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We experimentally investigate the two-dimensional condensate (optical dropletlike) soliton formation and
dynamics of the generated signal and probe beams in four-wave mixing (FWM) process with atomic
coherence, under competition between the third- and fifth-order nonlinear susceptibilities. With such competing
nonlinearities, mutual transformations among dropletlike fundamental, dipole, and azimuthally modulated vortex
FWM solitons are observed. The influence of nonlinear competition on the photonic band gap is also investigated.
All the results are obtained under low powers.
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I. INTRODUCTION

As a fascinating phenomenon in nonlinear systems, optical
solitons have been investigated intensively and different types
of solitons with different forms of nonlinearities have been
experimentally demonstrated [1–4]. It is worth noting that
the multidimensional spatial solitons are not stable just with
the third-order nonlinearity because of the catastrophic self-
focusing effect [1,2]. In order to avoid such an undesirable
effect, diverse types of combined nonlinearities were proposed
[5]. One of the schemes is to consider the focusing third-order
and defocusing fifth-order nonlinear effects simultaneously
with a relatively high beam intensity, i.e., to employ the
competing cubic-quintic (CQ) nonlinearities [6,7]. In Ref. [8],
the two-dimensional (2D) solitons and liquid light condensates
(light droplet) analogous to fluid droplets, were theoretically
studied in an atomic system with giant CQ nonlinearities
enhanced by electromagnetically induced transparency (EIT)
[9–11]. On the other hand, very interesting analogies with
superfluidity in a CQ nonlinear system were also theoretically
reported [12]. Nevertheless, no further experimental investi-
gation of such an interesting prediction has been reported so
far.

In this paper, we experimentally demonstrate controllable
2D condensate (optical dropletlike) solitons of the FWM signal
and probe transmission with CQ competing nonlinearities
in a coherently prepared multilevel atomic medium. Under
switchable beam configurations and quality of prepared atomic
coherence, transformations among dropletlike fundamental,
dipole, and azimuthally modulated vortex (AMV) solitons
are also reported, which are achieved by controlling the
CQ nonlinearities. Also, manipulation of FWM condensate
solitons has been demonstrated by modulating the photonic
band gap (PBG) of electromagnetically induced grating (EIG)
[13,14] created by the CQ competing nonlinearities in the
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coherent atomic medium. It is worth mentioning that our
results are obtained with quite low powers.

II. THEORETICAL MODEL AND ANALYSIS

As shown in Fig. 1(a), a three-level atomic system is formed
by sodium energy levels |0〉 (3S1/2), |1〉 (3P3/2), and |2〉 (5D5/2).
The pump beams E1 and E′

1 (E2 and E′
2) and the probe beam

Ep connect the transition |0〉 ↔ |1〉 (|1〉 ↔ |2〉) with the atomic
resonant frequency �1 (�2). The experimental setup is shown
in Fig. 1(b), and the laser beam configuration is given in the
inset. The angle θ1 between E1 (with frequency ω1, wave
vector k1, and Rabi frequency G1) and E′

1 (ω1, k′
1, G′

1) is
0 when the cross point of the two beams is at the center of
the oven, θ1 > 0 at the left side and θ1 < 0 at the right side.
The three beams come from the same dye laser DL1 (10 Hz
repetition rate, 5 ns pulse width, and 0.04 cm−1 linewidth) with
frequency detuning �1 = �1 − ω1, and their wave vectors are
in the x-o-z plane. E2 (ω2, k2, G2) and E′

2 (ω2, k′
2, G′

2) with
an angle θ2 between them, from another dye laser DL2 (with
the same characteristics as the DL1) with �2 = �2 − ω2, are
aligned as shown in Fig. 1(b) (E2 propagates collinearly with
E1), and the wave vectors are in the y-o-z plane. In this system,
there will be two FWM processes, one of which satisfies the
phase-matching condition kF1 = kp + k1 − k′

1 (kF2 = kp +
k2 − k′

2) with the generated signal EF1 (EF2) propagating
nearly in the opposite direction of E′

1 (E′
2).

