

|r i − rj |3 , (1)

where pj is the dipole moment of molecule j , |r i − rj | is the
molecular separation, and r̂ is a unit vector.

We introduce the geometric tensor gαβ|i,j in a Cartesian
coordinate system, relating pj to Ei,j from Eq. (1),

gαβ|i,j = {3[(r̂i − r̂j ) · α̂][(r̂i − r̂j ) · β̂] − δαβ} vc

|r i − rj |3 ,

(2)

where the Greek subscripts represent the spatial Cartesian
components and δαβ is the Kronecker delta. Here we have
introduced a characteristic volume vc which makes the
geometric tensor dimensionless.

When the total field at molecule i is sufficiently small, its
dipole moment can be approximated as a power series,

pα|i = k
(0)
α|i + k

(1)
αβ|iEβ|i + k

(2)
αβμ|iEβ|iEμ|i

+ k
(3)
αβμν|iEβ|iEμ|iEν|i + · · · , (3)

where k
(n)
i is the nth-order polarizability of molecule i.

In a system of N molecules, the total electric field is the
vector sum of the applied field and the dipole fields due to all
other molecules (higher-order multipole moments are ignored
and we use a dipole approximation). Thus,

Eα|i = Ea
α|i +

N−1∑
j �=i

Ed
α|i,j , (4)

where Ea
α|i is the α component of the applied field at the ith

molecule and Ed
α|i,j is the α component of the dipole field at

the ith molecule from the j th molecule. It is common to write
the linear and nonlinear responses in terms of the macroscopic
field. Because of the microscopic focus of this paper, we have
defined the effective polarizability and susceptibility in terms
of the applied field Ea , where the depolarization field [11] and
self-field [12] are included in the summation of all other dipole
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contributions to the electric field [9]. Using linearity the dipole
field Eq. (2) can be written as

Ed
α|i,j = gαβ|i,j

pβ|j
vc

. (5)

Because of the computational approach we use, it is natural
to scale all | pj | to | pi | defining

g
(N−1)
αβ|i =

N−1∑
j �=i

gαβ|i,jPβ|i,j , (6)

where

Pα|i,j = pα|j
pα|i

. (7)

The factor g
(N−1)
αβ|i depends on the particular map of the

a priori molecular polarizations. A brute force approach
would be to solve the set of polarization equations for every
interacting molecule in the system. A simpler approach would
be to approximate the value of Pα|i,j with an iterative method.
Choosing the latter approach, we solve for p

[1]
α|i in the equation

p
[1]
α|i = k

(0)
α|i + k

(1)
αβ|i

⎛
⎝Ea

β|i +
N−1∑
j �=i

gβγ |i,jP [0]
γ |i,j

p
[1]
γ |i
vc

⎞
⎠

+ k
(2)
αβμ|i

⎛
⎝Ea

β|i +
N−1∑
j �=i

gβγ |i,jP [0]
γ |i,j

p
[1]
γ |i
vc

⎞
⎠

×
⎛
⎝Ea

μ|i +
N−1∑
j �=i

gμν|i,jP [0]
ν|i,j

p
[1]
ν|i
vc

⎞
⎠ + · · · , (8)

where

P [0]
α|i,j = p

[0]
α|j

p
[0]
α|i

(9)

and

p
[0]
α|i = k

(0)
α|i + k

(1)
αβ|iE

a
β|i + k

(2)
αβμ|iE

a
β|iE

a
μ|i + · · · . (10)

Then through an iterative method we solve for p
[n]
α|i via

the previously evaluated P [n−1]
α|i,j . The Appendix discusses the

iterative process for higher-order corrections when a single
iteration is not a sufficient approximation of Pα|i,j .

Far from the strongly coupled regime, we approximate the
interactions using only the first-order iterative correction to
g

(N−1)
αβ|i . We then define

f
(N−1)
αβ|i =

N−1∑
j �=i

gαβ|i,jP [0]
β|i,j . (11)

Note that in this weakly coupled regime f
(N−1)
αβ|i ≈ g

(N−1)
αβ|i

because the intermolecular responses are much less than
every molecule’s response to the applied field, i.e., when
k(1)/r3 � 1. In addition, Eq. (11) presupposes Ea

i �= 0.
For dipole field distributions, P [0]

α|i,j can be approximated
by Ea

j /Ea
i when k(1)Ea � k(n)(Ea)n for n > 1; otherwise,

the values of k
(n)
αβμν··· must be known to find a value for

f
(N−1)
αβ|i . We later use this approximation to generate dipole

field maps. Again, for strongly interacting systems, higher-
order corrections to the self-consistent equation, described
in the Appendix, may be necessary for a more accurate
approximation of g

(N−1)
αβ|i .

