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In this paper, we investigate the influence of the linewidth enhancement factor and active region volume on the
switching characteristics of bistable injection-locked multi-quantum-well Fabry-Perot lasers. In this analysis we
start from the full scale model of the multimode rate equation system describing dynamics of injection-locked
lasers. On the basis of this model, we derive a simple analytical procedure for calculation of switching time and
energy with respect to the injection power, and for different values of frequency detuning between the master
and the slave laser. We find that the higher values of linewidth and active region volume can improve switching
characteristics of injection-locked Fabry-Perot lasers, providing either shorter switching times (∼10 ps) or lower
switching energies (∼1 fJ).
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I. INTRODUCTION

Injection locking is a nonlinear phenomenon [1,2] which
has recently emerged as an attractive solution for low-cost
upstream transmission in passive optical networks [3,4].
However, due to optically nonlinear and bistable output,
injection-locked laser configurations can be also employed
in digital optical signal-processing systems, such as optical
switches [5], fast low-power memories [6], and all-optical
flip flops [7] or regenerators [8], all representing hot research
topics. Since recently, these effects are intensively studied in
nanostructure lasers [9]. So far, several mechanisms behind
the injection-locked (IL) bistability have been found and
implemented in various applications. One of the recently
exploited mechanisms for fabrication of all-optical flip flops
is based on gain clamping and spatial hole burning [8,10],
and thus may represent a kind of absorptive or gain-controlled
bistability mechanism. The switching time achieved by this
technique is about 250 ps, while the switching energy is about
500 fJ [10]. On the other hand, it has been shown in [11,12]
that due to the dispersive bistability of IL lasers predicted by
Lang [13], slave laser (SL) may exhibit up to three stationary
states, two of which can be stable in a certain range of injection
power Pinj and frequency detuning �ω between the master
and the slave laser. It has been pointed out in [11,12] that
bistability significantly depends on the interaction between
the IL mode and other, unlocked modes, therefore a detailed
model, which takes into account all supported modes has been
applied and recommended [11]. Switching between these two
stable states can be achieved either by variation of Pinj or
�ω [14]. However, one of the most important remaining
problems is poorly investigated switching speed and switching
energy efficiency. So far, switching time in bistable laser diodes
has been studied in the dependence on Pinj or �ω [14], while
earlier works had been focused on the switching achieved by
the bias current variation [15].

A possible approach to calculate switching time is based
on numerical solving of the full scale rate equation model in
the transient regime. In addition to the IL mode, this model
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comprises equations for all other, unlocked modes. Although
computationally demanding, such approach provides a precise
method to investigate the influence of Pinj and �ω variation on
the switching from one (initial) to the other (final) stable state
and its corresponding time (tif ) and energy (Eif ). However,
in [14] we have proposed a simple analytical formula for
switching time prediction, which can provide an insight into
switching time dependence on the Pinj or �ω variation. The
implementation of the formula in this paper is based on the
stationary solutions of the full scale rate-equation model,
which we use to derive the stationary hysteresis loops. Once
the hysteresis loops and the stationary points are obtained, one
can calculate tif according to the derived analytical formula. If
the switching is based on the variation of Pinj, it is possible to
estimate Eif , as a product of the Pinj variation and tif .

This paper provides an analysis of the switching time and
energy versus Pinj, for various structural laser parameters and
frequency detunings. Among parameters which may affect
tif and Eif , we focus our investigation on the linewidth
enhancement factor (α), being directly responsible for the
bistability effect, and the number of the quantum wells (Nw)
in the active region, which determines the confinement factor
and active region volume.

In Sec. II, we provide the theoretical background of the
model based on the set of full scale rate equations describing
the injection-locking phenomenon and all used parameters.
Section III explains bistability induced by the injection locking
and formation of hysteresis loop. In Sec. IV we present the
analytical model for switching time and corresponding energy
calculation. In Sec. V we deal with the analysis and the
discussion of the results, and finally in Sec. VI we provide
the conclusion of the paper.

II. THEORETICAL BACKGROUND

In our study we assume that the SL active region con-
sists of a In0.75Ga0.25As0.87P0.13 (well) In0.46Ga0.39Al0.15As
(barrier) 1.55 μm strain-compensated multi-quantum-well
(QW) material. The QWs are considered weakly coupled or
decoupled, which provide us with a possibility to study the
optical properties of the active region by using material gain

063826-11050-2947/2013/88(6)/063826(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.063826
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dependence on carrier and current density for a single well.
The gain dependence g(n,ω) on carrier concentration n and
photon angular frequency ω, as well as radiative spontaneous
emission dependence Rsp(n) on carrier concentration, are taken
from [11]. In the free-running (FR) regime, the gain spectrum
reaches its maximum at the threshold carrier concentration
n = nFR

th , and at the angular frequency ω = ω0 corresponding
to the central (dominant) mode. Due to the gain asymmetry
with respect to ω, the number of side modes which can be
supported by the laser cavity is different for ω < ω0 (l1) and
for ω > ω0 (l2). The rate equation system comprises one
equation regarding the carrier concentration (n) dynamics,
l1 + l2 + 1 equations dealing with the time dependence of the
photon concentration of the IL mode (Sm), and other unlocked
longitudinal modes (Sj ). The last equation describes the time
evolution of the phase difference (θm) between the FR and IL
states:

dn/dt = I/(qV ) − Q(n) −
l2∑

j=−l1

vgg(n,ωj )Sj , (1)

dSj/dt = AjSj + B(n), j �= m, (2)

dSm/dt = AmSm + B(n) + 2kc

√
SinjSm cos θm, (3)

dθm/dt = αAm/2 − �ω − kc

√
Sinj/Sm sin θm. (4)