In such experimental configuration, several (pump and
probe) laser beams with spatially nonuniform intensities and
the generated FWM signals interact in a large spatial region;
therefore the produced spatially varying phase modulations
can greatly affect the propagations and spatial patterns of the
probe and FWM signals, which are relatively weak compared
with the pump beams. The propagations of the probe and FWM
signals are governed by the following equations [13]:
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FIG. 1. (Color online) (a) The atomic system. (b) Experimental
setup and the optical path diagram. (c) Theoretically NRI versus �2

and I2 + I ′
2. The black and white curves are the NRIs at BSP and

DSP, respectively. (d) and (e) are, respectively, the theoretical real
and imaginary parts of susceptibilities corresponding to the black
curve in (c).

with χ
(n)
h |E|n−1 = χ

(n)Sh

h |Eh|n−1 + 2
∑

j=1,2 χ
(n)Xj

h (|Ej |n−1+
|E′

j |n−1). h denotes p or F1 or F2, corresponding to the probe
and FWM signals, respectively. The second term on the right-
hand side describes the conversion between the probe and
FWM signals with ηh being the conversion efficiency. When
h is p (F1 or F2), l will take F1 or F2 (p). χ

(1)
h , χ

(n)Sh

h , and

χ
(n)Xj

h (n = 3 or 5) represent the linear, the nth-order self-
phase modulation (SPM), and cross-phase modulation (XPM)
nonlinear susceptibilities, respectively.

In Fig. 1(c), we present the theoretical nonlinear refractive
index (NRI) characterizing the XPM of E2 and E′

2 versus �1 +
�2 and I2 + I ′

2 with a negative �1. The white line represents
the NRI variation at the dark-state point (DSP) at �1 + �2 =
0 which is uniform; the black curve is at the bright-state point
(BSP) that corresponds to the maximum NRI position, which
can be adjusted by I2 + I ′

2. Corresponding to the black curve in
Fig. 1(c) which is taken at a BSP, the dependencies of the real
parts of the linear, third-, and fifth-order susceptibilities on I2

+ I ′
2 are shown in Fig. 1(d) [and Fig. 1(e) for their imaginary

parts]. Determined by the real parts of the third- and fifth-order
nonlinear susceptibilities, the focusing and defocusing effects
follow cubic- and quintic-dependent laws, respectively. The
total refractive index composed of the linear part and the XPM
nonlinear parts due to E2 and E′

2 can be obtained as �n = n1 +
�nX2 , where �nX2 = �n

X2
2 + �n

X2
4 , �n

X2
2 = n

X2
2 (I2 + I ′

2),
�n

X2
4 = n

X2
4 (I 2

2 + I ′2
2 ), n

X2
2 = Re[χ (3)X2

p,F1,F2]/(ε0cn1) > 0, and

n
X2
4 = {4Re[χ (5)X2

p,F1,F2] − ε2
0c

2(nX2
2 )2}/(2ε2

0c
2n1) < 0 [8], with

I2 = ε0c|E2|2/2 (I ′
2 = ε0c|E′

2|2/2) being the intensity deter-
mined by the power P2 (P ′

2). So, when I2 + I ′
2 is not large

enough, �n will increase with I2 + I ′
2 due to the dominant

positive cubic nonlinearity, but as I2 + I ′
2 exceeds a threshold,

the negative quintic nonlinearity will then play a dominant
role on �n. Thus, the van der Waals–like force from quintic
nonlinearity can prevent Ep,F1,F2 from collapsing due to the
coolinglike mechanism from cubic nonlinearity [8], and assist
the formation of stable 2D dropletlike condensate solitons. As
shown in Fig. 1(e), the imaginary parts of the susceptibilities
that offer gain or loss to the propagations of the probe
or FWM signals also experience a competition due to CQ
nonlinearities. When |Im{χ (1)

p,F1,F2}| � |Im{χ (3)X2
p,F1,F2|E|2}| �

|Im{χ (5)X2
p,F1,F2|E|4}| is satisfied, the linear loss is dominant.

