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We propose and investigate the quasi-phase-matched (QPM) nonlinear optical frequency conversion of optical
vortices in periodically poled lithium niobate. Laguerre-Gaussian (LG) modes are used to represent the orbital
angular momentum (OAM) states, characterized with the azimuthal and radial indices. Typical three-wave
nonlinear interactions among the involved OAM modes are studied with the help of coupling wave equations.
Being different from normal QPM process where the energy and quasimomentum conservations are satisfied, both
of the azimuthal and radial indices of the OAM states stay constant in most of the cases. However, abnormal change
of the radial index is observed when there is asynchronous nonlinear conversion in different parts of the beams.
The QPM nonlinear evolution of fractional OAM states is also discussed showing some interesting properties. In
comparison with the traditional birefringent phase matching, the QPM technique avoids the undesired walk-off
effect to reserve high-quality LG modes. We believe the QPM is an effective way to convert, amplify, and switch
OAM states in various optical vortex related applications.
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I. INTRODUCTION

In the last decade, optical vortices with orbital angular
momentum (OAM) showing helical phase fronts have drawn
more and more research attention [1,2]. Due to the unique
beam profile, optical vortices have been used in optical
tweezers, which can trap, move, and rotate particles ranging
in size from tens of nanometers to tens of micrometers
[3,4]. In addition, optical vortex is also a quite hot topic
in information processing and communication areas because
data can be encoded into different OAM states. Terabit
transmission has been realized based on OAM multiplexing
since it supplies freedom to carry information [5]. The OAM
states even may act as qubits showing many advantages
in free space quantum communications [6,7]. However, for
both classical and quantum communication systems, the
essential functional units are similar, which should rely on
the generation, transmission, transformation, and detection
of OAM states. So far, various technologies have been used
to obtain OAM states with different topological charges,
such as spiral phase plate [8], liquid crystal Q-plates [9],
and fork gratings [10]. The OAM normally stays constant
during free space propagation; thus transmitting OAM states
is relatively simple. The detection of OAM is based on the
beam intensity and profile measurement with commercially
available equipment [11,12]. However, the transformation of
OAM states might still be a challenging work. Inherited from
normal communication systems, the OAM involves signal
switching, routing, filtering, multiplexing and demultiplexing,
and even conversions are quite important for future OAM-
loaded networks and processors.

As we know, nonlinear optics is an attractive way to
manipulate light beams through light-light interaction. All-
optic information processing has been many researchers’
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relentless pursuit for years. Investigating the nonlinear optical
transformation of OAM states thus exhibits both fundamental
research significance and important application values. In
1996 and 1997, Padgett, Allen, and their co-workers revealed
the conservation law of OAM during frequency conversion.
Nonlinear optical crystals such as potassium titanyl phosphate
(KTP) were used in their second-harmonic generation (SHG)
experiments through birefringent phase matching (BPM)
[13,14]. However, BPM normally requires sensitive conditions
to satisfy such as angle, wavelength, or temperature. If the
beams do not propagate along the crystal’s optical axes, the
walk-off effect not only affects the conversion efficiency but
also may deteriorate the wave fronts. This would be a serious
problem for optical vortices due to their unique beam fea-
tures [15]. On the contrary, the quasi-phase-matching (QPM)
technique could greatly release the limitations of matching
conditions through the suitable modulation of nonlinear
susceptibility [16,17]. All involved lights could be normally
incident and collinearly interact along a crystallographic axis
with high efficiency. A typical material is periodically poled
lithium niobate (PPLN) with all input beams polarized along
its z axis and propagating along the x axis to use its largest
nonlinear coefficient d33.

In this paper, the QPM nonlinear optical transformation of
OAM is proposed and investigated in PPLN crystals. Besides
SHG, sum-frequency generation (SFG) and difference fre-
quency generation (DFG) are also studied. Laguerre-Gaussian
(LG) modes are exploited to represent the vortex beams with
OAM, which are characterized by the azimuthal index l (i.e.,
the topological charge) and radial index p [13,14]. We find that
the QPM is very applicable for optical vortices. The frequency
conversion, amplification, and switching of OAM modes thus
could be realized. However, different from the conventional
QPM where only the conservations of energy and momentum
are considered, the conservation of OAM also should be taken
into account. The total azimuthal indices of the involved lights
still keep constant after QPM frequency conversion, while the

063827-11050-2947/2013/88(6)/063827(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.063827


SHAO, WU, CHEN, XU, AND LU PHYSICAL REVIEW A 88, 063827 (2013)

radial index p shows a more complicated evolution. When
the conversion efficiency is low in a short PPLN, the radial
indices follow a rule similar to that of the azimuthal indices.
With higher conversion efficiency in a long PPLN, the pure LG
modes of the signal wave may collapse so that the conservation
law is violated, providing ways to generate p > 0 OAM with
p = 0 beams. Furthermore, the nonlinear transformation of
beams with fractional OAM states is also studied. The related
applications are discussed.