For negligible second-order iterative corrections, substitut-
ing Eq. (11) into Eq. (8) gives

pα|i ≈ k
(0)
α|i + k

(1)
αβ|i

(
Ea

β|i + f
(N−1)
βμ|i

pμ|i
vc

)

+ k
(2)
αβμ|i

(
Ea

β|i + f
(N−1)
βγ |i

pγ |i
vc

)(
Ea

μ|i + f
(N−1)
μν|i

pν|i
vc

)

+ · · · . (12)

Using Eq. (12), we solve for the effective (hy-
per)polarizabilities, where

k
(n)
eff,αβμν···|i = 1

n!

∂npα|i
∂Ea

β|i∂Ea
μ|i∂Ea

ν|i · · ·
∣∣∣∣

Ea
i =0

. (13)

B. Application to one-dimensional polarizable molecules

We eliminate the possibility of higher-order terms ap-
pearing in the lower-order effective (hyper)polarizabilities
by assuming molecules with negligible permanent dipoles.
Even for the spatially asymmetric systems we consider below,
the associated static dipole ordering is typically orders of
magnitude below that of the off-resonant field-induced effects
we focus on. Note that this approximation still permits
molecules having any higher-order response [13]. Further-
more, we assume that the only relevant tensor component is
in the direction of the applied field. We also assume a lattice
model [14–16]. Although not strictly necessary, a lattice model
allows for faster computation when simulating the dipolar field
contributions.

Taking the applied field to be unidirectional and parallel
to the z axis, we reduce the tensor f

(N−1)
αβ|i to a vector

f
(N−1)
αz|i . Because we are assuming a lattice model, we take

the characteristic volume vc to be the volume of a unit cell
v = |a · (b × c)|, where a, b, and c are the lattice vectors.
Thus, the sum of the field contributions of all other molecules
becomes

N−1∑
j �=i

Ed
α|i,j = f

(N−1)
αz|i

pz|i
v

. (14)

Note that the dimensionless geometric vector is scaled to the
ith dipole that is induced by the applied field. Under these
approximations we can now write a simplified equation for
the induced dipole moment in the z direction,

pz|i =
∑
n=1

k(n)
zz···

(
Ea

i + f
(N−1)
zz|i

pz|i
v

)n

. (15)

Again, in this section only, we have assumed that all
dipoles polarize only along the applied field, and thus all
tensor components other than k(n)

zzz··· are negligible. Although
this model oversimplifies some scenarios that require the
consideration of molecular orientation (see Sec. IV), it allows
for a single self-consistent equation, and evaluates the effective
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scalar (hyper)polarizabilities with respect to the applied field
at each molecular site. Solving Eq. (15) self-consistently for
the dipole moment and substituting it into

k
(n)
eff,i = 1

n!

∂npi

∂
(
Ea

i

)n

∣∣∣∣
Ea

i =0

, (16)

gives the effective scalar (hyper)polarizabilities in terms of the
applied field. For example, a system of linearly polarizable
molecules with no permanent dipole moment has an effective
linear polarizability written as

k
(1)
eff,i = Lik

(1), (17)

where the local field factor Li at the ith molecule’s location is
given by

Li =
(

1 − f
(N−1)
zz|i

k(1)

v

)−1

. (18)

For a convergent solution everywhere, k(1)f
(N−1)
zz|i < v for all

i molecules, otherwise the local field factor diverges [8,17].
The average linear susceptibility is then written as

〈
χ (1)

〉 = 1

Nv

N∑
i=1

k
(1)
eff,i . (19)

Here χ is defined in terms of the applied field. Thus, Eq. (18)
is analogous, but not equal, to the Lorentz-Lorenz local field
factor.

C. First-order corrections to microscopic cascading

The cascading of lower-order nonlinearities to give higher-
order nonlinear responses has been well understood and
is inherent to the power series approximation of nonlinear
optics [1,7,18]. The effective (hyper)polarizabilities are a
combination of the highest-order response and cascaded lower-
order responses. When near resonance, one must be careful to
account for the imaginary (nondegenerate frequency mixing,
absorption, etc.) and real (linear and nonlinear indices) compo-
nents of the (hyper)polarizabilities. All tensor components are
approximately real in the far off-resonant (below resonance)
case to which we limit ourselves.