However, with I2 (I ′
2) increasing, the satisfied condition of

|Im{χ (3)X2
p,F1,F2|E|2}| � |Im{χ (1)

p,F1,F2}| can make the cubic gain
be dominant. If I2 (I ′

2) further increases, the quintic loss, i.e.,
Im{χ (5)X2

p,F1,F2|E|4}, will then take charge.

III. EXPERIMENTAL RESULTS AND DISCUSSION

When neglecting diffraction, we can obtain a set of solutions
for Ep,F1,F2 in Eq. (1) with the nonlinear phase shifts φp,F1,F2 =
2kp,F1,F2z�n/(n0Ip,F1,F2). The larger this phase shift is, the
stronger the nonlinear refraction will be. Also, the spatial
modulation on �n can be transferred to φp,F1,F2, and then
further to the spatial patterns of Ep,F1,F2. Under balanced
diffraction and XPM, the probe and FWM signals can form
different types of 2D solitons, i.e., fundamental, dipole, and
AMV solitons, which can be controlled by adjusting the beam
configuration given in Fig. 1(b), as demonstrated later in
Figs. 2–4, respectively. More interestingly, transformations
among different types of solitons can also be realized by
changing CQ nonlinearities, which will be shown in Fig. 3.
In the experiment, one can determine the formation of solitons
if Ep,F1,F2 can maintain their spatial profiles over several
diffraction lengths. Such propagation length is easily achieved
with the atomic density increased from 1.47 × 1013/cm3 to
8.37 × 1013/cm3, i.e., an equivalent propagation distance of
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FIG. 2. (Color online) (a) The Ep images versus �2 correspond
to the cases of (a1) no beam blocked, (a2) E′

2 blocked, and (a3) E2 and
E′

2 blocked, respectively. (a4) Isosurface of Ep versus the total pump
power. (a5) and (a6) are numerical and experimental formation of a
droplet from the middle case in (a2) when the density increases from
1.47 × 1013/cm3 to 2.33 × 1013/cm3. (b) The EF1 images versus �2

with a decreasing intensity from (b1) to (b3), and (b4) the isosurface
of EF1 versus �2. (b5) and (b6) are the numerical and experimental
coalescence of two droplets from the case right close to the middle in
(b2). For all cases, �1 = −40 GHz.
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FIG. 3. (Color online) (a) The EF1 images versus �2 with I ′
2 �

10I2 and (a1) E′
2 blocked, (a2) E2 blocked, (a3) no beam blocked,

(a4) no beam blocked, and I ′
2 � 20I2. (b) The isosurface plots of EF1

versus �2 corresponding to (a1)–(a3), respectively. (c) Experimental
observation (c1) and numerical simulation (c2) of the formation of
a density light dropletlike vortex soliton from the case right close to
the middle in (a3).

27 cm, which is almost 17 times longer than the diffraction
length of 1.6 cm for a beam with typical diameter of 40 μm.

First, the beam configuration is adjusted to make the Ep

transmission have a spatial fundamental mode. The images
of the transmitted Ep versus �2 with E2 and/or E′

2 on or off
and �1 = −43 GHz are shown in Figs. 2(a1)–2(a3). With E′

2
and/or E2 on, strong focusing of Ep appears when �2 changes
from large detuning to the BSP [Figs. 2(a1) and (a2)], while
such focusing disappears with E2 and E′

2 both off [Fig. 2(a3)].
This indicates that the XPM of E2 (E′

2) can give rise to a
positive �n, focus Ep beam, and be modulated by the atomic
coherence. The comparison between Figs. 2(a1) and 2(a2)
can reveal the CQ competition. If only the cubic nonlinearity
is considered, I2 + I ′

2 in Fig. 2(a1) should bring a stronger
focusing at BSP than I2 alone in Fig. 2(a2), which is contrary
to the experimental observation. The reason is that a negative
�n

X2
4 with large absolute value can effectively weaken the

focusing effect due to the positive �n
X2
2 in Fig. 2(a1), while

in Fig. 2(a2) without E2, �n
X2
4 reduces more than �n

X2
2 does,

which leads to a relatively larger �nX2 and strengthens the
focusing. The three dots on the solid curve taken at BSP
in Fig. 1(d) can elucidate the variation of focusing strength
with different I2 + I ′