II. THEORETICAL ANALYSIS

LG modes are characterized by two indices, the azimuthal
index l and the radial index p [13,14], where l is the number of
2π cycles in phase around the circumference and p is related
to the number of radial nodes. The amplitude ul

p(r,φ,x) of a
LG mode in cylindrical coordinates is given by
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where ω(x) represents the beam radius at the position of x,
which is the axial distance from the beam waist. r is the
radial distance from the center axis of the beam and Ll

p is
the generalized Laguerre polynomial. k = 2π /λ means the
wave number (in radians per meter). R(x) is the radius of
curvature of the beam’s wave fronts. φ represents the azimuthal
angle. (2p + l + 1)ζ (x) is called the Gouy phase, which is an
extra contribution to the phase.

Figure 1 illustrates the QPM frequency conversion of
optical vortices by using a PPLN. To mimic a general three-
wave nonlinear interaction process, two optical vortices (λ1,
l1, p1; λ2, l2, p2) are injected and an optical vortex (λ3, l3,
p3) is generated as shown in the figure. All these beams are
z polarized and propagate along the x axis of the sample. To
investigate the frequency conversion processes, the coupling
wave equations are used to describe the interaction between
these waves [18].
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The subscripts j = 1, 2, 3 in Eq. (2) refer to the
involved waves and z represents the polarizations. Ajz =

FIG. 1. (Color online) Schematic diagram representing the QPM
frequency conversion of optical vortices by using a PPLN sample.
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ω3 = ω1 + ω2 reflects the energy conservation for involved

beams. Define K = d33g1
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, and K1,2,3 are obtained

from K . c is the light speed in vacuum, g1 = 2/π is a constant,
and d33 = 25.2 pm/V is the nonlinear coefficient of lithium
niobate. For SHG, K1,2,3 are all equal to K . In addition,
the first two equations are identical for SHG, so T is 0.5
due to the frequency degeneracy. For SFG and DFG, assume
the generated wave is described by subscript q, then Kq is
equal to the conjugate of K while the other two coefficients
stay at K . In these cases, T = 1 as there is no degeneracy.
�k = k3z − k2z − k1z − Gm, where k represents the wave
vector. When QPM is realized, �k = 0, which means the
momentum mismatch is fully compensated by the reciprocal
vector Gm of the PPLN. In another word, the quasimomentum
conservation is satisfied.

As we mainly focus on OAM, we extract the term
exp[−i(2p + l + 1)ζ (x)] from Eq. (1) regarding the evolution
of the azimuthal and radial indices. As other terms mainly
describe amplitudes, the term exp[−i(2pj + lj + 1)ζj (x)]
could stand for Ajz if only the transformation of OAM is
considered. Based on Eq. (2), for SHG and SFG, the generated
term exp[−i(2p3 + l3 + 1)ζ3(x)] is obtained as

exp[−i(2p3 + l3 + 1)ζ3(x)]

= exp[−i(2p1 + l1 + 1)ζ1(x)] exp[−i(2p2 + l2 + 1)ζ2(x)],

(3)

which is just the product of the other two terms. Considering
ζ1(x) = ζ2(x), then ζ3(x) may be close to ζ1(x). In this
case, both l3 = l1 + l2 and p3 = p1 + p2 are satisfied, which
means the generated light completely takes over the azimuthal
and radial indices of the input lights. These two indices are
conserved. Similarly, for DFG, the generated A2z is the product
of A3z and conjugate of A1z. If ignoring terms that are not
relevant to the evolution of OAM, we get

exp[−i(2p2 + l2 + 1)ζ2(x)]

= exp[−i(2p3 + l3 + 1)ζ3(x)] exp[i(2p1 + l1 + 1)ζ1(x)].

(4)

Under the same hypothesis, ζ1(x) = ζ3(x), the conservation
relationship l2 = l3 − l1, and p2 = p3 − p1 are also obtained.