In Eqs. (1)–(4) I stands for the bias current of the SL,
V is the volume of its active area, corresponding to a laser
width w = 4 μm, resonator length L = 250 μm, and Nw

equally spaced QWs, with a well thickness of d = 8.7 nm.
We define Q(n) as the total recombination rate, representing
the sum of the total spontaneous optical emission rate Rsp(n)
and nonradiative recombination rates, i.e., Q(n) = ASRHn +
Rsp(n) + CAn3, where ASRH = 1.1 × 108 s−1 [11] and CA =
5.82 × 10−29 cm6 s−1 [11] are the Shockley-Reed-Hall and
the Auger recombination rate coefficients, respectively. For
brevity and further clarifications, we define two additional
auxiliary variables: the effective spontaneous emission B(n) =
�βspRsp(n), and the effective rate of stimulated photon
generation Aj (n,ωj ) = �vgg(n,ωj ) − τ−1

p for mode j , and
Am(n,ωm) = �vgg(n,ωm + �ω) − τ−1

p for the IL mode m.
Frequency ωj is the frequency of a side mode j , defined as
ωj = ω0 + j (πc/ngL). In these expressions, vg stands for the
group velocity with ng = 4.2, τp = (�vggth)−1 is the photon
lifetime, � is the confinement factor calculated as Nw × �1,
where �1 = 0.0187 is the confinement factor per well, and the
parameter βsp is the spontaneous emission coupling factor [11].
For all modes in the FR regime B(n) > 0, while Aj (n) < 0
except for the central mode j = 0, for which Aj (nFR

th ) =
0. Furthermore, kc = 1.13 × 1011 s−1 is the external light
coupling factor [11], α is the linewidth enhancement factor,
�ω is the frequency detuning between master and slave lasers,
and Sinj is the photon density which is proportional to Pinj and
is given by Sinj = τp�Pinj/(η0h̄ωV ), where η0 = 0.33 is the
optical efficiency [11]. Frequency detuning of �ω into the
side mode m means that the frequency of the injected light is
ωinj = ω0 + m(πc/ngL) + �ω.

In our analysis we investigate the stationary solutions of
Eqs. (1)–(4) in the dn/dt versus n space (or phase plot). From

the stationary forms of Eqs. (3) and (4), by eliminating phase
θm we obtain a quadratic equation with respect to stationary
IL mode photon density Sm:[

A2
m + 4(αAm/2 − �ω)2]S2

m

+ (
2AmB − 4k2

c Sinj
)
Sm + B2 = 0, (5)

for which a physically justified solution is given by

Sm = −
{(

2AmB − 4k2
c Sinj

)
+

√(
2AmB − 4k2

c Sinj
)2−4B2

[
A2

m+4(αAm/2 − �ω)2
]}

×{2[
A2

m + 4(αAm/2 − �ω)2]}−1. (6)

From the stationary form of Eq. (2) we derive Sj =
−B(n)/Aj (n), and substitute Sj and Sm in the stationary form
of Eq. (1), obtaining a transcendental equation with respect to
n:

I/(qV ) − Q(n) +
j �=m∑

−l1�j�l2

vgg(n,ωj )B(n)/Aj (n)

−vgg(n,ωm + �ω)Sm = 0, (7)

in which Sm is given with Eq. (6). From Eq. (7) it is possible
to find stationary carrier concentrations corresponding to the
stationary states of the slave laser as well as hysteresis loops
related to the bistability effect.

III. BISTABILITY AND HYSTERESIS LOOPS

In order to provide an insight into derivation of the
hysteresis loops and the analytical expression for the switching
time, we study a set of dn/dt versus n phase plots for a
fixed �ω = −14� (� = 1010 rad/s), α = 3, Nw = 3, and for
different values of Pinj [Fig. 1(a)]. In this case, the number of
supported modes is l1 + l2 + 1 = 120 + 170 + 1 = 291 and
all of them are included into calculation. The injection is into
the 5th mode from the central mode (h̄ω0 = 0.8 eV) on the
long-wavelength spectrum side, i.e. m = −5. We have shown
in [11] that photon density of the IL mode Sm exhibits a
maximum at carrier concentrations n lower than the threshold
concentration for FR laser, nFR

th , therefore, for a fixed negative
detuning, depending on the magnitude of Pinj, dn/dt versus n

phase plots may have up to three stationary points [Fig. 1(a)],
i.e., Eq. (7) can have up to three solutions. In the range of
moderate injection powers (−7.1 dBm < Pinj < −2.4 dBm),
dn/dt versus n phase plots have three steady states [hatched
region in Fig. 1(a)], which we denote as n(1)

sp (open circles,
e.g., points 4, 5, and 6), n(2)