2 values. Figure 2(a4) clearly shows the
focusing and defocusing of Ep versus increasing I2 + I ′

2,

FIG. 4. (Color online) (a) The images of the Ep transmission
versus �2 and θ1 with �1 = 30 GHz [(a1)–(a3)] and the Ep

transmission intensities (a4). (b) and (c) are the EF1 and EF2

images, respectively, and the angle parameters are the same as in
(a). (d) Theoretically calculated PBGs (the blue regions) versus �2

and θ1,2 corresponding to χ (5) (d1) and χ (3) (d2), respectively. (e)
Experimental observation (e1) and numerical simulation (e2) of the
formation of density light dropletlike dipole solitons from the extreme
right case in (b2).

in which the transverse scaling of the drumlike shape is
proportional to the beam width.

Light droplets should have stable flattop localization with
a sharp decaying edge. In Figs. 2(a1)–2(a3), under an atomic
density 9.1 × 1012/cm3, even at BSP with significant CQ
nonlinearities, a light droplet does not form because of the
short propagation length z. With the atomic density rising
from 1.47 × 1013/cm3 to 2.33 × 1013/cm3 in Fig. 2(a6) and
the numerical simulation shown in Fig. 2(a5), the increasing
z makes the spot at BSP in Fig. 2(a2) finally evolve into a
light droplet, which is named as density light droplet. The
mechanism for the formation of a light droplet is the dynamics
of E2 and Ep under CQ nonlinearities. First, E2 focuses into
a sharp peak due to its strong cubic self-Kerr modulation, and
then it gets a pit in the peak because of the quintic defocusing
effect when the peak surpasses a critical value, and finally
a flattop in the spatial profile forms, which mimics a liquid
droplet profile. Thus, the XPM leads Ep to form a mediate
light droplet, and then a density light droplet.

Next, we investigate the spatial behaviors of FWM signal
EF1 with E′

2 and E2 both on as shown in Figs. 2(b1)–2(b3). The
EF1 beam always exhibits a dipole mode with �2 far away from
BSP (�n

X2
2 is negligible) because of the modulation from the

EIG created by E2 and E′
2 [3]. When �2 is at BSP, the dipole

mode disappears, but a profile of conspicuous light droplet
appears. The reason is that the enhanced �n

X2
2 > 0 makes

the dipole mode collapse into a single spot, and the enhanced
�n

X2
4 < 0 further restrains the excessive collapse, just like

the van der Waals–like force. The competition between �n
X2
2

and �n
X2
4 is clearly shown by the black curve in Fig. 1(c).

Different from the light droplet formation in Figs. 2(a5)
and 2(a6), those in Figs. 2(b1)–2(b3) form under low density,
but with an appropriate detuning, so we can call them detuning
light droplets. Because Ep transmission in Fig. 2(a) is not
as strong as EF1 in Fig. 2(b), detuning light droplets cannot
form at BSP, even when �n

X2
2 and �n

X2
4 are sufficiently

large. Comparing the formations of density and detuning light
droplets, we can conclude that enhancing �n

X2
2 and �n

X2
4 , and

increasing the propagation length z are basically equivalent
for the light droplet formation. This can be further verified by
the subsequent evolution of dipole mode at �2 deviated from
BSP in Fig. 2(b2), which is observed with increasing atomic
density as shown in Figs. 2(b5) and 2(b6). We can see that
the two dipole humps first form two light droplets, which then
fuse into one large mediate light droplet. Comparison among
Figs. 2(b1)–2(b3) indicates that different �n

X2
2 and �n

X2
4 can

affect the light droplet profile. Specifically, the detuning light
condensate soliton at BSP in Fig. 2(b2) seems to be more
compressed than those given in Figs. 2(b1) and 2(b3). In theory,
with I2 + I ′

2 increasing successively [Figs. 2(b1)–2(b3)], the
CQ competition makes �n first increase and then decrease,
which can also be elucidated by the corresponding total
susceptibility at BSP (solid curve) in Fig. 1(d), and the
three dots (from left to right) on this curve can describe
Figs. 2(b1)–2(b3), respectively. On the other hand, as shown
in Fig. 1(e) and discussed above, the linear [Fig. 2(b1)] and
quintic [Fig. 2(b3)] losses will reduce the beam intensity and
slow down the focusing, while the cubic gain [Fig. 2(b2)]
will strengthen the focusing. So, the pit in the peak will be

063828-3



WU, ZHANG, YUAN, WEN, ZHENG, ZHANG, AND XIAO PHYSICAL REVIEW A 88, 063828 (2013)

the narrowest one in Fig. 2(b2), and then lead to the smallest
flattop.