From the analysis above, we have successfully deduced
the conservation law of OAM during three-wave nonlinear
interactions using coupling wave equations, which requires
more study. The nonlinear frequency transformation is based
on PPLN utilizing QPM. A phenomenon with high conversion
efficiency thus could be expected.

III. NUMERICAL SIMULATION RESULTS

In our analysis above, the conservations of azimuthal
and radial indices are expected. However, to obtain detailed
information about the frequency conversion process of the
optical vortices, such as the intensity and phase distributions,
the finite element method (FEM) is an effective way. In this
case, all terms in Eqs. (1) and (2) should be taken into account
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for numerical simulation. To be specific, the whole vortex
beam area is divided into many small grids. Take the central
field of a grid to stand for the whole region, and then substitute
it into the related coupling wave equations. Without loss of
generality, SFG is chosen as the first attempt, which means a
weak signal vortex and a strong pump vortex incident into a
PPLN sample then generate a sum-frequency (SF) wave.

Firstly, we set p = 0 for the injected signal and pump waves.
This is a relative simple case in which the intensity profile just
shows a single ring shape. We assume the pump OAM state is
z polarized at 1064 nm with l = 2 and p = 0. In the meantime,
a z-polarized signal vortex is injected collinearly with l = 1
and p = 0 at the wavelength of 1550 nm. We assume the pump
and signal beams have the same waist radius at 100 μm. The
corresponding beam divergence angle is about 0.005 rad. The
ζ1,2(x) of the injected waves are approximately equal due to
their similar waist radius with a tiny expansion in the sample.
Align the sample carefully so that the beam waists are right at
the incident front surface (x = 0) of the PPLN. The area we
considered is 600 μm × 600 μm composed of 200 × 200 grids.
Due to the inhomogeneous field distribution, we set the peak
intensity of the pump wave at 10 MW/cm2, which is below the
damage threshold of lithium niobate [19]. The peak intensity
of the signal wave is 0.2 MW/cm2. A PPLN with the period
of 11.62 μm is selected to satisfy QPM conditions at 20 ◦C.
Assume it has 200 periods so that the whole sample length
is 2.32 mm, which is easily achievable for current fabrication
technology. In this case, the simulation results are shown in
Fig. 2, where the intensity and phase profiles of the involved
waves are illustrated.

In Fig. 2, the color bar unit of the field intensity is MW/cm2

and the phase is in radian units. From the “Intensity Profile”
column, there is a central dark hole with very low intensity
for each beam. This is the typical pattern of an optical vortex
because the phase is hard to define at the center area. Larger
dark holes normally correspond to a high order of topological
charges. It is clear that the SF wave has a relatively larger hole,
which means a higher azimuthal index. In addition, in the phase
profile, the number of 2π cycles around the circumference is

the azimuthal index l. We can see that the azimuthal index of
the SF wave is 3. It is just the sum of signal and pump waves’
indices, coinciding with the direct reading from the intensity
profiles. Furthermore, all three beams only have a single ring
in their intensity patterns, meaning their radial indices are all
at zero. The conservation laws for both l and p are observed.

Secondly, LG modes with p > 0 are also studied. All
parameters in our numerical simulation are the same as the
previous case except that the radial indices are changed to
p = 1 for both pump and signal beams. The results are shown
in Fig. 3. The color bar units are still MW/cm2 and radians for
intensity and phase, respectively.

From Fig. 3, the intensity profiles of the single and pump
waves change remarkably due to the radial indices found here,
while the central dark holes always exist. There is a clear dark
ring between two bright rings in each profile diagram. The
radial index thus is read with p = 1. For the SF light, p should
be 2 if the radial index is conserved. This result is not clear from
the intensity profile because one of the bright rings is too dim
to be seen. Therefore, the intensity profile is not very accurate
to determine the mode indices of a LG mode. However, if we
check the phase profile, it is quite evident and convenient. Let
us take the pump wave as an example, which is the second one
in the second row. From the center to the border of the diagram,
the phase profile diagram has two zones. In both of the inner
and outer zones, the phase undergoes 2 × 2π = 4π , therefore
the azimuthal index of the pump beam is 2. In addition, at the
boundary of the inner and outer zones, the phase undergoes a
π shift, where the corresponding light intensity is zero. Since
there are two zones separated by one π -shift boundary circle
in the phase diagram, the radial index of the pump beam is
thus 1. Generally speaking, if there are n π -shift boundary
circles from the radial direction, the radial index is just n. As a
consequence, if we read the phase profile of the SF beam, the
radial index p is 2 and the azimuthal index l is 3 as marked in
Fig. 3.