Taking into account only the largest contributing tensor
component of the real molecular responses (the components
purely in the direction of the applied field), and under the
approximations in Sec. II B, the first through sixth effective
hyperpolarizabilities are

k
(2)
eff,i = L3

i k
(2), (20)

k
(3)
eff,i = L4

i k
(3) + 2L5

i Fi

(
k(2)

)2
, (21)

k
(4)
eff,i = L5

i k
(4) + 5L6

i Fik
(2)k(3) + 5L7

i F
2
i

(
k(2)

)3
, (22)

k
(5)
eff,i = L6

i k
(5) + 3L7

i Fi

[(
k(3)

)2 + 2k(2)k(4)
]

+ 21L8
i F

2
i

(
k(2)

)2
k(3) + 14L9

i F
3
i

(
k(2)

)4
, (23)

k
(6)
eff,i = L7

i k
(6) + 7L8

i Fi

[
k(3)k(4) + k(2)k(5)

]
+ 28L9

i F
2
i k(2)

[(
k(3)

)2 + k(2)k(4)
]

+ 84L10
i F 3

i

(
k(2))3

k(3) + 42L11
i F 4

i

(
k(2))5

, (24)

k
(7)
eff,i = L8

i k
(7) + 4L9

i Fi

[
2k(2)k(6) + 2k(3)k(5) + (

k(4)
)2]

+ 12L10
i F 2

i

[(
k(3)

)3 + 3
(
k(2)

)2
k(5) + 6k(2)k(3)k(4)

]
+ 60L11

i F 3
i

(
k(2)

)2[
2k(2)k(4) + 3

(
k(3)

)2]
+ 330L12

i F 4
i

(
k(2)

)4
k(3) + 132L13

i F 5
i

(
k(2)

)6
, (25)

where

Fi = f
(N−1)
zz|i

k(1)

v
. (26)

All lower-order terms (k(0) is assumed to be zero) in the
nonlinear polarization series contribute to the higher-order
hyperpolarizabilities in Eqs. (20)–(25). The cascading contri-
butions are ordered in terms of powers of Fi . For example, the
mixing of two lower-order responses results in a higher-order
response in which the magnitude depends on Fi , while the
mixing of three lower-order responses depends on the value of
F 2

i . Note that the dipole approximation may not be sufficient
to express the effective response in many molecular systems
because additional terms in the multipole expansion may make
significant contributions to the effective hyperpolarizabilities.

III. APPLICATIONS TO SINGLE-COMPONENT SYSTEMS

A. Bound and strained systems

Among the geometric quantities affecting the susceptibility
in a lattice with a finite number of atoms or molecules are the
shape of the surface that contains the lattice, the shape of a
primitive cell, and the incident beam (applied field) profile.
Previous investigations for a top hat beam through a thin film
[9] show enhancements due to cascading when a system is
sharply bounded along the beam direction. The shape of the
primitive cell is also known to change the local field in strained
crystal lattices [19–23].

There are many models that assume a potential from perma-
nent dipoles on an infinite Bravais lattice for approximating
macroscopic systems [24–26], but we wish to approach the
boundary problem via field-matter interactions, beginning with
the perfect dipole approximation at each point on the lattice.
This method requires knowledge about the entire system and
all boundary locations, and thus is more computationally
expensive when calculating large systems.

We can also strain the lattice to change the cascaded
nonlinear response of the system. Taking a large system of
molecules on a tetragonal lattice with constants {a,a,c}, the
zz component of the geometric factor f

(N−1)
zz|i monotonically

increases as c/a decreases. Figure 1(a) shows how the z

component scales as a function of c/a for a molecule located
in the center of a large sphere constructed from tetragonal
primitive cells.

As anticipated, the dimensionless geometric factor f
(N−1)
zz|i

rapidly decreases and becomes negative as c/a is increased
due to the influence of all other molecules. In contrast, f (N−1)

zz|i
rapidly becomes large as c/a falls below unity. A defining
feature appears when c = a, where all cascading fields for
this center molecule cancel, i.e., Fi = 0. Thus, for large
cascading enhancements (large f

(N−1)
zz|i ), one would prefer

aligned disklike molecules with the applied field oriented along
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FIG. 1. (Color online) (a) The first-order correction to f
(N−1)
zz|i for

a molecule at the center of a sphere as a function of the lattice vector
in the z direction c divided by the lattice vector perpendicular to
the field a. The inset shows a sphere constructed from a cubic lattice
where molecules near the surface have a nonzero f

(N−1)
αz|i due to surface

roughness. (b) The zz component of the first-order approximation to
the geometric factor f

(N−1)
zz|i as a function of depth through the center

of a strained 45 × 45 × 45 cubic lattice (boundaries have zero electric
flux).

the short molecular axis as opposed to rodlike molecules with
the applied field oriented along the long molecular axis.