A more complex spatial mode also can transfer into a
light droplet, and the final profile can be controlled by the
CQ nonlinearity. In Figs. 3(a1)–3(a4), EF1 is modulated into
an AMV mode by the interference patterns among E1, E′

1,
and Ep [15] under an appropriate spatial beam configuration,
because the XPM from E2 (E′

2) nearly disappears when �2

is far away from BSP and �1 is set at −53 GHz to provide a
weaker focusing background than shown in Fig. 2. The AMV
mode can be controlled to form fundamental, dipole or vortex
optical droplets, which can all be described by

E⊥(r,ϕ) = (A + Br) exp(−r2/R0)[cos(Cmϕ)

+ i sin(Cmϕ + Bπ/2)] exp[i(lϕ + φF1)], (2)

in which A and B are amplitude coefficients, 2Cm

is the hump number, l the topological charge, and
ϕ the phase. Specifically, A = (nX2

2 I2 + nX2
4 I 2

2 ) + |(�1 +
�2)/�1|(nX2

2 I ′
2 + nX2

4 I ′2
2 ), B = (nX2

2 I ′
2 + nX2

4 I ′2
2 ) + |(�1 +

�2)/�1|[nX1
2 (I1 + I ′

1) + (nX2
2 I2 + nX2

4 I 2
2 )], and Cm = m +

exp[−nX2
2 (I2 + I ′

2) − nX2
4 (I 2

2 + I ′2
2 )], respectively. In Cm,

m = 0 for the dipole mode [Fig. 2(b)] and m = 1 for the AMV
mode (Fig. 3). Around BSP, |(�1 + �2)/�1| � 0 because
the denominator is much larger than the numerator. We can
see that A � 0 at far away from BSP or E2 is turned off at
BSP, and B � 0 if E′

2 is blocked at BSP. This is consistent
with the fact that EF1 always shows AMV modes at far away
from BSP. With E′

2 blocked and �2 moving towards BSP in
Fig. 3(a1), E⊥(r ,ϕ) of EF1 changes from AMV to a single-spot
structure, and the experimental result shows that a fundamental
detuning light droplet forms at BSP. The simulated front and
side views of EF1 versus �2 in Fig. 3(b1) reveal that the four
lobes of AMV fuse into one in the formation of a detuning
light droplet. When E2 is blocked in Fig. 3(a2), A � 0 but
B � 0 at BSP, Cm has a very small second term because of
the large nX2

2 I ′
2 + nX2

4 I ′2
2 , so E⊥(r,ϕ) becomes a dipole mode

and we experimentally observe a dipole detuning light droplet
around BSP. The simulations in Fig. 3(b2) reveal that two pairs
of light droplets form from the four lobes in AMV. When no
beam is blocked as shown in Fig. 3(a3), balanced total CQ
nonlinearities are obtained due to large I2 + I ′

2. In this case,
A < B because of a stronger E2 field and Cm � 2, so E⊥(r,ϕ)
keeps AMV and we experimentally observe a vortex detuning
light droplet at BSP. The simulations in Fig. 3(b3) reveal that
this AMV evolves into an azimuthally uniform vortex with a
phase singularity. In Fig. 3(a4), with I2 fixed and I ′

2 increased,
�nX2

4 increases more significantly than �nX2
2 , which breaks

the balance between the CQ nonlinearities and makes EF1

not form a detuning light droplet due to the lack of initial
focusing.