From the examples above shown in Figs. 2 and 3, the
conservations of both radial and azimuthal indices are verified
in this SFG process. This is quite understandable. However,

FIG. 2. (Color online) The intensity and phase profiles of the signal, pump, and generated SF optical vortices after a 200-period PPLN
sample through QPM.
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FIG. 3. (Color online) The intensity and phase profiles of the signal, pump, and generated SF optical vortices after passing through a
200-period PPLN sample.

the radial and azimuthal indices are basically determined
by the spatial distributions of field intensity and phase. As
the nonlinear effects are much more sensitive with respect
to the local field, the uneven field profile thus may result
in complicated and spatially varied field pattern evolution,
which could further influence the involved LG modes and their
indices. Some interesting and abnormal phenomena thus are
expected, especially when the nonlinear conversion efficiency
is high enough. For instance, in previous examples, the peak
intensity of the signal optical vortex is 0.2 MW/cm2 and
the lowest intensity is zero. As light beams propagate in a
long PPLN sample employing QPM, the conversion efficiency
in some grids could be high while some parts are low;
the asynchronous frequency conversion in different grids is
established. In some extreme cases, power in some grids of
the signal wave may be upconverted to the SF wave, while
in other grids, lights are flowing back from the SF wave to
the signal wave through a cascading DFG process. In other
words, the SFG and DFG processes are spatially coupled at the
same time in different grids of the beam along a single PPLN
sample. Furthermore, the unique phase profile also may play
an important role in this complex process superposing of SFG
and DFG. It would be interesting to check the transformation
of the OAM states to see if they still follow Eq. (3) or (4).

We still would study a simple case similar to what is shown
in Fig. 2. Assume the radial indices p are zero, while the
azimuthal indices l are 1 and 2, respectively, for the signal
and pump waves. All parameters are the same except that a
longer sample is used with 600 periods resulting in a sample
length of 6.96 mm. The results are shown in Fig. 4. After all
lights pass though the sample, a SF vortex (l = 3, p = 0)
is generated along with the original signal and pump wave.
We may see that the azimuthal index l of the SF wave is
still the sum of pump and signal waves’ indices as is our
expectation. However, the left and regenerated signal wave
shows some abnormal transformation of its radial index that
does not conserve its original value anymore. From both the
intensity and phase profiles, the signal wave shows the features

of p = 2 OAM state. Though it is hard to identify the outermost
ring by the naked eye in the intensity profile, we can easily
find out that p = 2 from the phase profile of the signal wave.
After propagation through the PPLN, the original LG mode
collapses due to the spatially asynchronous cascading SFG and
DFG. In other words, it may supply a way to generate p > 0
beams using p = 0 optical vortices.

It should be pointed out that the conservation of azimuthal
and radial indices should be obeyed when there is only one
frequency conversion process (e.g., SFG) happening in a
nonlinear crystal. For normal materials, the possible walk-off
effect of BPM may affect the conversion efficiency and
deteriorate the wave fronts of LG modes. Therefore the local
conversion efficiency may not reach a high value to trigger the
asynchronous cascading SFG and DFG. The signal wave’s
radial index thus has to stay constant. Only if all beams
collinearly interact with high efficiency, the abnormal OAM
state transformation may be observed. This is a key advantage
of QPM technology.

Furthermore, azimuthal indices (i.e., topological charges)
of OAM states could be integer or fraction [20,21]. In a more
general case, the fractional azimuthal index should be taken
into consideration in studying the QPM nonlinear processes.
Although a fractional OAM state is not the eigenstate of a
vortex beam in the free space, it could be decomposed into
the sum of a serial of integer OAM states. The amplitudes
of the decomposed integer states are given by Eq. (1). The
superposition coefficient cm′ [M(α)] is defined as

cm′ [M(α)] = exp(−iμα)
i exp[i(l − m′)θ0]

2π (l − m′)
×{exp[i(l − m′)α][1 − exp(iμ2π )]}. (5)

The fractional azimuthal index l is divided into l = L +
μ, where L is the integer part and μ lies between 0 and 1.
The orientation of the edge dislocation α is set at 0◦. The
angle θ0 is an arbitrary starting point which defines the interval
θ0� φ < θ0 + 2π . Here we set θ0 at − π without loss of
generality.
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FIG. 4. (Color online) Output intensity and phase profiles of the signal, pump, and generated SF optical vortices after passing through a
600-period PPLN sample.