By considering both microscopic structure and macroscopic
geometry, we can further increase Fi for systems of molecules
with constant v. Figure 1(b) shows how f

(N−1)
zz|i varies between

two transverse interfacial boundaries in a strained 45 × 45 ×
45 cube with a tetragonal lattice structure. At the boundaries,
even in a highly elongated tetragonal lattice, f

(N−1)
zz|i is much

larger than the next calculated interior location.

B. Dipolar electric field distributions

This section examines fixed lattices subject to an optical
beam profile that is smaller than the transverse size of the

system. An example would be that of the previously studied
top hat beam [9], where the molecules both inside and outside
the beam are optically relevant. Here we focus our attention
on a long-wavelength monochromatic beam with a Gaussian
profile.

Figure 2 shows vector diagrams of the directional compo-
nents of the field due to the polarization of all other molecules.
The unit cells are cubic and the size of the arrows are
relative to each other in all parts (a)–(d). In these diagrams
we plot only the first-order iterative correction to a vertically
polarized applied field. The diagrams show the induced field
at the center layer of a thin film, where we have truncated
the illustrations beyond the edge of the beam waist (where
the electric field falls below 1/e of the peak value). Note
that we assume that the beam is unchanged during transport
through the film’s thickness, but we expect that the longitudinal
propagation through thick films will be affected by the assumed
nonlinear index via the self-focusing phenomenon and the
inhomogeneous cascading predicted by f

(N−1)
αz|i .

As shown in the progression from Figs. 2(a)–2(d), the
competition between the in-plane and out-of-plane dipoles
contribute to the electric field in the middle layer in nontrivial
ways. For samples thicker than 55 layers, there is little change
in the field profile at the center layer for these lattice and beam
parameters. In the scaling limit the topology of the first-order
correction to the field profile at the center layer depends only
on the ratio of the beam diameter to the thickness.

Topological considerations are useful for understanding
the successive frames as one adds layers, where we adjoin
a “neighborhood at infinity” to make each of these a map of
a vector field on a spherical surface S2. Imagining the vector
field over the sphere, there are two zeros of the vector fields
in each panel of Fig. 2. The line integrals of the vector fields
around regions containing the zeros in Figs. 2(a) and 2(b) have
matched positive and negative vorticity. On the other hand,
the line integrals of the Hodge dual vector field on those two
diagrams are zero [27]. The opposite is true for Figs. 2(c) and
2(d), where the line integrals of the Hodge dual give positive
and negative vorticity around the zeros of the field. Indeed,
Figs. 2(b) and 2(d) possess the same topological features as
each other’s Hodge duals just as vortices and sources are Hodge
duals. In this vein, there exists a diagram between Figs. 2(b)
and 2(c) that is nearly self-dual.

C. Real systems: Monolayers of close-packed C60

We now focus our attention on monolayers of close-packed
C60 in different lattice structures illuminated by a coherent
beam. We chose C60 due to large third-order susceptibility.
Because there are larger cascading enhancements at higher
concentration, we consider a hexagonal close-packed structure
with a center-of-mass separation distance of approximately
10.04 Å [28]. Note that a past study showed that perturbed
energy states from cascaded molecules have small effects on
large off-resonant nonlinear-optical responses [17], where we
only observe significant effects after the molecules have passed
into the “forbidden” zone in which they spatially overlap.

Due to the large intrinsic values of the odd-ordered suscep-
tibilities of C60, the polarizability and second hyperpolarizabil-
ity are estimated by the three level ansatz [29–31]. The values
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(a) (b)

(c) (d)

FIG. 2. A vector diagram of the first-order correction to the linear dipole fields for the center layer of a thin film subject to a vertically
polarized Gaussian beam. The film thicknesses are (a) 1 layer, (b) 7 layers, (c) 15 layers, and (d) 55 layers of a cubic lattice system with side
lengths that extend far beyond the edge of the graphic. Typical relevant line integrals noted in the text are explicitly shown.

for the oscillator strengths and their corresponding transition
energies were previously reported by Leach et al. [32,33].
Truncating the (hyper)polarizabilities to only three states gives
k(1) = 1.85 × 10−23 cm3 and k(3) = 3.41 × 10−35 erg−1 cm5

[9]. Also, k(0) ≈ 0, k(2) ≈ 0, and k(4) ≈ 0 due to the near
spherical symmetry of C60. Note that using the standard
time-dependent perturbation approach [34], truncation to a
three-level model may greatly overestimate the higher-order
polarizabilities.