The density light droplet can also form from the AMV
mode. Similar to Fig. 2(b5), such evolution has been exper-
imentally observed in Fig. 3(c1) and theoretically simulated
in Fig. 3(c2). Here, we increase the medium density from
1.47 × 1013/cm3 to 8.37 × 1013/cm3 for the vortex with �2 =
25 GHz in Fig. 3(a3), during which the four lobes of vortex fuse
because a stable droplet needs a circular flattop in which the
surface tension is uniform everywhere and helps the pressure of
the density light dropletlike vortex soliton reach an equilibrium

state [16]. The vortices with appropriate �2 in Figs. 2(a6)
and 2(b6) can also form fundamental and dipole density light
condensate solitons with sufficiently large density.

The formations of FWM and EIG occur simultaneously,
and the latter can affect Ep,F1,F2 in two aspects. One makes the
EF1,F2 (Ep) intensity (in transmission) proportional (inversely
proportional) to the PBG width, and the other modulates EF1

(EF2) into a horizontal (vertical) dipole soliton [3]. The PBG
of EIG depends strongly on the nonlinearities. Therefore, the
CQ competition can affect the spatial modulations of Ep,F1,F2

via EIG, which are presented in Fig. 4. Changing θ1 and/or
θ2 can affect the incident angle of Ep into EIG, which is
set at three successively increasing values from Figs. 4(a1)
to 4(a3), 4(b1) to 4(b3), and 4(c1) to 4(c3), respectively. For
example, by moving the cross point of E1 and E′

1 from D to
B as shown in Fig. 1(b), θ1 changes from −0.15° to 0.15°.
In Figs. 4(a)–4(c), �1 sets at −33 GHz to have a focusing
background stronger than that in Fig. 2. It is obvious that
the 2D stable solitons of Ep have no significant variation
versus �2 with θ1 = −0.15° [Fig. 4(a1)], but when −0.15°
< θ1 < 0.15° they show a strong spatial splitting near BSP
[Figs. 4(a2) and 4(a3), changing θ2 can generate similar
results]. This phenomenon is strongly related to the PBG of
the EIG. Specifically, due to the spatial periodic linear, third-
and fifth-order susceptibilities, the total refractive index in
EIG induced by E1 and E′

1 is given by �nEIG(x) = n1 +
δn1cos(2k1x) + δn2cos(4k1x) + δn4cos(8k1x), and the PBG
width is �gap = 2ω0(δn1 + δn2 + δn4)sin(θ1)/πn1, where ω0

is the central frequency; δn1, δn2, and δn4 are the coefficients
of different spatial harmonics. Figure 4(d) theoretically shows
that the PBG of EIG broadens with increasing θ1,2, so the Ep

transmission decreases and gets a larger φp, which makes Ep

easier to modulate into a multispot structure when transmitting
through the EIG. In the top curve in Fig. 4(a4), the Ep

transmission with θ1 = −0.15° shows a suppressed dip around
the BSP, because the Bragg reflection (BR) from PBG turns
the enhancement into suppression. However, in Fig. 4(a4) with
θ1 increasing, the dip first deepens (the second curve) and then
holds almost the same (the bottom curve). That is because
the PBG of cubic subgrating broadens faster than that of the
quintic one with an increasing θ1 according to Fig. 4(d). Also,
the cubic (quintic) nonlinearity accompanies gain (loss), so
the gain will become larger than the loss and compensate the
weakened transmission due to PBG. When the effects of PBG,
loss and gain reach a balance, the Ep transmission peak will
hold.

Figures 4(b) and 4(c) present EF1 and EF2 images, respec-
tively. Considering their similarities in spatial behavior, we
will just discuss EF1 in the following text. It is clear to see
that the images show a 2D dipole-mode soliton when far away
from BSP due to the EIG modulation [3] and focus around
BSP. In Figs. 2(b2) and 2(b3), condensate solitons appear
around BSP. Since the PBG width increases with the increase
of θ1, more and more energy of Ep will be reflected into EF1

that will speed up the formation of condensate solitons. In
the intensity curves in Fig. 4(b4), one can find a dip when
θ1 = −0.15° due to the suppression effect. However, the dip
transfers into a peak when θ1 increases, due to the increased
BR of Ep and the switching from suppression to enhancement
because of the angle variation. With θ1 further increased, the
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peak gets higher due to the increased BR and the strengthened
enhancement.