As the fractional OAM state is a linear superposition of
integer states, it would be interesting to check if it obeys
the same transformation rule during frequency conversion.
According to our simulation, we found that the fractional
azimuthal index conversion also follows the conservation law
using the superposition of Eqs. (3) or (4). Take l = 6.5 as an
example, which was obtained by Götte et al. in 2008 [20]. As
the generation of fractional topological charges is complex,
we take SHG as an example with fundamental optical vortex
at 1550 nm. At 20 ◦C, a PPLN sample with the period of
18.98 μm is used to satisfy the QPM condition. The whole
sample length is 3.80 mm containing 200 periods. Also, the
peak intensity is set at 10 MW/cm2. The area we considered is
800 μm × 800 μm composed of 200 × 200 meshing grids. As
the accurate expansion equations are infinite, we only consider
the modes whose superposition coefficient cm ′[M(α)] is larger
than 5%, meaning m′ ranges from 1 to 12. The numerical
simulation results are shown in Fig. 5.

The azimuthal index of OAM could be calculated by [22]

∫
u∗ �u

r�θ
r dS∫

u∗u dS
, (6)

FIG. 5. (Color online) The intensity profiles of fundamental and
second-harmonic optical vortices after passing through a 200-period
PPLN sample.

where u and r have the same meanings as in Eq. (1). S

represents the area of each meshed grid. The units of the
color bars in the intensity profiles are MW/cm2. Calculating
with Eq. (6), the azimuthal indices of fundamental and
second-harmonic waves are 6.46 and 12.88, which are close
to 6.5 and 13, respectively. The second-harmonic light almost
doubles the fundamental light. The slight difference is due
to the finite expansion. The result may show precise intensity
distribution as long as the entire bases are considered.
Therefore, the conservation law of the fractional OAM states
is still satisfied during the QPM nonlinear conversions.

In this section, four examples are investigated to verify
the conservation law of OAM. Both the azimuthal index
(i.e., topological charge) and radial index have been studied
using coupling wave equations through QPM. Besides integer
OAM states, the evolution of fractional OAM states has been
investigated as well.

IV. DISCUSSIONS

In the two sections above, both the theoretical and numerical
analyses of the QPM nonlinear frequency conversion are
presented, which coincide with each other. However, there
are still some approximations and assumptions during the
analytical study. For example, ζ1,2,3(x) in Eqs. (3) and (4)
are assumed equal due to their similar waist radii in the
sample. This hypothesis is reasonable in the cases we studied,
especially for beams with large waists. From our study, only
∼3% differences would be generated.

For an optical vortex beam with OAM, the wavelength,
azimuthal index (i.e., topological charge), and radial index are
all fundamental parameters. From our analytical deduction and
numerical simulation, the QPM frequency conversion is really
an effective way to generate and transform the OAM states in a
PPLN sample. However, the uneven field profile of LG modes
may induce asynchronous frequency conversion in different
part of the beams, which may influence the best achievable
efficiency and the corresponding sample length. For example,
in our numerical simulation part, two SFG cases are studied
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with different mode indices of the signal and pump beams. In
the case of p = 0 shown in Figs. 2 and 4, the maximal efficiency
is 87.8% for a 6.51-mm-long PPLN sample. As for another
case with the radial index p of 1, a lower maximal efficiency
is obtained at 78.4% for a 7.86-mm-long sample. The funda-
mental reason should be due to the unmatched field profiles
of signal and pump beams with high mode indices. However,
the SHG does not have this disadvantage since there is no
difference between signal and pump fields; SHG efficiency
thus may keep going higher for longer samples toward 100%,
theoretically. Another interesting case is using an ordinary
Gaussian-type pump beam for SFG while the single beam is
still an optical vortex. This is quite a practical situation since
the high-power pump beam could be directly from a laser. We
still set the peak intensity of the pump beam at 10 MW/cm2.
From our simulation, for a signal vortex with l = 1, p = 0,
the SFG conversion efficiency may only reach 49.9% for a
6.51-mm-long PPLN, which is much lower than that of a vortex
pump beam. For other kinds of signal vortices, similar results
are obtained. It is easy to understand this low efficiency. For an
ordinary Gaussian-type pump beam, the peak intensity is right
at the center of the beam while there is no field for the signal
vortex. A large part of the pump beam may not interact with
the signal wave efficiently. As a consequence, it is better to use
a vortex pump beam that has field profile similar to the signal.