sp (crossed square), and n(3)
sp (filled

circles, e.g., points 1, 2, and 3) in the increasing order of
their values. For the lower range limit (Pinj = −7.1 dBm) n(2)

sp

merges with n(1)
sp (point 6), while for the upper range limit

(Pinj = −2.4 dBm) n(2)
sp merges with n(3)

sp (point 3). Stability
analysis shows that n(2)

sp is always unstable [11,12], while
depending on �ω there is some moderate range of Pinj for
which n(1)

sp and n(3)
sp are stable (e.g., for �ω = −14�, Pinj

range is from −7.1 to −2.4 dBm), providing the SL bistability
[12]. Thus, once Pinj is increased to overcome −7.1 dBm,
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FIG. 1. (Color online) (a) dn/dt versus n phase plot for fixed
�ω = −14�, Nw = 3, α = 3, and various Pinj, with all modes
included. The hatched area represents the set of phase plots which
have three stationary points: n(1)

sp (points 4, 5, and 6), n(2)
sp , and n(3)

sp

(points 1, 2, and 3). Dot-dashed curves represent situations with only
one stationary point (point SP3 for low Pinj and point SP1 for high
Pinj). Inset: Zoom of the area close to the nFR

th . (b) Photon density of IL
mode Sm versus Pinj and (c) IL mode phase θm versus Pinj hysteresis
loop corresponding to (a). Dot-dashed tail parts of the hysteresis loops
correspond to the phase plots with only one stationary point, while
vertical boundaries correspond to the limiting cases, when n(2)

sp merges
with n(1)

sp (Pinj = −7.1 dBm), and with n(3)
sp (Pinj = −2.4 dBm).

or decreased below −2.4 dBm, the SL enters the region of
bistability.

For sufficiently low (Pinj < −7.1 dBm) or sufficiently high
(Pinj > −2.4 dBm) injection power, the phase plot has only one
stationary point. In the case of low Pinj, this stationary point is
close to the nFR

th [SP3 point in the zoom inset in Fig. 1(a)] and
becomes n(3)

sp with an increase in Pinj. Being close to the nFR
th ,

such carrier concentration corresponds to the considerable
emission from the dominant mode j = 0 and its closest side
modes, while the emission from the IL mode is suppressed, i.e.,
the situation resembles the FR regime. Looking the other way
around, one can conclude that the interplay between the IL and
other, unlocked modes, determines the carrier concentration
of SP3 and n(3)

sp (i.e., its position in the phase plot). Although
the emission from the dominant mode j = 0 and its closest
side modes for this stationary point is significant, it is much
smaller than the one corresponding to the FR regime or the
one from the IL mode for higher Pinj [11]. This fact represents
one of the important bases for our switching model. Since the
carrier concentration for this stationary point is close to the
FR regime, for which the IL mode is far from its maximum
emission, the power output at wavelength corresponding to
the injected light, i.e., IL mode, is low. For higher Pinj, Sm

increases and exhibits a maximum corresponding to lower
carrier concentrations than nFR

th . The increase in Sm, especially
its maximum, leads to the bending of dn/dt versus n plots
toward the negative values of dn/dt [cf. Fig. 1(a)] providing
simultaneously two additional stationary points (n(1)

sp and n(2)
sp ).

However, the stationary point n(1)
sp is the only stable point of

these two. This point remains stable and, with further increase
in Pinj, becomes the only stationary point [SP1 point in the
Fig. 1(a)], while the unstable stationary point n(2)

sp vanishes.
The carrier concentrations corresponding to SP1 and n(1)

sp
provide significant emission from the IL mode, which in this
case considerably overcomes the output power corresponding
to the dominant mode (j = 0) and the other unlocked modes.
The main reason for that is a high injection power into the IL
mode.

The existence of two stable stationary points (n(1)
sp and n(3)

sp )
for a single Pinj and �ω leads to the bistability. The bistability
is related to the optical power hysteresis loop at the wavelength
of the injected light. In order to derive the hysteresis loop
profile we calculate output photon density of the injected mode
Sm from Eq. (6), by calculating Am and B for n corresponding
to each of two stable stationary points from the dn/dt versus
n phase plot. The photon phase θm is then calculated from
the stationary form of Eq. (4). In Figs. 1(b) and 1(c) we
present dependencies of the output photon density Sm and
phase θm on the Pinj, respectively. The stationary points which
do not belong to the bistability region (as SP1 and SP3) map
into the points outside of the hysteresis loops. The point SP3

corresponding to low Pinj is settled on the left side of the loop,
while the one corresponding to high Pinj, SP1, is settled on the
right side of the loop [dot-dashed lines in Figs. 1(b) and 1(c)].

By using Fig. 1 it is possible to follow the transition of the
stationary points in the dn/dt versus n phase plot and their cor-
responding transition along the hysteresis loop in dependence
on Pinj. If the Pinj is increased beyond −7.1 dBm, the SL slides
from the SP3 state into the n(3)

sp state, denoted as state 1. This
state corresponds to the lower branch of the Sm [Fig. 1(b)],
and the upper branch of the θm hysteresis [Fig. 1(c)]. Further
increase in Pinj shifts the SL from the n(3)

sp state denoted as state
1, to n(3)

sp states denoted with higher numbers (2, 3) as long
as n(3)

sp state exists, i.e., up to the n(3)
sp state denoted as state 3.