As a comparative study, we look at the vertical and
horizontal orientations of the lattice as well as a honeycomb
structure. The off-resonant beam carrying the applied field
propagates in the x direction and vertically polarized in the
z direction. The diameter of the Gaussian beam is 150 nm,
where the location of the electric field is 1/e of its peak value.
The calculated region for all contributions from molecular
interactions has a diameter of 180 nm. The average effective

susceptibilities are calculated within the beam waist after all
contributions from the extended region have been taken into
account.

We consider only the scalar (hyper)polarizabilities, though
small values of py|i will be present, and we calculate out
to a third-order iteration. The average effective fifth-order
susceptibility (susceptibility defined by the applied field with
cascading enhancements) for the region inside the beam waist
is

〈
χ (5)

〉[n] = k(5)

V

N∑
i

(
L

[n]
i

)6 + 〈
χ (5)

casc

〉[n]
, (27)

where

〈
χ (5)

casc

〉[n] = 3N

(
k(3)

V

)2 N∑
i

(
L

[n]
i

)7(
f

(N−1)
i

)[n]
. (28)
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TABLE I. (Color online) Monolayers of C60 subject to a vertically polarized Gaussian beam. 〈χ (5)
casc〉 values are ×10−26 cm4 erg−2.a

Lattice type Vertical hexagonal Horizontal hexagonal Vertical honeycomb Horizontal honeycomb

Diagram

χ
(5)
casc

[3]
4.34 4.34 1.91 1.91

|py |[1 ] / |pz |[1 ] 0.0058 0.0006 0.0011 0.0006

aThe difference between the response in a hexagonal and honeycomb lattice can be understood by using a 2/3 fill factor in Eq. (28). The lattice
geometry and nearest neighbor distance remain the same, but the concentration has been reduced by the fill factor. Therefore, we find that the
computed honeycomb response is roughly 4/9 that of the computed hexagonal lattice, confirming the greater significance of cascading in the
filled, close-packed, structure.

Here we denote the total volume by V = Nv and the nth-order
iterative correction by the superscript [n]. The value of 〈χ (5)

casc〉
is calculated from an arithmetic average. Table I lists values
of 〈χ (5)

casc〉 for the vertical and horizontal lattice alignments
of hexagonal and honeycomb monolayers. The values of
〈χ (5)

casc〉[n] for a Gaussian and top hat beam are similar even
though the Gaussian beam has a smaller applied field at all
molecules except at the center. This can be understood by
the on-average increase of Pi,j as we move further from
the center of the Gaussian beam. Note that although the
responses between the two types of beam profiles are the same,
the magnitude of the cascading contribution for a Gaussian
beam (peak value of 106 StatV/cm for Gaussian and top hat
beams) is smaller than that resulting from a top hat beam
because the susceptibility is multiplied by the tapered Gaussian
beam’s applied field. Rotating the polarization of a linearly
polarized beam between the vertical and horizontal lattice
alignments also shows negligible changes in the cascading
contribution.

For the hexagonal monolayer subject to a Gaussian beam
profile, the values from the first and second iteration change by
<3%. Thus, a first-order approximation to the iterative method
is fairly accurate in this scenario and does not carry the com-
putational expense of higher orders that require interactions
between polarization directions via tensor components. The
iterative method converges quickly, typically changing only
in the fifth digit from the second to the third iteration for
these monolayers. All iterations after the second (tested out
to 20 iterations for stability) showed a stable precision much
greater than the uncertainties of the model due to the many
approximations (point dipoles, truncated eigenstates, lattice
precision, etc.).

IV. APPROXIMATING CASCADING IN POLED
GUEST-HOST SYSTEMS

So far we have only considered systems with a sin-
gle species of atoms or molecules. The lattice model,

however, can be further generalized to include sev-
eral molecules with different optical properties. A dipole
moment can then be written for individual molecules,
where the dependencies on all fields are taken into ac-
count including the field contributions from the other
species.

To illustrate the inclusion of more than one type of atom
or molecule, we choose a dye-doped polymer system. The
two main advantages of placing active nonlinear molecules
in a polymer are (1) the large linear susceptibilities of many
polymers that increase the local field and (2) the ability to
align the nonlinear dopant in the medium [35–37]. We use
the lattice approximation to model the field enhancement
via a randomized occupation of the lattice sites by the
guest species. A host cluster is approximated as a point
dipole at each occupied lattice site, which we call the host
cluster dipole approximation for nonconjugated polymers. The
guest species is assumed to be uniaxially aligned, although
this simplification may be removed for a more general
result.