In addition to spatial properties, the time domain charac-
teristic of nonlinear conversion is also an important topic,
which has not been well studied for optical vortices. For
these three-wave parametric processes such as SFG, if the
involved lights are ultrashort pulses, two possible issues may
happen. One is the group velocity (or group delay) mismatch
and another one is the wide spectral width induced phase
mismatch. Taking the SFG of a 1064-nm pump beam and
a 1550-nm signal beam as an example, the maximal group
delay difference between the lights may reach 0.56 ps/mm.
A 6.51-mm-long sample thus would induce a 3.6-ps offset in
the time domain among the involved beams. To ensure a high
efficiency, light sources with >36-ps pulse width would be
desired in this case. If we further shorten the bandwidth to
fs level, some group velocity compensation schemes may be
adopted by inducing both linear and nonlinear gratings in the
sample [23]. Furthermore, the ultrashort pulse normally has
a much wider linewidth than a cw or ns-pulsed light. If the
linewidth is wider than a PPLN sample’s spectral acceptance
bandwidth, the QPM conversion efficiency also would be
affected. Fortunately, this problem is solvable since the domain
structure of a PPLN could be well designed to match the source
bandwidth [24]. The optical vortices’ time domain evolution
in nonlinear processes may have some interesting features,
which still need further investigation.

From our analyses above, the OAM states could be used to
obtain a desired OAM state with a new wavelength, topological
charge, and radial index, while they are normally governed by
the conservation law of OAM. Let us take the SFG as an
example. The generated SF and the left-regenerated signal
waves are determined by the input signal and pump waves.
As long as data are encoded in the signal vortex (or pump
beam), they may be transferred to the SF beam at a different
wavelength, which is instantly controllable. Our approach
thus has promising applications in wavelength routing and

switching for vortex-based optical communications. Further-
more, the interesting asynchronous frequency conversion of
a signal beam gives some insights in the QPM frequency
conversion processes. In some cases with highly efficient
nonlinear frequency conversion, the radial index of the signal
wave would not conserve so that we may even obtain p > 0
OAM states from a p = 0 signal at the same wavelength. This
feature may be useful for the multiplexing and demultiplexing
of OAM states in OAM-loaded communication or signal
processing systems. Even if we move into the quantum world,
the QPM transformation of OAM states proposed in this
work is very useful. PPLN has already been well recognized
as a quite suitable material to generate entangled photon
pairs through spontaneous parametric downconversion. The
employment of the optical vortex provides freedom for photon
entanglement. Both of the azithmual and radial indices may
be involved. The applications of PPLN in this field are very
promising although they need extensive study.

Furthermore, when we talk about second-order nonlinear-
ity, such as SHG or SFG, the related process is very sensitive
to the lights’ polarization states, which means there is also
strict limitation of the optical vortices’ polarization states
for nonlinear frequency conversion. This is a fundamental
feature for BPM nonlinear optics. However, the PPLN or
similar materials’ domain structure could be designed though
agile domain engineering. In our previous works, we have
achieved polarization-insensitive SHG, SFG, and DFG based
on suitable domain designs and assisted with electro-optical
modulation [25–27]. Therefore the limitation of involved
vortices’ polarization states may be released. This is a quite
attractive advantage that does not exist in BPM processes.
Actually PPLN is a very versatile material with many functions
such as nonlinear frequency conversion, electro-optic effect,
piezoelectric effect, acoustic-optic effect, and so on [28–30].
The coupling and function integration of different effects in
a PPLN handling optical vortex may result in some unique
phenomena [31], which deserve our future investigations.

V. CONCLUSION

In conclusion, we have studied the nonlinear transforma-
tion of OAM through QPM in PPLN using coupling wave
equations. LG modes are used to represent the optical vortex
with OAM. Both theoretical analysis and numerical simula-
tion results are given. When a typical three-wave quadratic
nonlinear process happens, the conservation law of OAM is
revealed, for both azimuthal and radial indices of LG modes.
Due to the special intensity and phase profiles of an optical
vortex, we also found the spatially asynchronous frequency
conversion phenomenon that results in the abnormal radial
index change in long PPLN samples with high conversion
efficiency. This provides us with a way to generate and
modulate an optical vortex’s radial index through nonlinear
interactions. The extension and applications of our approach
are also discussed.
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