Once Pinj overcomes −2.4 dBm, the dn/dt versus n phase plot
again has only one stationary point with low operating carrier
concentration [SP1 in Fig. 1(a)], and SL jumps from the last
n(3)

sp state provided (state 3) to this one. As mentioned earlier,
this SP1 state is mainly a consequence of injection locking,
and due to the low operating carrier concentration, the central
(dominant) mode is highly suppressed. The drive of the master
laser in the reverse direction, corresponding to the decrease in
Pinj, slides the SL into the n(1)

sp state (state 4), once Pinj again
enters the bistability region. Further decrease in Pinj will keep
the SL in the n(1)

sp state (e.g., points 4, 5 up to 6), as long as it is
provided, i.e., up to Pinj = −7.1 dBm corresponding to point
6. In terms of the hysteresis loops, the n(1)

sp state corresponds to
the upper branch of the Sm, and the lower branch of the θm hys-
teresis. Decreasing Pinj below Pinj = −7.1 dBm brings the SL
back to the starting point SP3, when only the state close to the
free-running regime exists, thus completing a full hysteresis
cycle.
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In the region of the bistability, the SL will be stabilized
in either the upper or the lower hysteresis branch, i.e., either
in the n(1)

sp or the n(3)
sp state, depending on the laser prehistory.

As shown in this case study, switching between the states
(branches) can be achieved by variation of Pinj, which needs to
temporarily overcome the boundaries defined by the hatched
area in Fig. 1(a). In this way, the operating point is pushed
out from one of the branches of the hysteresis loop, and then
moved, i.e., switched to the opposite hysteresis branch, after
Pinj is settled back to its previous value.

For the given laser structure and input parameters used in
our computation, photon densities of injected signal and all
longitudinal modes are smaller than 1015 cm−3, which is at
least two orders of magnitude smaller than the photon density
necessary to trigger the mechanism of nonlinear gain suppres-
sion [16]. Therefore we neglect the nonlinear gain suppression
in this work. However, preliminary investigation shows that the
nonlinear gain suppression may become important in the case
of higher bias currents, due to increased photon densities. In
this case, it can cause shrinkage of the hysteresis width, which
may affect the switching time and energy. A much deeper
and more systematic numerical analysis of the bistability,
hysteresis loops, and corresponding switching time and energy,
with inclusion of all supported modes and nonlinear gain
suppression mechanism, is required, and it will be provided in
some future work.

IV. SWITCHING MODEL

We base our analysis of switching between bistable states
on a simple analytical model [14]. However, since this model is
based on several approximations of the full scale rate equation
model, Eqs. (1)–(7), one could suspect that it lacks precision.
Therefore, we tested the model by comparison with numerical
simulations of the full scale rate equation model and found
that analytical approach is sufficiently precise to estimate
the switching time properly. In derivation of the analytical
switching model, we assume that the stationary photon density
can be reached much faster than the carrier density. The second
assumption is that the carrier concentration n does not change
considerably as the SL switches between n(1)

sp and n(3)
sp com-

pared to the case of complete turn on and off. This assumption
means that, depending on the switching direction, we may fix
the total recombination rate Q(n) to a value corresponding
to some switching carrier concentration nx between n(1)

sp and
n(3)

sp , i.e., Q(nx) = ASRHnx + Rsp(nx) + CAn3
x, which we chose

according to the switching direction. Since the SL is stabilized
in the initial state before the switching, the laser will remain in
its vicinity most of the switching time. As the switching is over
once the final state is just reached, one can conclude that an
average carrier concentration during the switching is closer to
the initial carrier concentration than to the final one. Therefore,
for the case of switching from n(3)

sp to n(1)
sp it is justified to assume

that nx corresponds to the initial carrier concentration, i.e.,
nx = n(3)

sp , while in the reverse direction, following the same
logic, nx is set to n(1)

sp . Finally, since the stationary point n(3)
sp

is always lower than the FR threshold carrier concentration,
we may assume that emission from unlocked modes will
not have significant influence on the carrier rate equation,

Eq. (1), as long as the carrier concentration n � n(3)
sp < nFR

th .
This assumption is based on the results shown in [11] and
mentioned in the previous section. It states that for carrier
concentrations lower than nFR

th , the maximum emission from
the unlocked modes is considerably less intensive than the
maximum emission from the IL mode. By that, we remove
the necessity for unlocked modes photon rate equations in
further consideration and neglect their contribution in the
carrier rate equation. Indeed, the profile of the dn/dt versus
n phase plot mainly depends on the IL mode m for a wide
range of n except in the vicinity of nFR

th . In contrast to our
previous analysis [14] in which we assumed n(3)

sp = nFR
th , in this

paper we keep original value for n(3)
sp corresponding to derived

hysteresis loops obtained from the full scale rate equation
model or more precisely, from Eqs. (6) and (7). Although all
mentioned approximations reduce the accuracy of our model,
they provide a possibility to analytically and more directly
investigate the influence of α and Nw on the switching time and
energy between the stable states. We start from Eq. (6), with
the assumption that spontaneous emission term B in the photon
density equation for the IL mode can be neglected. From
Eq. (6), with B = 0, we derive stationary Sm and consequently
θm [14]:

Sm = 4k2
c Sinj/

[
A2

m(1 + α2) − 4Amα�ω + 4�ω2
]
, (8)

θm = arcsin

[
αAm − 2�ω√

A2
m(1 + α2) − 4α�ωAm + 4�ω2

]
. (9)

We further modify Eq. (1) in which we exclude the con-
tribution of unlocked modes, keeping the IL mode, for which
photon density Sm is given by Eq. (8) and fix contributions of
radiative and nonradiative spontaneous recombination Q(nx):

dn/dt = I/(qV ) − Q(nx) − vgg(n,ωm + �ω)Sm. (10)

In Fig. 2, we show dn/dt versus n phase plots obtained
from Eq. (10) for the same other input parameters as before,
i.e., �ω = −14�, α = 3, and Nw = 3. It can be seen that
the phase plots shown in Figs. 1 and 2 are slightly different,
due to introduced approximations. The plots in Fig. 2 are
obtained for Pinj corresponding to the limiting values of the
bistability range, Pinj = −6.6 dBm (n(2)

sp merges with n(1)
sp )

and Pinj = −2.2 dBm (n(2)
sp merges with n(3)

sp ) and for the
injection power P0 = −4.4 dBm. The power P0 corresponds
to Pinj for which the n(1)

sp point lies in the middle of the
carrier concentration range corresponding to the n(1)

sp bistability
range, although it may look like it coincides with the average
power of the bistability range as depicted in the left inset in
Fig. 2. However, our calculation shows that there is negligible
difference if P0 is defined as the medium power of the
bistability range. Figure 2 also provides the dn/dt versus n

phase plot at injection power P0, for all modes included (IL
as well as unlocked modes), based on Eq. (1), which can be
evaluated by the function given on the left side of Eq. (7) and
for a fixed spontaneous recombination term Q(nx) (dot-dashed
line in Fig. 2). It can be seen that this plot almost completely
overlaps the one derived from Eq. (10) comprising only the
IL mode. The difference occurs only in the vicinity of nFR

th (cf.
right inset in Fig. 2). It can be seen in the right inset of Fig. 2 that
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FIG. 2. (Color online) dn/dt versus n phase plots accounting
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represents the phase plot obtained for all modes included. The hatched
area represents the area of multiple stationary points. Arrowed lines
represent phase plots corresponding to switching powers P0 ± �P .
Left inset: Schematic Sm hysteresis loop and trajectories of switching.
Right inset: Enlarged vicinity of the n(3)

sp state.

dn/dt versus n phase plots corresponding to Eq. (10) do not
cross the n axis, which would have happened, if the unlocked
modes had been included in Eq. (10) as they were in Eq. (1).
Nevertheless, the n coordinate of the right ending point of the
phase plot obtained from Eq. (10) almost completely coincides
with n(3)

sp , which means that the negligence of the unlocked
modes is justified with respect to the dn/dt versus n phase
plot profile as long as the accurate position of n(3)

sp is known.
In other words, if we use the simplified model represented by
Eq. (10) in describing dn/dt versus n phase plots, the right
ending point is equivalent and corresponds to n(3)

sp . However,
n(3)

sp has to be derived from the full scale rate equation model,
or more precisely from Eq. (7), since Eq. (10) cannot provide
it.

As explained before, we analyze the switching between
stable points n(1)

sp and n(3)
sp and vice versa by variation of Pinj. In

this analysis we focus on the points depicted in Fig. 2, which we
obtain after simplifications imposed by the approximations of
the model. This means that we start from Pinj set to P0 for which
the SL is either in the n(1)

sp (upper hysteresis branch) or in the n(3)
sp

state (lower hysteresis branch; cf. left inset in Fig. 2). In order
to switch from n(3)

sp to n(1)
sp , Pinj needs a variation (�P ), i.e.,

it has to be rapidly increased to some Pinj = P0 + �P > P
(2)
inj

which corresponds to the case when only one (SP1) steady state
appears (lower arrowed line in Fig. 2). This power overcomes
the hysteresis edge (P (2)

inj ) and corresponds to the upper right tail
of the hysteresis. If this power (Pinj = P0 + �P ) is kept fixed
for some short time interval, SL will begin to gradually slide
toward the only steady state provided. When Pinj is returned
back to P0, instead of stabilizing in the SP1 state, SL switches
to n(1)

sp and completes the switching. In the reverse process, in
order to switch from n(1)

sp to n(3)
sp , Pinj has to be decreased to

some Pinj = P0 − �P < P
(1)
inj , corresponding to the case when

only SP3 appears (upper arrowed line in Fig. 2). Here P
(1)
inj

represents the lower hysteresis edge. This power is kept fixed
for some short time interval while SL slides toward SP3, and
when the power is returned back to P0, laser stabilizes in the

n(3)
sp state. In this case the operating point of the SL is switched

from the upper branch of the hysteresis to the lower one. In
order to derive expression for switching time calculation we
rewrite Eq. (10) with respect to A = Am [14]:

dn/dt = ξdA/dt = Qnet − (
A + τ−1

p

)
Sm/�. (11)

In Eq. (11) Qnet = I/(qV ) − Q(nx) is the effective rate
of the carrier injection into the SL, depending on the bias
current I = 1.2Ith, and total recombination rate Q with
respect to the switching carrier concentration nx, while
ξ = [�vg(dg/dn)]−1. Equation (11) can be rewritten in the
following form [14]:

ξ
[
Q−1

net + (K4A + K5)(K1A
2 + K2A + K3)−1

]
dA = dt.