As done in Figs. 2 and 3, we increase the medium density
to study the dipole case in Fig. 4(b2), and have observed
the dropletlike dipole solitons ultimately as shown by the
experimental and numerical results in Figs. 4(e1) and 4(e2),
respectively. It is worth noting that dipole solitons cannot form
in Fig. 2(b5) because of the phase relation between the two
dipole humps. The dipole mode results from the modulation
of EIG so that the lobes are in phase if they locate in the bright
or dark stripes simultaneously and out of phase if one of them
is in a bright stripe with another in a dark one. The two lobes
for the case in Fig. 4(e) are in parallel and almost out of phase
(slightly smaller than π ), so that dropletlike dipole solitons
can form without collision, while the lobes in Fig. 2(b5) can
only coalesce because of their in-phase nature [8]. However,
the coalescence of the two lobes around BSP in Figs. 4(b2)
and 4(b3) seems to be inconsistent with the above explanation.
The basic reason is that the lobes of the dipole modes in Fig. 4
are not really exactly out of phase, so the surfaces of the
two lobes are not the same as those that are really out of
phase, i.e., the nearest neighboring places in the surface will
have an energy flow. When the focusing effect is very strong
(around the BSP), the energy flow will accelerate and lead to
the coalescence as shown in Fig. 4(b). When the focusing is
very weak (far away from the BSP), the energy flow will not be
strong enough to make the coalescence, such that a dropletlike

dipole soliton can form during propagation as shown in
Fig. 4(e).

IV. CONCLUSION

In conclusion, we have experimentally investigated the
multiparameter controllable FWM condensate solitons under
CQ competing nonlinearity enhanced by EIT. A theoretical
model has been developed to describe various condensate
solitons and transitions among them, which match well with
the experimental observations. We would like to emphasize
that the experimental results are obtained under low powers.
This research can have important applications in spatial
pattern formation [17], optical switching [18,19] in optical
communication, and all-optical image processing. As far
as we know, experimental observations of some interesting
theoretical work such as the realization of giant vortices [20],
light dripping [21], and new types of quantum phase transitions
[22] still remain to be seen.
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[10] M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S.

Zibrov, and M. D. Lukin, Nature (London) 438, 837 (2005).
[11] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.

Phys. 77, 633 (2005).

[12] C. Josserand and S. Rica, Phys. Rev. Lett. 78, 1215 (1997).
[13] Y. Zhang, Z. Nie, and M. Xiao, Coherent Control of Four-Wave

Mixing (Springer, Heidelberg, 2010).
[14] M. Artoni and G. C. La Rocca, Phys. Rev. Lett. 96, 073905

(2006).
[15] J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, Nature

(London) 432, 165 (2004).
[16] P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).
[17] R. S. Bennink, Vincent Wong, A. M. Marino, D. L. Aronstein,

R. W. Boyd, C. R. Stroud, Jr., S. Lukishova, and D. J. Gauthier,
Phys. Rev. Lett. 88, 113901 (2002).

[18] D. N. Christodoulides and E. D. Eugenieva, Phys. Rev. Lett. 87,
233901 (2001).

[19] A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W.
Wise, Nat. Photonics 4, 103 (2010).

[20] H. Michinel, J. R. Salgueiro, and M. J. Paz-Alonso, Phys. Rev.
E 70, 066605 (2004).

[21] D. Novoa, H. Michinel, and D. Tommasini, Phys. Rev. Lett. 103,
023903 (2009).

[22] D. Novoa, H. Michinel, D. Tommasini, and M. I. Rodas-Verde,
Physica D 238, 1490 (2009).