We assume that all dopant molecules in the system have
(hyper)polarizabilities in the z direction that are equal to
the orientational averaged (hyper)polarizabilities and all other
components are negligible, e.g., 〈k(2)〉 = 〈k(2)

zzz〉 = 〈cos3 θ〉k(2)
zzz

and 〈k(2)
ijk〉 ≈ 0 for all cases other than i = j = k = z. This

approximation is valid for one-dimensional molecules oriented
at small angles from the direction of the electric field,
where 〈k(2)

zxx〉 = 〈k(2)
xzx〉 = 〈k(2)

xxz〉 = 〈cos θ sin2 θ〉k(2)
zzz/2, which

is small due to the sin2 θ contribution [38,39]. A full
treatment of the cascading contributions to k(3) for a pair
of one-dimensional molecules in an electric field at fixed
locations is given in Ref. [17]. For our current example,
however, we ignore the azimuthal angle and treat only the
average polar angle in an attempt to reduce orientational
complexities. Therefore, for fixed molecules, we define
κ (n) = 〈cosn+1(θ )〉k(n).

We define pA as the dipole moment of the linear host species
and pB as the dipole moment of the guest species. The two
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dipole moment equations are

pA
i = κ

(1)
A

⎛
⎝Ea

i +
NA−1∑
j �=i

hi,j

pA
j

v
+

NB∑
j

fi,j

pB
j

v

⎞
⎠ , (29)

pB
i =

∑
n

κ
(n)
B

⎛
⎝Ea

i +
NA∑
j

hi,j

pA
j

v
+

NB−1∑
j �=i

fi,j

pB
j

v

⎞
⎠

n

, (30)

where hi,j and fi,j are the geometry-dependent factors (to a
first-order iterative approximation) for species A and B that
account for a dipole field from all j molecules. We treat hi,j

and fi,j as scalars because we choose our uniaxial molecules
to be aligned with the applied field’s polarization. Note that
for higher-order iterative corrections, we must keep track of
each host molecule’s (κ (1)

A|i)
[m] and guest molecule’s (κ (n)

B|i)
[m].

Solving Eq. (29) gives

pA
i = κ

(1)
A LA

i

⎛
⎝Ea

i +
NB∑
j

fi,j

pB
j

v

⎞
⎠ , (31)

where

LA
i =

⎛
⎝1 −

NA−1∑
j �=i

hi,jPA
i,j

κ
(1)
A

v

⎞
⎠

−1

. (32)

HereLA
i is the first-order correction to the field at a host cluster

due to all other host clusters, where we have also included
the scaling factor PA

i,j = pA
j /pA

i for molecules subject to a
spatially varying applied field with the same approximations
described in Sec. II.

Substituting Eq. (31) into Eq. (30) gives

pB
i =

∑
n

κ
(n)
B

[
(1 + Qi)E

a
i + (

Si + f
(NB−1)
i

)pB
i

v

]n

, (33)

where

Qi = κ
(1)
A

v

NA∑
j

hi,jLA
j Ei,j , (34)

Si = κ
(1)
A

v

NA∑
j

hi,jLA
j

NB∑
k

fj,kPB
i,k, (35)

and

f
(NB−1)
i =

NB−1∑
j �=i

fi,jPB
i,j . (36)

The last term in Eq. (34) has a direct dependence on a spatially
varying applied field, where

Ei,j = Ea
j

Ea
i

. (37)

Solving Eq. (33) self-consistently and substituting into Eq. (16)
gives the (hyper)polarizabilities of guest molecules. Off-
resonance, the first-order contributions to the first three

effective polarizabilities of the ith guest molecule are

κ
(1)
eff,B,i = κ

(1)
B

1 + Qi

1 − (
f

(NB−1)
i + Si

) κ
(1)
B

v

, (38)

κ
(2)
eff,B,i = κ

(2)
B

(1 + Qi)2

[
1 − (

f
(NB−1)
i + Si

) κ
(1)
B

v

]3
, (39)

and

κ
(3)
eff,B,i = κ

(3)
B (1 + Qi)3

[
1 − (

f
(NB−1)
i + Si

) κ
(1)
B

v

]4

+ 2

v

(
κ

(2)
B

)2 (1 + Qi)3
(
f

(NB−1)
i + Si

)
[
1 − (

f
(NB−1)
i + Si

) κ
(1)
B

v

]5
. (40)

Equations (38)–(40) are similar in form to Eqs. (17), (20),
and (21) except for the terms Qi and Si . The first additional
term Qi comes from the self-consistent linear field correction
to the guest molecules from the surrounding host material. The
second additional term Si is similar to a second-order iterative
correction in the single species model, where a nonlinear
process from a guest molecule alters the field that a host cluster
experiences (including field corrections from the host), which
in turn affects the field at any guest molecule.