(12)

Definite integration of Eq. (12) gives

tif = ξ (Af − Ai)

Qnet
+ ξK4

2K1
ln

(
K1A

2
f + K2Af + K3

K1A
2
i + K2Ai + K3

)

+ ξ (2K1K5 − K2K4)

K1

√
4K1K3 − K2

2

× arctan

⎡
⎣ (Af − Ai)

√
4K1K3 − K2

2

2K1Af Ai + K2(Af + Ai) + 2K3

⎤
⎦ .

(13)

The definite integral given by tif represents the switching
time between the initial Am = Ai and the final Am = Af

state, where i stands for 1 or 3, i.e., corresponds to n(1)
sp or

n(3)
sp , while f stands for 3 or 1, i.e., n(3)

sp or n(1)
sp . Further-

more, K1 = Q2
net�τp(1 + α2), K2 = −4Qnetτp(Qnetα��ω +

k2
c Sinj), K3 = 4Qnet(Qnet��ω2τp − k2

c Sinj), K4 = 4k2
c Sinjτp,

and K5 = 4k2
c Sinj. In these expressions, Sinj corresponds to

Pinj = P0 ± �P .
From Eqs. (6) and (7) and for known �ω we calculate the

range of Pinj for which the bistability occurs, i.e., the hysteresis
edges (P (1)

inj and P
(2)
inj ), the corresponding starting power (P0),

as well as carrier concentrations for switching states n(1)
sp and

n(3)
sp within the hysteresis loops. Stimulated photon generation

rates, corresponding to these states, are given by Am(n(1)
sp ) =

�vgg(n(1)
sp ,ωm + �ω) − τ−1

p and Am(n(3)
sp ) = �vgg(n(3)

sp ,ωm +
�ω) − τ−1

p . Depending on a desired direction of the switching,
one of these states represents the initial state, and the other
one is the final state. Finally, with Sinj corresponding to
Pinj = P0 ± �P , by using Eq. (13), we calculate the switching
time tif between the states with respect to the variation of
injection power �P . Since the loops derived from the full
scale rate equation model, Eqs. (1)–(7), are slightly different
than the loops derived directly from the simplified analytical
model, Eqs. (8)–(10), we adopt �P which is large enough
to compensate for this small difference and to enable the
analytical model to remain on the safe side. The switching
energy is finally calculated as Eif = �P tif .

063826-5



KRSTIĆ, CRNJANSKI, AND GVOZDIĆ PHYSICAL REVIEW A 88, 063826 (2013)

V. RESULTS AND DISCUSSION

The analysis in the paper is focused on the influence of the
linewidth enhancement factor α, and the number of quantum
wells Nw in the SL active region on the switching time between
bistable states and the corresponding switching energy. The
linewidth enhancement factor α is of great importance for
injection locking properties and, as shown in [12], affects the
locking range and stability of the IL lasers. Here we show that α
also affects the width and the general profile of the hysteresis
loops and thus, indirectly the time and energy of switching
between the stable states. Although we can account for the
carrier-dependent refractive index variation spectrum [17],
as well as the dispersive linewidth enhancement factor, in
this study we assume that the linewidth enhancement factor
is nondispersive and independent of the carrier density and
gain spectrum. This assumption is motivated by the fact
that the value of the linewidth enhancement factor affects
only the injection-locked mode. For this particular mode, the
frequency detuning is in the order of intermodal spacing, which
is generally insufficient to cause significant variation of the
linewidth enhancement factor as well as the refractive index.
Moreover, the switching between stable states corresponds to
low variation of carrier density, which supports negligence
of α factor variation with carrier density. Although different
nondispersive α factors generally correspond to different
gain spectra, we investigate the influence of the linewidth
enhancement factor by using two fixed values of α for the
same gain spectrum. This approach provides us better insight
into the shear influence of the α factor on the hysteresis profiles
and switching times between bistable states. Moreover, it can
be seen that K1 and K2 in Eq. (13) depend on α and directly
affect the switching. On the other hand, the number of quantum
wells Nw is directly proportional to the SL confinement factor
�. Since ξ is inversely proportional to �, an increase in
Nw leads to the decrease in ξ . The decrease in ξ does not
directly affect the first term in Eq. (13) since its decrease is
compensated by the increase in Am(n(1)

sp ) and Am(n(3)
sp ), which

linearly increase with �. However, the other two terms in
Eq. (13) are proportional to ξ and decrease with it. The other
parameters K1, K2, and K3 also depend on �, but affect
Eq. (13) in a nontrivial way. In addition to this, the increase
in Nw leads to the increase in the SL active volume, which
causes the decrease in Qnet. On the other hand, the increase in
� reduces the free-running threshold carrier concentration nFR

th
and consequently the threshold current Ith. In the case of the
fixed ratio of the applied and threshold current (I/Ith = 1.2),
the applied current decreases as the threshold current, which
together with the increase in V lead to an inevitable decrease in
Qnet. Similarly to �, Qnet also affects K1, K2, and K3 leading
to complex dependence of tif on the active region volume V .