063828-5

http://dx.doi.org/10.1038/43136
http://dx.doi.org/10.1038/43136
http://dx.doi.org/10.1038/43136
http://dx.doi.org/10.1038/43136
http://dx.doi.org/10.1126/science.280.5365.889
http://dx.doi.org/10.1126/science.280.5365.889
http://dx.doi.org/10.1126/science.280.5365.889
http://dx.doi.org/10.1126/science.280.5365.889
http://dx.doi.org/10.1103/PhysRevLett.106.093904
http://dx.doi.org/10.1103/PhysRevLett.106.093904
http://dx.doi.org/10.1103/PhysRevLett.106.093904
http://dx.doi.org/10.1103/PhysRevLett.106.093904
http://dx.doi.org/10.1103/PhysRevA.9.1403
http://dx.doi.org/10.1103/PhysRevA.9.1403
http://dx.doi.org/10.1103/PhysRevA.9.1403
http://dx.doi.org/10.1103/PhysRevA.9.1403
http://dx.doi.org/10.1103/PhysRevA.51.2491
http://dx.doi.org/10.1103/PhysRevA.51.2491
http://dx.doi.org/10.1103/PhysRevA.51.2491
http://dx.doi.org/10.1103/PhysRevA.51.2491
http://dx.doi.org/10.1016/S0079-6638(05)47006-7
http://dx.doi.org/10.1016/S0079-6638(05)47006-7
http://dx.doi.org/10.1016/S0079-6638(05)47006-7
http://dx.doi.org/10.1016/S0079-6638(05)47006-7
http://dx.doi.org/10.1103/PhysRevE.65.066604
http://dx.doi.org/10.1103/PhysRevE.65.066604
http://dx.doi.org/10.1103/PhysRevE.65.066604
http://dx.doi.org/10.1103/PhysRevE.65.066604
http://dx.doi.org/10.1103/PhysRevLett.96.023903
http://dx.doi.org/10.1103/PhysRevLett.96.023903
http://dx.doi.org/10.1103/PhysRevLett.96.023903
http://dx.doi.org/10.1103/PhysRevLett.96.023903
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1063/1.881806
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1038/nature04327
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1103/PhysRevLett.78.1215
http://dx.doi.org/10.1103/PhysRevLett.78.1215
http://dx.doi.org/10.1103/PhysRevLett.78.1215
http://dx.doi.org/10.1103/PhysRevLett.78.1215
http://dx.doi.org/10.1103/PhysRevLett.96.073905
http://dx.doi.org/10.1103/PhysRevLett.96.073905
http://dx.doi.org/10.1103/PhysRevLett.96.073905
http://dx.doi.org/10.1103/PhysRevLett.96.073905
http://dx.doi.org/10.1038/432165a
http://dx.doi.org/10.1038/432165a
http://dx.doi.org/10.1038/432165a
http://dx.doi.org/10.1038/432165a
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1103/PhysRevLett.88.113901
http://dx.doi.org/10.1103/PhysRevLett.88.113901
http://dx.doi.org/10.1103/PhysRevLett.88.113901
http://dx.doi.org/10.1103/PhysRevLett.88.113901
http://dx.doi.org/10.1103/PhysRevLett.87.233901
http://dx.doi.org/10.1103/PhysRevLett.87.233901
http://dx.doi.org/10.1103/PhysRevLett.87.233901
http://dx.doi.org/10.1103/PhysRevLett.87.233901
http://dx.doi.org/10.1038/nphoton.2009.264
http://dx.doi.org/10.1038/nphoton.2009.264
http://dx.doi.org/10.1038/nphoton.2009.264
http://dx.doi.org/10.1038/nphoton.2009.264
http://dx.doi.org/10.1103/PhysRevE.70.066605
http://dx.doi.org/10.1103/PhysRevE.70.066605
http://dx.doi.org/10.1103/PhysRevE.70.066605
http://dx.doi.org/10.1103/PhysRevE.70.066605
http://dx.doi.org/10.1103/PhysRevLett.103.023903
http://dx.doi.org/10.1103/PhysRevLett.103.023903
http://dx.doi.org/10.1103/PhysRevLett.103.023903
http://dx.doi.org/10.1103/PhysRevLett.103.023903
http://dx.doi.org/10.1016/j.physd.2009.02.002
http://dx.doi.org/10.1016/j.physd.2009.02.002
http://dx.doi.org/10.1016/j.physd.2009.02.002
http://dx.doi.org/10.1016/j.physd.2009.02.002