As an example, we consider a thin, poled, guest-host film of
disperse orange 3 (DO3) molecules dissolved in poly(methyl
methacrylate) (PMMA). DO3 is an azobenzene dye with a
molecular weight of approximately 242 g/mol. PMMA has a
density of 1.12 g/cm3, and setting the cubic lattice constant
to approximately 7.11 Å (the volume of a cubic cell is 3.19 ×
10−22 cm3) gives an effective molecular weight of the host
cluster to be that of DO3 (not the actual molecular weight of
a host molecule). For PMMA with a dielectric constant εr of
2.85, we find a host cluster polarizability of approximately
3.27 × 10−23 cm3 in Gaussian units via the Clausius-Mossotti
equation for an isotropic material,

k
(1)
A = 3V

4πN

(
εr − 1

εr + 2

)
, (41)

where V is the total volume given in units of cm3, N is
the the number of host clusters, and the presence of 4π in
the denominator (lack of ε0 in the numerator) converts the
polarizability to Gaussian units. Note that k

(1)
A is assumed to

be isotropic, and therefore κ
(1)
A = k

(1)
A . The guest molecules

are assumed to be at a concentration of 1.56%, which roughly
corresponds to one guest molecule per every 64 lattice sites. We
consider a sample of thickness 9.24 nm (13 lattice sites thick),
subject to a Gaussian beam with a diameter of approximately
150 nm.

The guest molecules have an average polar angle of 〈θ〉 =
15◦, from the polarization orientation. The real off-resonant
polarizability was evaluated using the ORCA program system
[40] and was 7.99 × 10−23 cm3. Here we used the BP func-
tional in conjunction with the TZV basis set [41–43]. The first
and second hyperpolarizability of DO3 have been tabulated
as 2.77 × 10−29 erg−1/2 cm4 and 2.56 × 10−34 erg−1 cm5,
respectively [44,45]. The corresponding orientational aver-
aged values at 15◦ are κ

(1)
B = 7.45 × 10−23 cm3, κ (2)

B = 2.50 ×
10−29 erg−1/2 cm4, and κ

(3)
B = 2.23 × 10−34 erg−1 cm5.
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The average of the first-order iterative cascaded contribu-
tion to the orientationally averaged, scalar, second hyperpolar-
izability 〈κ (3)

eff 〉 was calculated to be 2.77 × 10−33 erg−1 cm5,
where the first term in Eq. (40) is 2.61 × 10−33 erg−1 cm5 and
the second term in Eq. (40) is 1.61 × 10−34 erg−1 cm5. The
average third-order susceptibility as a function of the applied
field (assuming a negligible nonlinear response of PMMA)
〈χ (3)

eff 〉 is 1.20 × 10−13 erg−1 cm2. For comparative purposes,
if we were to remove the PMMA and observe the DO3 in
a gas phase while keeping the long molecular axis aligned
with the field making an average polar angle of 15◦, we
calculate the orientationally averaged third-order susceptibility
〈χ (3)

eff 〉gas-orient ≈ NBκ (3)/V to be 9.69 × 10−15 erg−1 cm2.
Thus, the presence of the linear host greatly enhances the
nonlinear susceptibility of the system due to both dipole field
and cascading effects.

When modeling guest-host systems, the Qi’s depend
on the details of the microscopic configuration. Note that
these Qi’s, which refer to the host’s linear modification to
the applied field, can be both positive and negative. Our
approach allows one to calculate the cascaded contribu-
tion ab initio for a nanoengineered system with a specific
geometry.

V. CONCLUSIONS

We used a self-consistent method to derive the scalar,
effective hyperpolarizabilities of bounded systems out to
sixth order. The lattice model allows for fast calculations of
geometric factors that epitomize the electronic interactions
between polarizable atoms or molecules. By substituting
these geometric factors into the calculation for the response
of a system, we have shown that boundary effects from thin
films and deviations from a cubic lattice enhance the field at
molecular locations and enhance the cascading contributions
to the off-resonant optical responses. The resultant field due
to dipoles induced by a Gaussian beam has been characterized
for different film thicknesses. We have shown how in-plane
and out-of-plane interaction affect the dipole field in these
films for a Gaussian beam, and we have given a method to
calculate these effects for other beam types. We also applied
our approach to cascading to calculate the nonlinear cascaded
contribution to the fifth-order susceptibility in monolayers of
C60. We found that with periodic monolayers, the cascading
enhancement is directly related to the fill factor in the scaling
limit.