According to the previous analysis, it is clear that α and
Nw represent very important parameters in terms of IL laser
switching dynamics. In order to study their influence, we
investigate tif and the corresponding Eif for two values for each
of these parameters, providing four possible combinations for
ordered pair {α,Nw}. In the analysis we assume α = 3 [18] or
6 [19] and Nw = 3 (nFR

th = 2.85 × 1018 cm−3, Ith = 8.16 mA)
or Nw = 6 (nFR

th = 1.88 × 1018 cm−3, Ith = 6.25 mA). Apart
from that, as we perform switching with Pinj variation, we
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FIG. 3. (Color online) dn/dt versus n phase plots in the case of
Nw = 3, for two values of α and �ω, with Pinj set to P0 for a given
value of α and �ω.

analyze the influence of the frequency detuning on tif and the
corresponding Eif .

In Fig. 3 we present a family of dn/dt versus n phase
plots obtained for two different values of α (α = 3,6) and
�ω (�ω = −14�, − 18�). The phase plots are calculated
by using Eqs. (10) and (8), for Nw = 3 and m = −5. It can
be seen that in phase plots obtained for higher values of α,
n(1)

sp is shifted toward nFR
th , meaning that the n(1)

sp and n(3)
sp states

are closer to each other, compared to the case of phase plots
obtained for the lower values of α. The reason for this is
related to Eq. (8) which changes more rapidly with the carrier
concentration n for higher values of α. The rapid change occurs
due to the reduced opening of the parabola in the denominator
of Eq. (8), which becomes narrower with the increase in α. The
proximity of the initial and the final stationary point for higher
α leads to the reduction of the linear and other two terms in
Eq. (13) and the corresponding switching time. In addition to
this, the maximum of the denominator in Eq. (8) occurs for
Am = 2α�ω/(1 + α2). This means that for the more negative
detuning �ω, Am becomes more negative, which corresponds
to the lower carrier concentration. Thus one can see that the
phase plots for the same values of α, shift toward the lower
carrier density as �ω becomes more negative. As can be seen
in Fig. 3, for a fixed �ω and Pinj, higher α leads to larger
bending of the dn/dt versus n phase plot, which means that
bistability can be provided by lower Pinj than in the case of the
lower linewidth.

In Fig. 4 we present photon density Sm as a function of Pinj,
for different values of α, Nw, and �ω. Although the results in
Fig. 4 are derived from the full rate equation model and Eqs. (6)
and (7), their analysis can be based on simplified Eq. (6), i.e.,
on Eq. (8). It can be seen that higher α leads to the lower Sm

for higher branches of the hysteresis loops. Due to an increase
in α, the denominator in Eq. (8) also increases. As shown
in Fig. 3, higher α leads to larger n(1)

sp , which corresponds to
lower negative Am, i.e., low |Am| (or gain defect). Although
low, |Am| is not low enough to significantly reduce the increase
of the denominator in Eq. (8), which consequently leads to a
low output photon density Sm. However, a lower Sm is not a
problem for bistability in the case of high linewidth, since
the bending of the phase plot is significant, as previously
discussed and shown in Fig. 3. The range of Pinj for which
hysteresis loops occur, and corresponding switching time and
energy, are also dependent on the frequency detuning �ω.
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values (a) {3, 3}, (b) {6, 3}, (c) {3, 6}, and (d) {6, 6}.

As in the previous case, the more negative �ω increases the
denominator in Eq. (8), leading to lower Sm corresponding to
the upper branch of the hysteresis loop. Low Sm may lead to
an insufficient bending of the dn/dt versus n phase plot and
interruption of the bistability regime. The way to compensate
for Sm decrease and to keep the SL in the bistability regime is to
increase the injection photon density Sinj, i.e., Pinj. This means
that more negative �ω shifts the loops towards higher Pinj

(cf. Fig. 4), resulting in the higher switching energy. Moreover,
the higher density of injected photons in the case of more
negative �ω means that n(1)

sp is shifted towards lower values,
thus n(1)

sp and n(3)
sp are more separated (cf. Fig. 3) leading to larger

difference Af − Ai . This difference increases all three terms
in Eq. (13), which lead to a longer switching time. Finally, an
increase in Nw and consequently in V and �, lowers the value
of the gain threshold, the number of supported modes, and
nFR

th . Since the SL operates at lower carrier concentrations,
the output photon densities of all modes are lower, while
the injection locking needs lower Pinj to achieve locking of a
particular side mode. In terms of the laser bistability, this means
that hysteresis loops, obtained for higher Nw, have lower Sm

densities, and that the loops are shifted toward lower values of
injection power (cf. Fig. 4). Since hysteresis loops appear at
lower values of Pinj, it can be expected that less energy has to be
employed in order to switch between the hysteresis branches.
In addition to this, due to the lower nFR

th , the threshold current
is lower. For a fixed I/Ith ratio, the decrease in the threshold
current and the increase in the active region volume lead to
the lower well pumping, i.e., a decrease in the I/(qV ) term in
Eq. (10). The lower bias current I , in combination with smaller
carrier concentration for higher Nw, lowers the value of the
effective rate for the carrier injection Qnet = I/(qV ) − Q(nx)
in Eq. (11). This directly leads to a longer switching time,
since it dominantly increases the value of the integral given by
Eq. (13).

In Fig. 5 we present calculated switching time and energy
versus the variation of injection power (�P ), measured from
the starting injection power P0, for a relatively low adopted
value of α = 3 and two different numbers of quantum wells,
Nw = 3 and Nw = 6. Figure 5 shows the switching time and
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FIG. 5. (Color online) Switching time for (a) Nw = 3 and (b)
Nw = 6, and switching energy for (c) Nw = 3 and (d) Nw = 6, for α =
3 and different values of �ω in cases of power increase (switching
from n(3)

sp to n(1)
sp ; curves with arrow up) and power decrease (switching
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sp ; curves with arrow down).

energy in the case of power increase (switching from n(3)
sp

to n(1)
sp ) and power decrease (switching from n(1)

sp to n(3)
sp )

for different values of �ω. It should be mentioned that the
same variation of the injection power, �P , expressed in dB,
corresponds to different values of power variation expressed
in SI units for switching in opposite directions. In other
words, +�P represents a larger power variation than −�P ,
assuming the same P0. Moreover, a decrease in P0 leads to
even smaller power variations for the fixed �P and usually
means lower switching energy. In calculation of tif and Eif

we apply expression (13) derived in Sec. IV. It can be seen
that switching from n(1)

sp to n(3)
sp lasts longer than the reverse

process, but due to lower Pinj it has lower switching energy.
With an increase in Nw, switching time increases, but switching
energy becomes lower due to the decrease in the effective rate
of the carrier injection Qnet. In addition to this, more negative
�ω, as we already explained, leads to larger separation of the
stationary points, and consequently to longer switching time
and higher switching energy. In the case of switching by Pinj

decrease, switching energies for higher values of Nw and less
negative �ω can be very low, in the order of 10 fJ, though
corresponding switching times are in the order of 0.5 ns.

In Fig. 6 we present calculated switching time and corre-
sponding energy for α = 6 in cases of Nw = 3 and Nw = 6.
Figure 6 clearly shows lower switching time in comparison
with Fig. 5. However, this comparison does not take into
account the width of the hysteresis loops, which are wider
for larger values of the linewidth. In order to provide a fair
comparison for α = 3 and α = 6, we can define �P as
the power variation counted from the hysteresis edge, rather
than from its middle, and compare switching times for the
same level of power variation �P to learn that switching
times for α = 6 are indeed shorter than those for α = 3. In
addition to this, an increase in α leads to a more energy
efficient switching [Figs. 6(c) and 6(d)]. The reason for this
lies in the shorter switching time, and the fact that hysteresis
loops are shifted toward lower Pinj. In the case of α = 6,
Nw = 6, and �ω = −10� [dot-dashed line in Fig. 4(d)], small
signal stability analysis [12] shows that the n(3)

sp branch of the
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hysteresis loop is not stable, thus the switching between n(1)
sp

and n(3)
sp does not occur. Our model shows that for sufficiently

large �P , with high values of α, switching time can be very
short, even shorter than 10 ps [c.f. Fig 6(a)]. However, in such
cases, due to large �P , switching energy is high, in the order
of 100 fJ [cf. Fig. 6(c)]. In the process of switching with power
decrease, due to low values of Pinj, switching energy can be
even lower than 1 fJ, but on account of the longer switching
time which is in the order of 0.4 ns. The conducted analysis
shows that both switching time and energy significantly depend
on the switching direction. Although the switching time for
the opposite directions becomes comparable for small �P ,
it is generally long, since it is in the order of 0.5 ns. On the
other hand, the switching energy can be comparable for a
wide range of �P , especially for low-frequency detuning. A

future investigation should study a possibility to decrease the
switching energy, as well as balancing the switching time and
energy with respect to the switching direction.

VI. CONCLUSION

In this paper we analyze the influence of the linewidth
enhancement factor and the active region volume on the
switching properties of the IL bistable Fabry-Perot lasers.
From the full scale model of the IL laser rate equations, we
calculate hysteresis loops and derive a simple analytical model
for calculation of the switching time and corresponding energy
with respect to Pinj and �ω. We show that the higher values
of linewidth enhancement factor α reduce switching time and
switching energy, since higher values of α bring switching
states closer with respect to their carrier concentrations.
Moreover, hysteresis loops are shifted toward lower values
of Pinj, making switching more energy efficient. Increase in
the active region volume, can also lead to lower switching
energy since the laser gain threshold is lower. However, this
causes the switching time to become longer, as a result of
the lower value of the effective rate of carrier injection,
which dominantly increases the switching time. In addition
to this, we show that switching characteristics also depend
on the frequency detuning. A less negative �ω leads to
better switching characteristics, i.e., lower switching time and
energy, since switching states are closer with respect to the
carrier concentration, while the hysteresis loops are shifted
toward lower Pinj.
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