We further developed this approach in application to a
guest-host model, where a linear-optical host is doped with
nonlinear-optical molecules. By limiting the study to fixed
molecules, we derived expressions for the effective, nonlinear
responses of the guest molecules that include all linear- and
nonlinear-optical cascading configurations. We used a 1.56%
DO3-doped PMMA system as an example in which we show
more than an order-of-magnitude increase in the third-order
susceptibility with respect to an oriented gas state (no host
present). This calculation showed how a thin film, even at
small concentrations of nonlinear dopants, has a large impact
on the nonlinear response. We derived an expression with a
familiar local field factor, and also showed an additional factor

that scales in powers with the response. This method does
have current shortcomings such as lacking the inclusion of an
on-resonant response and higher-order multipole moments.
Future areas of improvement include beam profile deformation
calculations while propagating through a material, calculations
with higher resolution molecules that are not pointlike, and
methods for decreasing the computation time for larger
systems.
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APPENDIX: HIGHER-ORDER CORRECTIONS
AND THE ITERATIVE PROCESS

For many systems, Eq. (11) may not give a close enough
approximation to the effective (hyper)polarizabilities. In these
cases, further iterations to the self-consistent dipole equation
are necessary to give a more accurate description of the off-
resonant cascading contribution. For the first-order correction,
we obtained solutions in terms of f

(N−1)
αβ|i . The iterative method

is described following Eq. (8), and for the second-order
correction, gives

p
[2]
α|i = k

(0)
α|i + k

(1)
αβ|i

⎛
⎝Ea

β|i +
N−1∑
j �=i

gβγ |i,jP [1]
γ |i,j

p
[2]
γ |i
vc

⎞
⎠

+ k
(2)
αβμ|i

⎛
⎝Ea

β|i +
N−1∑
j �=i

gβγ |i,jP [1]
γ |i,j

p
[2]
γ |i
vc

⎞
⎠

×
⎛
⎝Ea

μ|i +
N−1∑
j �=i

gμν|i,jP [1]
ν|i,j

p
[2]
ν|i
vc

⎞
⎠ + · · · , (A1)

The effective (hyper)polarizabilities given in Eqs. (17)
and (20)–(25) are first-order corrections to the response
of molecules that are polarized along the direction of the
applied field. With a more rigorous approach, one can find
the effective (hyper)polarizabilities for all possible compo-
nents. Thus, we can define P [1]

α|i,j in terms of these first-
order effective (hyper)polarizabilities and the applied electric
field,

P [1]
α|i,j =

∑
n

(
k

(n)
αβμν···|j

)[1]
Ea

β|jE
a
μ|jE

a
ν|j · · ·∑

n

(
k

(n)
αβμν···|i

)[1]
Ea

β|iE
a
μ|iE

a
ν|i · · ·

, (A2)
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where we have altered the notation of the effective (hy-
per)polarizabilities to account for higher-order corrections,
i.e., keff in Sec. II is the first-order correction in the iterative
method k[1].

For a known spatial distribution of the applied electric field,
Eq. (A2) has some specified value for each component of a
molecule i with respect to some other molecule j , which is
similar to that used for the updates in Ref. [46]. Once the single
molecule (hyper)polarizabilities have been inserted into the
first-order correction to the effective (hyper)polarizabilities,
the first-order corrected effective (hyper)polarizabilities are
inserted into Eq. (A2). Then, we define

(
f

(N−1)
αβ|i

)[1] =
N−1∑
j �=i

gαβ|i,jP [1]
β|i,j , (A3)

where (f (N−1)
αβ|i )[0] is given in Eq. (11).

To find the second correction to the off-resonant (hy-
per)polarizabilities for the ith molecule, we substitute Eq. (11)
into Eq. (A1), and then substitute the resultant equation into

(
k

(n)
αβμν···|i

)[2] = 1

n!

∂np
[2]
α|i

∂Ea
β|i∂Ea

μ|i∂Ea
ν|i · · ·

∣∣∣∣
Ea

i =0

. (A4)

These values are the second-order corrections to the (hy-
per)polarizabilities. This simple step-by-step iterative process
may be used to evaluate these higher-order corrections, where
a loop may be implemented until the effective hyperpolariz-
abilities converge. Third order-corrections are found via the
next iteration, where we replace the superscripts [2] by the
superscripts [3] and use values obtained in from the second-
order corrections by replacing the superscripts [1] by the
superscripts [2]. Following this same principle, higher-order
iterative approximations can be obtained.
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